Разбираемся как проверить варистор мультиметром

Варисторы 07К…20К

Варистор серии 07K, 10K, 14K, 20K – оксидно-цинковый защитный элемент, обладающий способностью мгновенного изменения собственного сопротивления под воздействием подаваемого напряжения. Характерные резко выраженные нелинейные и симметричные вольтамперные характеристики предоставляют возможность эксплуатации варисторов в цепях постоянного, переменного и импульсного тока.

Принцип работы варистора заключается в его способности в считанные наносекунды (до 25 нс) понижать собственное сопротивление до отметки в несколько Ом при воздействии напряжения, превышающего номинальное значение – напряжения срабатывания, ток срабатывания при этом может достигать 100А.

В обычном состоянии сопротивление варистора достигает нескольких сотен МОм, а поскольку подключают варисторы параллельно цепи, то ток через него не проходит и он выступает в роли диэлектрика. Импульсный скачок приводит варистор в действие, понижая его сопротивление – происходит короткое замыкание и перегорает плавкий предохранитель, который должен устанавливаться в обязательном порядке перед варистором, и цепь размыкается.

В момент срабатывания происходит шунтирование излишней нагрузки, поглощаемая энергия (до 282 Дж при импульсе тока 2,5 мс) рассеивается в виде теплового излучения. Габаритные размеры варистора при этом играют значительную роль – общая площадь поверхности варистора имеет пропорциональное влияние на возможность гашения импульса напряжения без разрушения самого устройства.

Варисторы серии 07K, 10K, 14K, 20K имеют форму диска (дисковые варисторы) различной толщины с однонаправленными проволочными выводами радиального типа. Изготавливаются представленные варисторы методом прессования порошкообразного оксида цинка (ZnO).

На корпусе варисторов нанесена маркировка с указанием номинального классификационного напряжения и соответствующего допуска по напряжению (±10%). На образцах варисторов импортного производства при маркировке допуска используют символьное обозначение, например, буква K обозначает допуск ±10%, буква M – допуск ±20%.

Устанавливаются варисторы параллельно защищаемому устройству с помощью пайки выводов. Для достижения максимального уровня защиты рекомендуется использование двух одинаковых варисторов, подключенных параллельно друг другу, и дополнительного плавкого предохранителя, устанавливаемого последовательно перед варисторами.

Применяются предоставленные варисторы 07K, 10K, 14K, 20K для защиты элементов от перенапряжения в источниках и системах электропитания, бытовой и военной технике, телекоммуникационном и измерительном оборудовании.

Подробные характеристики, расшифровка маркировки, габаритные размеры, общее устройство варисторов 07K, 10K, 14K, 20K указаны ниже. Наша компания гарантирует качество и работу варисторов в течение 2 лет с момента их приобретения; предоставляются сертификаты качества.

ВАХ, схема замещения и параметры варисторов

Обычно ВАХ варисторов в документации изображают в логарифмическом масштабе (рисунок 4). При этом на ней можно отметить три характерных области: область токов утечки, область нормальной работы и критическая область. В области токов утечки характеристика имеет линейный вид, а изменение напряжения в широких пределах слабо влияет на величину тока. В области нормальной работы происходит открытие варистора: даже незначительное увеличение напряжения приводит к изменению тока на несколько порядков. Критическая область характеризует работу варистора на пределе его возможностей.

Рис. 4. ВАХ варистора в логарифмическом масштабе

Для того чтобы воспроизвести ВАХ варистора, можно использовать упрощенную схему замещения (рисунок 5). Roff имеет большое сопротивление (сотни МОм) и характеризует сопротивление варистора в режиме малых токов (область токов утечки). Roff достаточно сильно зависит от температуры, поэтому в этой области также явно проявляется температурная зависимость тока утечки. Rx – переменное нелинейное сопротивление с диапазоном значений 0…∞ Ом. В режиме малых токов величиной Rx можно пренебречь, зато в режиме ограничения это сопротивление шунтирует Roff и, по сути, определяет сопротивление варистора. Сопротивление Ron характеризует сопротивление варистора при максимальных токах в критических режимах работы. Индуктивность L характеризует паразитную индуктивность выводов. Паразитная емкость С наравне с паразитной индуктивностью определяет динамические свойства варисторов.

Рис. 5. Эквивалентная схема замещения варистора

Собственные динамические свойства варистора оказываются замечательными. Например, на рисунке 6 представлены диаграммы импульса напряжения на нагрузке без варистора и с параллельно включенным варистором. Скорость срабатывания варистора столь высока, что он практически без задержки реагирует на перенапряжение фронтом всего 500 пс. К сожалению, в данном случае в качестве варистора выступает пластина ZnO, подключенная напрямую к коаксиальной линии. В реальности выводные варисторы имеют огромную паразитную индуктивность, которая практически полностью сводит на нет реальное быстродействие ZnO.

Рис. 6. Собственное быстродействие варистора очень высоко

Паразитная индуктивность вносит задержку, которая выражается в небольшом начальном перенапряжении. Чем выше скорость нарастания импульса, тем выше перенапряжение. На рисунке 7 демонстрируется увеличение напряжения включения варистора при увеличении скорости нарастания импульса.

Рис. 7. Напряжение включения варистора зависит от формы импульса

Варисторы имеют значительную паразитную емкость, которая негативно влияет на работу быстродействующих цепей. Это одна из причин, по которой варисторы не используют для защиты сигнальных линий высокочастотных интерфейсов. Очевидно, что чем больше диаметр диска варистора, тем больше будет его паразитная емкость.

Еще одним важным параметром варисторов является ток утечки. Во многих приложениях, например, в измерительных схемах, высокий ток утечки может существенно ухудшить метрологические характеристики. Кроме того, ток утечки негативно сказывается на общем потреблении схемы, что критично для малопотребляющих устройств.

При выборе варисторов необходимо учитывать различные температурные зависимости. Мы уже отмечали, что в области токов утечки наблюдается сильная зависимость сопротивления варистора от температуры. Кроме того, следует помнить о дерейтинге – уменьшении предельной рассеиваемой мощности при увеличении температуры окружающей среды (рисунок 8).

Рис. 8. Снижение предельной рассеиваемой мощности при увеличении температуры (дерейтинг)

Одним из крупнейших производителей варисторов является компания Littelfuse. Рассмотрим номенклатуру варисторов производства этой компании подробнее.

Проверка функционирования

При неисправности устройств в первую очередь определяется состояние цепей питания, при этом возникает задача, как проверить варистор. Вначале делается внешний осмотр. Проверяется наличие нагара, почернения или механических повреждений. Если что-либо из этого присутствует – варистор нужно заменить. В противном случае выпаять хоть один вывод. Без выпаивания контактов измерить сопротивление варистора не получится, так как он соединен параллельно со всей схемой устройства или каким-нибудь его модулем. Поэтому вместо определения сопротивления варистора будет измеряться, в лучшем случае, общее сопротивление всего устройства.

Для выпаивания вывода необходим паяльник, оловоотсос, круглогубцы. Паяльником прогревается площадка вокруг вывода. Оловоотсосом откачивается расплавленный припой. Круглогубцами вынимается вывод варистора из платы.

Затем начинается непосредственная проверка варистора мультиметром или омметром. Переключатель режимов работы устанавливается в положение «измерение сопротивления». Выбирается самая большая шкала измерений (200МОм). Щупы присоединяются к выводам варистора. Измеряется сопротивление. Затем щупы меняют местами и фиксируют второе значение измеренного сопротивления. Мультиметр должен показывать значения в десятки МОм. Если хоть в одном замере мультиметр покажет значения отличные от МОм, значит, варистор неисправен и его нужно заменить.

https://youtube.com/watch?v=WrB80inSwHI

В некоторых устройствах последовательно с варистором стоит предохранитель. Тогда достаточно вынуть его и получим вариант с одним свободным контактом. Выпаивать ничего не нужно. Дальше следует использовать мультиметр, а как проверяется варистор и проводятся измерения, было описано выше.

Применение в аналоговой технике

Если варистор в схеме используется как аналоговый вычислитель, то одним измерением сопротивления с перекидыванием измерительных щупов с одного контакта на другой не ограничитесь. Применение варистора в аналоговой вычислительной машине для возведения в степень, извлечения корней и других математических действий требует определенной точности в настройке параметров. В этом случае потребуется построение вольтамперной характеристики, для проверки правильности вычислений.

Как и в предыдущем случае потребуется реостат, предохранитель и два мультиметра. Сначала по первой схеме варистор проверяется на исправность. Затем второй мультиметр подключается последовательно к варистору в режиме миллиамперметра. Теперь с помощью реостата напряжение на варисторе изменяется от 0 до значения, не достигающее пороговое.

Показания мультиметров записываются с таким шагом изменения напряжения, чтобы можно было по ним нарисовать качественную вольамперную характеристику. В зависимости от получившейся параболы будут добавлены другие нелинейные элементы, чтобы скорректировать ее либо заменен варистор.

Каждая радиодеталь в электрической схеме имеет свое предназначение. Одни меняют параметры, другие являются сигнализаторами состояния или исполнителями команд.

Есть радиоэлементы, отвечающие за безопасность и защиту (речь идет не о банальных предохранителях). Например, варистор, который резко меняет свои характеристики при скачках напряжения.

Это свойство используется в системах защиты блоков питания и коммутационных устройств. Кроме того, он используется в качестве простейшего фильтра импульсного напряжения. Деталь недорогая, но достаточно эффективная.

Причины перепадов напряжения

Причиной сгоревшей техники может стать не только плохое заземление. Кратковременные перепады напряжения также несут опасность для аппаратуры. Внезапное падение напряжения с большой вероятностью отключит электроприборы. Повышение же может повредить технику и даже привести к пожару.

Причины резкого повышения напряжения бывают различными:

  • Нестабильная работа трансформаторов подстанции;
  • Аварии на линии электропередач, обрыв ноля, ослабление заземления;
  • Удар молнии;
  • Одновременное отключение мощных потребителей, или значительная перегрузка сети.

Из-за этих причин напряжение в проводах может резко возрасти, появится импульс, который повредит технике. Особенно чувствительно к перенапряжению цифровая электроника. Спрогнозировать случайные перепады из-за сторонних причин практически невозможно. Потому куда разумнее защитить электронику в своем доме от таких скачков.

Плюсы использования варистора

Варистор – он как автомат калашникова. Прост, надежен, дешев. И распространен повсеместно. Он всегда сработает и не подведет. Область его применения огромна. Как мы выше писали от 20кВ до 3В. Ну и про время срабатывания забывать не стоит. 25нс у среднего варистора – весьма неплохо. А есть экземпляры, со скоростью срабатывания ниже 0,5 не.

Но, как и у всего в этом мире, у варистора есть и недостатки.
К таковым относится низкочастотных шум во время работы, большая емкость варистора (от 70 до 3000 пФ) и склонность материалов варистора к устареванию.
Плюсы варистора превалируют над минусами. Именно поэтому он получил столь широкое распространение. Как и автомат калашникова.

Применение варисторов в схемах защиты

Исходя из свойств элемента, логично применять его в цепях обхода основной электросхемы. При повышении питающего напряжения, варистор выступит в роли своеобразного шунта.

При импульсном (несколько миллисекунд) скачке напряжения, основной ток пройдет в обход схемы. При восстановлении параметров – электропитание цепи мгновенно возобновится.

Простейший пример – варистор подключается параллельно питанию в удлинителе с защитой. При скачке напряжения, элемент фактически формирует короткое замыкание, и срабатывает защитный автомат.


Чаще всего в подобных схемах применяются варисторы типа TVR 14561.

Читать также: Диаметры отрезных кругов на болгарку

ВАХ, схема замещения и параметры варисторов

Обычно ВАХ варисторов в документации изображают в логарифмическом масштабе (рисунок 4). При этом на ней можно отметить три характерных области: область токов утечки, область нормальной работы и критическая область. В области токов утечки характеристика имеет линейный вид, а изменение напряжения в широких пределах слабо влияет на величину тока. В области нормальной работы происходит открытие варистора: даже незначительное увеличение напряжения приводит к изменению тока на несколько порядков. Критическая область характеризует работу варистора на пределе его возможностей.

Рис. 4. ВАХ варистора в логарифмическом масштабе

Для того чтобы воспроизвести ВАХ варистора, можно использовать упрощенную схему замещения (рисунок 5). Roff имеет большое сопротивление (сотни МОм) и характеризует сопротивление варистора в режиме малых токов (область токов утечки). Roff достаточно сильно зависит от температуры, поэтому в этой области также явно проявляется температурная зависимость тока утечки. Rx – переменное нелинейное сопротивление с диапазоном значений 0…∞ Ом. В режиме малых токов величиной Rx можно пренебречь, зато в режиме ограничения это сопротивление шунтирует Roff и, по сути, определяет сопротивление варистора. Сопротивление Ron характеризует сопротивление варистора при максимальных токах в критических режимах работы. Индуктивность L характеризует паразитную индуктивность выводов. Паразитная емкость С наравне с паразитной индуктивностью определяет динамические свойства варисторов.

Рис. 5. Эквивалентная схема замещения варистора

Собственные динамические свойства варистора оказываются замечательными. Например, на рисунке 6 представлены диаграммы импульса напряжения на нагрузке без варистора и с параллельно включенным варистором. Скорость срабатывания варистора столь высока, что он практически без задержки реагирует на перенапряжение фронтом всего 500 пс. К сожалению, в данном случае в качестве варистора выступает пластина ZnO, подключенная напрямую к коаксиальной линии. В реальности выводные варисторы имеют огромную паразитную индуктивность, которая практически полностью сводит на нет реальное быстродействие ZnO.

Рис. 6. Собственное быстродействие варистора очень высоко

Паразитная индуктивность вносит задержку, которая выражается в небольшом начальном перенапряжении. Чем выше скорость нарастания импульса, тем выше перенапряжение. На рисунке 7 демонстрируется увеличение напряжения включения варистора при увеличении скорости нарастания импульса.

Рис. 7. Напряжение включения варистора зависит от формы импульса

Варисторы имеют значительную паразитную емкость, которая негативно влияет на работу быстродействующих цепей. Это одна из причин, по которой варисторы не используют для защиты сигнальных линий высокочастотных интерфейсов. Очевидно, что чем больше диаметр диска варистора, тем больше будет его паразитная емкость.

Еще одним важным параметром варисторов является ток утечки. Во многих приложениях, например, в измерительных схемах, высокий ток утечки может существенно ухудшить метрологические характеристики. Кроме того, ток утечки негативно сказывается на общем потреблении схемы, что критично для малопотребляющих устройств.

При выборе варисторов необходимо учитывать различные температурные зависимости. Мы уже отмечали, что в области токов утечки наблюдается сильная зависимость сопротивления варистора от температуры. Кроме того, следует помнить о дерейтинге – уменьшении предельной рассеиваемой мощности при увеличении температуры окружающей среды (рисунок 8).

Рис. 8. Снижение предельной рассеиваемой мощности при увеличении температуры (дерейтинг)

Одним из крупнейших производителей варисторов является компания Littelfuse. Рассмотрим номенклатуру варисторов производства этой компании подробнее.

Назначение и характеристики

Изготавливаются такого типа резисторы путём спекания при высокой температуре полупроводника и связующего материала. В качестве полупроводника используется карбид кремния, находящийся в порошкообразном состоянии, или оксид цинка, а связующего вещества — стекло, лак, смола. Полученный после спекания элемент подвергается металлизации с дальнейшим формированием выводов. По своей конструкции приборы выполняются в форме, похожей на диск, таблетку, цилиндр, или плёночного вида.

Обладая свойством резко уменьшать своё сопротивление при возникновении на его выводах определённого напряжения, варистор применяется в электронных схемах в качестве защитного элемента. При возникновении броска напряжения определённой величины полупроводниковый прибор мгновенно снижает своё внутреннее сопротивление до десятков Ом, тем самым практически закорачивая цепь, не давая импульсу повредить остальные элементы схемы. Поэтому важным параметром варистора является значение напряжения, при котором наступает пробой устройства.

https://youtube.com/watch?v=xq7MI14Dldo

Принцип работы элемента подразумевает его включение параллельно цепи питания. После его срабатывания и уменьшения напряжения на входе он самовосстанавливается до первоначального значения. Из-за малой инерционности это происходит мгновенно.

Основные параметры

Перед тем как проверить варистор на исправность, необходимо понимать не только принцип его действия, но и знать, какими характеристиками он обладает. Как и любой электронный элемент, варистор имеет ряд характеристик, которые позволяют его использовать в различных схемах. Основным параметром является вольт-амперная характеристика (ВАХ). Она наглядно показывает, как меняется ток при той или иной величине напряжения. Изучая ВАХ, можно увидеть что варистор, обладая симметрично-двунаправленной характеристикой, работает как в прямой, так и обратной зоне синусоиды, напоминая стабилитрон.

  • Um — наибольшее допустимое рабочее напряжение для тока переменной или постоянной величины.
  • P — мощность, которую может рассеять на себе элемент без ухудшения своих параметров.
  • W — допустимая энергия в джоулях, которую может поглотить радиоэлемент при воздействии одиночного импульса.
  • Ipp — наибольшее значение импульсного тока, для которого определена форма импульса.
  • Co — ёмкость, значение которой измеряется у варистора в нормальном состоянии.

Но на практике особое внимание уделяется в основном параметру Um. Эта характеристика показывает уровень напряжения, при котором происходит пробой элемента и начинает течь ток

Виды устройств

Разнообразие встречаемых видов варисторов обусловлено тем, что производители стремятся в первую очередь повысить их быстродействие. Поэтому и используются SMD технологии безвыводного монтажа, что позволяет добиваться малого времени срабатывания при скачке входного напряжения. Типовое время срабатывания элементов с выводами находится в пределе 15−25 наносекунд, а SMD — 0,5 наносекунд.

https://youtube.com/watch?v=UYyZf836geE

Маркировка элементов

Независимо от производителя существует стандарт маркировки варисторов. На сам элемент принято наносить цифробуквенный код, в котором зашифровываются основные параметры. Например, для дискового типа это обозначение выглядит как S6K210, где:

  • S — материал, из которого изготовлен варистор;
  • 6 — диаметр корпуса элемента, указывается в миллиметрах;
  • K — величина допуска отклонения;
  • 210 — значение рабочего напряжения, выраженное в вольтах.

На схемах радиоэлемент графически обозначается как перечёркнутый прямоугольник. На перечёркивающей палочке делается полочка, над которой ставится буква U. Подписывается на схемах элемент латинскими буквами RU.

Применение варистора

Варисторы применяются в большинстве бытовой электроники по всему миру. Их можно встретить практически в любой электронике. Они есть и в автомобильной электронике, в сотовой технике и бытовой, сетевых фильтрах и компьютерном железе. Кстати говоря, хороший блок питания, от китайского отличается наличием варистора у первого. Поэтому, хороший блок питания куда более живуч и ремонтопригоден.

Варистор в блоке питания

Умельцы, при сборе своих подделок из светодиодных ламп также используют варисторы. А особые умельцы умудряются размещать их в розетках и вилках. Что только не придумаешь для обеспечения защиты своей электроники, если в доме проблема со скачками напряжения. Сфера их применения обширна. Это могут быть и установки с напряжением 20кВ и с напряжением в 3В. Это может быть сеть с переменным током, а может быть и с постоянным. Воистину, варисторы можно встретить практически везде.

Так какие же варистор характеристики имеет?

Как правило, для описания варистора используют вот такие параметры:

Емкость варистора в закрытом состоянии. Во время работы её значение может меняться. При особенно большом токе – уменьшается практически до нуля. Обозначается как Со.

Максимальная энергия в Джоулях, которую может поглотить варистор за один импульс. Обозначается W. Максимальное значение импульсного тока, при 8/20мс. Обозначается как Iрр. Среднее квадратичное значение переменного напряжения в цепи. Обозначается как Um. Предельное напряжение при постоянном токе. Обозначается как Um=. Для приблизительных расчетов рабочего напряжения советуем использовать значение Un не больше 0,6 с переменным током и 0,8 с постоянным.

В сетях 220В используют варисторы с минимальным классификационным напряжением (Un) от 380 до 430 В. Не следует забывать и о емкости варистора при подборе. Как правило, она зависит от размера варистора. Так, варистор TVR 20 431 имеет емкость 900пФ, а TVR 05 431 – 80 пФ. Эти величины всегда можно подглядеть в справочном материале.

На схемах варистор обозначается следующим образом

RU – это обозначение самого варистора. Цифра рядом с RU – номер по порядку. То есть, какое это по счету варистор в цепи. Буква U снизу слева у косой, проходящей через варистор, означает, что данный элемент имеет способность менять напряжение. Также, зачастую на схемах указывается маркировка варистора. О маркировке и её расшифровке мы поговорим ниже.

Так обозначают варистор на схемах

Теперь, когда мы разобрались с основами, можно перейти к проверке варистора

Определяем работоспособность элемента (пошаговая инструкция)

Для данной операции нам потребуются следующие инструменты:

  • Отвертка (как правило, крестовая). Чтобы добраться до платы блока питания, потребуется разобрать корпус электронного устройства, тут без отвертки не обойтись.
  • Щетка, для очистки печатной платы. Как показывает практика, в БП накапливается много пыли. Особенно это характерно для устройств с принудительным охлаждением, типичный пример, – блок питания компьютера.
  • Паяльник. В силовой части БП на плате большие дорожки и нет мелких элементов, поэтому допустимо использовать устройства мощностью до 75 Вт.
  • Канифоль и припой.
  • Мультиметр или другой прибор, позволяющий измерить сопротивление.

Когда все инструменты готовы, можно приступать к процедуре. Действуем по следующему алгоритму:

  1. Разбираем корпус устройства. В данном случае дать детальную инструкцию как это сделать затруднительно, поскольку конструкции приборов существенно отличаются друг от друга. Эту информацию можно найти в инструкции к оборудованию или на сайте производителя, также поможет поиск на тематических форумах и блогах.
  2. Добравшись до печатной платы БП, следует очистить ее от пыли. Делать это нужно аккуратно, чтобы не повредить радиодетали. Бывали случаи, когда от чрезмерного усилия, в процессе чистки, щетка повреждала транзистор, тиристор или другой компанент.
  3. Когда пыль удалена, находим варистор, он имеет характерный вид, поэтому спутать его можно разве что с конденсатором, но последний отличается маркировкой.

    Варистор в силовой части БП

  4. Найдя элемент, тщательно осматриваем его на предмет повреждений. Это могут быть трещины, сколы и другие нарушения целостности корпуса. В большинстве случаев, определить неисправность можно на этом этапе. При обнаружении повреждений элемент выпаиваем и меняем на такой же или аналог. Подобрать его можно самостоятельно (расшифровка маркировки приводилась выше) или посоветовавшись с продавцом радиодеталей.

    Варистор со следами повреждений

  5. Если визуальный осмотр не дал результатов, следует проверить варистор мультиметром, для этого выпаиваем деталь.
  6. Для проведения измерения подключаем щупы к мультиметру (на рисунке 7 гнезда показаны зеленым цветом) и переводим его в режим измерения максимального сопротивления (красный круг на рис. 7). Если у вас мультиметр другого типа, воспользуйтесь инструкцией к прибору.

    Рисунок 7. Установка режима отмечена красным, гнезда для щупов – зеленым

  7. Касаемся щупами выводов и измеряем сопротивление варистора. Оно должно быть бесконечно большим. Иное значение указывает на неисправность варистора, следовательно, его необходимо заменить.