Tny263-268

Признаки неисправности, их устранение

Перейдем к рассмотрению конкретных признаков неисправностей ШИМ контроллера.

Остановка сразу после запуска

Импульсный модулятор запускается, но сразу останавливается. Возможные причины: разрыв цепи обратной связи; блок питания перегружен по току; неисправны фильтровые конденсаторы на выходе. Поиск проблемы: осмотр платы, поиск видимых внешних повреждений; измерение мультиметром напряжения питания микросхемы, напряжения на ключах (на затворах и на выходе), на выходных емкостях. В режиме омметра мультиметром надо измерить нагрузку стабилизатора, сравнить с типовым значением для аналогичных схем.

Импульсный модулятор не стартует

Возможные причины: наличие запрещающего сигнала на соответствующем входе. Информацию следует искать в даташите соответствующей микросхемы. Неисправность может быть в цепи питания ШИМ контроллера, возможно внутренне повреждение в самой микросхеме. Шаги по определению неисправности: наружный осмотр платы, визуальный поиск механических и электрических повреждений. Для проверки мультиметром делают замер напряжений на ножках микросхемы и проверку их соответствия с данными в даташит, в случае необходимости, надо заменить ШИМ контроллер.

Проблемы с напряжением

Выходное напряжение существенно отличается от номинальной величины. Это может происходить по следующим причинам: разрыв или изменение сопротивления в цепи обратной связи; неисправность внутри контроллера. Поиск неисправности: визуальное обследование схемы; проверка уровней управляющих и выходных напряжений и сверка их значений с даташит. Если входные параметры в норме, а выход не соответствует номинальному значению – замена ШИМ контроллера.

https://www.youtube.com/watch?v=igS7mn50x2Q

Способы проверки

Существует несколько способов, позволяющих проверить микросхему на работоспособность.

Внешний осмотр

Если микросхема установлена на плате и выпаивать ее нежелательно, то необходимо осуществить ее визуальный осмотр. При внимательном изучении можно обнаружить очевидные дефекты. Таковыми могут быть перегоревшие контакты, обгоревшие и отпавшие провода, трещины на корпусе, обгоревшие обвесные компоненты. Если видимых повреждений не обнаружено, необходимы более сложные действия.

Проверка работоспособности с помощью мультиметра

Следующий шаг проверки – диагностика цепей питания системы. Для этой цели используется мультиметр. Для уточнения выводов питания рекомендуется заглянуть в datasheet на микросхему. Плюс в нем обозначается как VCC+, минус – VCC-, общий провод – GND. Минусовый щуп мультиметра подводится к минусу устройства, плюсовой щуп – к плюсу. Если напряжение соответствует норме для данной системы, то цепи питания устройства являются рабочими. Если обнаружены проблемы, то цепь питания отпаивают и проверяют ее исправность. Если она исправна, то проблема заключается в самой микросхеме.

Выявление нарушений в работе выходов

Если микросхема имеет несколько выходов и хотя бы один из них неработоспособен или функционирует некорректно, вся схема не сможет выполнять назначенные функции.

Проверку выходов мультиметром начинают с измерения напряжения на выводе интегрированного в микросхему источника опорного напряжения Vref. Его номинальное напряжение указывается в сопроводительных документах на устройство. На этом выводе должно присутствовать постоянное напряжение установленной величины. Если напряжение ниже или выше этого значения, то внутри устройства происходят нештатные процессы.

Если в микросхеме присутствует времязадающая RC-цепь, то на ней в рабочем режиме должны происходить колебания. В даташите указывается вывод, на котором предусмотрены такие колебания. Проверочные работы в данном случае осуществляют с помощью осциллографа. Его общий щуп устанавливается на минус питания, измерительный щуп – на RC-вывод. Если при проведении измерений обнаруживаются колебания установленной формы, то устройство исправно. Отсутствие колебаний или их неправильная форма свидетельствуют о проблемах в микросхеме или времязадающих элементах.

Если микросхема выполняет функции управляющего компонента, то на выходном управляющем выводе (или нескольких) должны присутствовать соответствующие сигналы. По datasheet определяют, какой вывод является управляющим. Вывод или выводы проверяют с помощью осциллографа таким же способом, как времязадающие RC-цепи. Если сигнал на этих выводах присутствует и соответствует заданной форме, то данная микросхема является полностью работоспособной. Если же сигнал отсутствует или его форма отличается от нормальной, необходимо проверить управляемую цепь, так как причиной неисправности может быть именно она. Если управляемая цепь исправна, то микросхема неработоспособна и ее необходимо заменить.

https://youtube.com/watch?v=Gj9gCwSKvRI

https://youtube.com/watch?v=fuwND4cCkzA

https://youtube.com/watch?v=pbi56xGUsaE

Как проверить тиристор мультиметром

Рассмотрим последовательность действий для определения работоспособности тиристора.

  1. Прозвонка анод-катод, при любом приложении щупов:
    • аналоговый покажет бесконечность, стрелка не двинется;
  2. цифровой или никак не отреагирует или высветит несколько МОм.
  3. При прозвонке анод-управляющий электрод:
    • аналоговый покажет от нескольких до десятков кОм;
  4. цифровой выдаст такие же цифры.
  5. При прозвонке катод-управляющий электрод:
    • то же самое для обоих приборов.

Теперь попробуем проверить тиристор на открытие, его основную работу. Для этого, минусовой щуп приложим к катоду, плюсовой к аноду и им же, не отрывая от анода, кратковременно коснемся управляющего электрода. Тиристор должен открыться (сопротивление упасть почти до 0 Ом) и удерживаться в таком состоянии до разрыва цепи. Если этого не произошло то:

  • перепутаны плюсовой и минусовой щупы тестера;
  • неподходящий тестер или разряженная батарея в нем;
  • тиристор неисправен.

Перед тем, как выбросить тиристор, проверим мультиметр и правильность своих действий при работе с ним:

  • земляной (корпусный или COM) щуп аналогового тестера – является плюсовым, а у цифрового мультиметра наоборот – минусовым.
  • диапазон измерения должен быть выставлен на 100-2000 Ом, в зависимости от градации коммутационного блока;
  • питание измерительного прибора должно осуществляться свежей, не разряженной батареей с напряжением от 4,5 до 9 вольт;
  • на шкале цифрового мультиметра, в секторе измерения сопротивлений, должен присутствовать значок диода.

Цифровые тестеры-игрушки, размером со спичечную коробку и питанием от часового аккумулятора, для проверки полупроводниковых элементов не подходят. Да и полагаться на другие их измерения не стоит. Но и утверждать, что проверить тиристор цифровым мультиметром невозможно (а такое мнение бытует), тоже неверно. Можно, причем очень даже многими. Соблюдение вышеперечисленных правил, позволяет добиться положительных результатов с разными приборами.

Устройство стиральных машин с точки зрения питания

Если не включается стиральная машина, первое подозрение заслужил блок питания. Обязан обеспечить подачу напряжения (+5 вольт) процессору,  зажигающему огоньки индикации. Действительно, импульсного блока питания в стиральной машине может не быть. Электроники здесь мало, ток потребления невысок, трансформатор получается скромных размеров. Попробовали бы сделать для телевизора! Трансформатор понижающий:

  • Первичная обмотка 230 вольт переменного тока 50 Гц.
  • Вторичная обмотка 12 вольт переменного тока 50 Гц.

Причем 220 вольт, 12 вольт – действующие значения. Где искать трансформатор? После шнура питания, колодки входной, которые, мы договорились, проверены. Двигатель питается через сетевой фильтр. Устройство защищает не коллекторный мотор, наоборот – уберегает соседей: видеомагнитофоны, плееры дисков, домашние кинотеатры, блоки электроники аппарата. Исправность фильтра легко проверить, измерив выходное напряжение. Должно быть 220 вольт. Как найти фильтр? Коробочка, идущая вослед колодке, корпус обрисовывает принципиальную схему, составленную индуктивностями, конденсаторами, резисторами.

Samsung использует 5 вольт, получаются типичным образом:

  1. Со вторичной обмотки понижающего трансформатора снимается 12 вольт переменного напряжения.
  2. Диодный мост образует двухполупериодный выпрямитель, с которого снимаются постоянные 12 вольт.
  3. По технике безопасности положено заземлять вторичные обмотки трансформаторов, сделано через два резистора по 33 к – по одному на каждый край (не спрашивайте, как это работает).
  4. На выходе диодного моста очередной диод, полагаем, здесь находится по причине удержания большего пробивного напряжения. С точки зрения преобразования сигнала элемент роли не играет.
  5. Параллельный фильтр из RC-цепочки сглаживает пульсации. Здесь стоит электролитический конденсатор 2200 мкФ.
  6. Всем знакомый стабилизатор напряжения 7805 преобразует 12 вольт в 5 вольт.
  7. Выход украсил очередной RC-фильтр, емкость электролитического конденсатора составляет 470 мкФ.

Напряжение 5 вольт подается питать электронный мозг стиральной машины. Проверка блока питания происходит следующим образом:

  1. Следует проверить напряжение выхода вторичной обмотки трансформатора. Составляет в нормальных условиях 12 вольт (действующее значение). Если это не так, трансформатор сломан.
  2. На входе стабилизатора 12 вольт постоянного тока. Иначе проверяйте диодный мост (если значение вдвое меньше), конденсатор емкостью 2200 мкФ.

  3. На выходе стабилизатора ровно 5 вольт постоянного тока. В противном случае неисправна микросхема 7805, проверяйте сопротивления, конденсатор 470 мкФ.

Проще простого!

Импульсные источники питания стиральных машин

Говорят, импульсных источников питания в стиральной машине нет. Неправда. Ariston/Indesit может похвастаться целой плеядой изделий. Микросхема TNY 264 PN эксплуатируется итальянцами. Глобальный ключ в виде микросборки, вдобавок сравнивает выходные напряжения с номиналами. Принцип работы прост: при появлении питания генератор импульсов нарезает выпрямленное напряжение сети 230 вольт.

Что такое импульсный источник питания? Отличается от рассмотренного выше размером трансформатора. Что в случае со стиральными машинами не столько помогает снизить вес, сколько экономит материалы производителю, уменьшает занимаемый объем. Главные неисправности импульсных блоков питания ограничены неисправностью составных частей.

На входе стоит защитный варистор. Проверяйте целостность. Затем гармоники входного напряжения фильтруются при помощи конденсаторов, индуктивностей, резисторов. Выпрямитель двухполупериодный, либо однополупериодный (настолько низок ток потребления). Один варистор защищает вход микросхемы против скачков напряжения, закорачивая на землю. Выпрямленное напряжение нарезается импульсами. Открывается наибольший простор техническим решениям. Понять, что сломалось, поможет тщательное изучение схемы. Ключом послужат транзисторы, тиристоры, симисторы. Территориально может располагаться на плате, либо входить в состав микросборки.

Стиральная машина

Чтобы понять, почему стиральная машина не включается, придется изучать документацию. TNY 264 PN имеет защиту против коллизий (однако боится воды), стоит порядка 60 рублей. Лучше, нежели брать новую стиральную машину.

Микросхема. Документация выложена в свободном доступе. Сборка снабжена встроенным источником питания 5,8 вольт, генератор импульсов частотой 132 кГц. Питание берется с входа Drain (D). Поясним. Первичная обмотка заземляется через микросхему, процессом управляет внутренний генератор импульсов, сразу получается нарезка. С этого потенциала берется питание внутренних 5,8 вольт. Схемы импульсных источников стиральных машин Indesit малопонятные. Избегаем приводить документацию, покажем типичный пример включения микросхемы из фирменного проспекта на изделие.

Примерно в этом режиме сборка используется в стиральных машинах. Вторичных обмоток трансформатора две: 5 и 12 вольт постоянного напряжения. Приведем назначение выводов микросхемы:

  1. Bypass (BP) предназначен для заземления через конденсатор емкостью 0,1 мкФ. Позволяет работать внутреннему источнику питания 5,8 вольт.
  2. Enable/under-Voltage (EN/UV). У контакта двойственная функция. Во-первых, это разрешение рабочего режима, а во-вторых, датчик по минимальному напряжению. Если к линии постоянного тока через резистор подходит обратная связь, выполняется коррекция режима в нужную сторону. При отсутствии резистора микросхема умеет определять ситуацию, не выполняет контроль за режимом.

  3. Source (S) провод заземления внутренних МОП-структур.
  4. Source (HV RTN) заземлен, используется для замыкания тока через первичную обмотку.

Получается, силовой ключ на МОП транзисторе помещен в одном корпусе с генератором импульсов. Схема отличается от типичных блоков питания. Внутри защита против перегрузки по максимальному току, также выключение при перегреве. Получается самодостаточная конструкция. Вырабатывает импульсы для трансформатора, попутно контролирует выходные напряжения.

Причины неисправности

Варисторы устанавливают параллельно защищаемой цепи, а последовательно с ним ставят предохранитель. Это нужно для того, чтобы, когда варистор сгорит, при слишком сильном импульсе перенапряжения сгорел предохранитель, а не дорожки печатной платы.

Единственной причиной выхода из строя варистора является резкий и сильный скачок напряжения в сети. Если энергия этого скачка большая, чем может рассеять варистор — он выйдет из строя. Максимальная рассеиваемая энергия зависит от габаритов компонента. Они отличаются диаметром и толщиной, то есть, чем они больше — тем больше энергии способен рассеять варистор.

Скачки напряжения могут возникать при авариях на ЛЭП, во время грозы, при коммутации мощных приборов, особенно индуктивной нагрузки.

Проведение проверки варистора мультиметром

Для проведения этой уникальнейшей операции, нам необходимы следующие приспособления:

  • Первым делом, конечно же отвертка (обычно требуется фигурная). Чтобы пробраться до платы, необходимо вскрыть корпус устройства, а тут как известно без неё не обойтись.
  • Требуется запастись будет еще и щёткой. Она нужна будет, чтобы очистить плату от накопившейся пыли. Из практики уже известно, что в блоках питания всегда ее скапливается очень много, особенно если устройство оснащено собственным охлаждением (вентилятором), характерный пример, – блок питания компьютера.
  • Важная вещь в подобной процедуре — паяльник. Без него никак. Нужно отпаять и обратно припаять варистор. Как правило внутри силовых блоков большие дорожки на платах и совершенно нет мелких деталей, поэтому можете смело пользоваться паяльником до 75 Вт.
  • Канифоль и припой (наверное, наиболее необходимое. Припаять обратно деталь без них не получится).
  • Мультиметр (электронный или аналоговый), чтобы иметь возможность замерить сопротивление.

Как только весь инструментарий будет готов, можно приступать к операции. Главное придерживайтесь схемы и все получится как нужно:

  1. Вскрываем устройство. Детально рассказать, как это сделать сложновато, ведь конструкции разных приборов разнятся между собой. В любом случае, всю эту техническую информацию Вы можете найти в паспорте устройства, в интернете (на различных тематических форумах и сайтах).
  2. Как только доберётесь до печатной платы, постарайтесь очистить её от пыли. Работайте как можно более аккуратно, чтобы не нанести вред радиодеталям. Отмечены случаи, когда излишнее усердие наносило больше вреда, чем пользы, так как щетина на щетке царапала тот или иной компонент схемы.
  3. Когда с пылью будет покончено, найдите варистор. Его отличает настолько специфический вид, что перепутать его невозможно.
  4. Найдя на плате варистор, прежде всего тщательно осмотрите его. Если видны трещинки, какие-либо сколы, либо другие механические повреждения корпуса, то это уже говорит о неисправности.
  5. Если были обнаружена какие-либо нарушения целостности корпуса, то выпаиваем повреждённый элемент, а вместо него ставим точно такой же или аналогичный. Найти замену Вы можете самостоятельно, ориентируясь на указанную на варисторе информацию, либо обратитесь к специалисту.
  6. Если при тщательном зрительном осмотре видимых повреждений не обнаружено, то следует пустить в ход мультиметр, конечно предварительно будет необходимо выпаять деталь с платы. Цепляем щупы мультиметра к нашей детали и выставляем режим замера максимального сопротивления.
  7. Щупы тестера прижимаем к ножкам варистора и замеряем сопротивление. В идеале мультиметр должен показать высокие значения до бесконечности. Если перед Вами другое значение, то это говорит о неисправности варистора и его необходимо заменить.
  8. Во время измерений, внимательно следите, чтобы не коснуться руками щупов мультиметра. Иначе он будет показывать сопротивление вашего тела. Если есть необходимость заменяем варистор и собираем корпус устройства обратно.

Вариант 1

Первоначально проводим визуальный осмотр. Для этого отключаем аппарат от питания, вскрываем корпус и определяем где находится предохранитель. Далее извлекаем его и проверяем. Если предохранитель перегорел или негоден, то он заменяется. И только когда мы проверили предохранитель и заменили, переходим к нахождению и тестированию варистора. Его сложно не заметить, так как он выкрашен обычно в красные, синие или жёлтые цвета. Это маленький дискообразный элемент. Обычно крепится на предохраняющем держателе.

Далее отсоединяем любой из проводов, для этого нагреваем его паяльником и извлекаем варистор с платы при помощи плоскогубцев.

Сама проверка основана на замере показателя сопротивления: включаем тестер, переводим его в позицию замера сопротивления; фиксируем жала щупов на выводах варистора. Далее проводится замер.

Вариант 2

Другой способ берет за основу данные из инструкции или спецификации устройства для определения показателей нормальной работы варистора. За символом «CH», которым обозначается нелинейное сопротивление, указано значение, которое производитель заложил в конструкцию или которые свойственны тому материалу, из которого изготовлен варистор. Значения, сопровождаемые маркировкой «B±…%», показывают уровень предельного сопротивления и допуск.

Влияние разновидности микросхем на способы проверки

Способ и сложность проверочных работ во многом зависит от типа схемы:

  • Самые простые для проверки мультиметром являются микросхемы серии КР 142, имеющие три вывода. Проверка осуществляется подачей напряжения на вход и его измерением на выходе. На основании этих измерений делается вывод об исправности системы.
  • Более сложные для проверки – микросхемы серий К 155, К 176. Для проверочных мероприятий понадобятся: колодка и источник питания с определенным уровнем напряжения, который подбирается под конкретную систему. На вход подается сигнал, контролируемый на выходе с помощью мультиметра.
  • При необходимости проведения более сложных проверок используют не мультиметры, а специальные тестеры, которые можно собрать самостоятельно или купить в магазине радиоэлектроники. Тестеры позволяют проверить прозвонкой исправность отдельных узлов схемы. Данные проверки обычно отображаются на экране тестера, что позволяет сделать вывод о работоспособности отдельных элементов устройства.

При проведении проверок работоспособности микросхемы необходимо смоделировать нормальный режим ее работы. Для этого подаваемое напряжение должно соответствовать нормальному уровню, который соответствует конкретной системе. Проверять микросхемы на исправность рекомендуется на специальных проверочных платах.

Проверка конденсатора мультиметром

Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют.

Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.

Существует два вида конденсаторов:

  1. 1) полярные;
  2. 2) неполярные.

Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя.

Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ.

Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло. Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до единиц мкФ (микрофарад).

Друзья некоторые из Вас могут задаться вопросом, зачем эта ненужная информация? Какая разница полярный-неполярный? Все это влияет на методику измерений. И перед тем как проверить конденсатор мультиметром нужно понимать, какой именно тип устройства перед нами находится.