Нормативные ссылки:
ПУЭ 7-го издания.
Уровни и регулирование напряжения, компенсация реактивной мощности.
1.2.22. Для электрических сетей следует предусматривать технические мероприятия по обеспечению качества электрической энергии в соответствии с требованиями ГОСТ 13109.
1.2.23. Устройства регулирования напряжения должны обеспечивать поддержание напряжения на шинах напряжением 3-20 кВ электростанций и подстанций, к которым присоединены распределительные сети, в пределах не ниже 105 % номинального в период наибольших нагрузок и не выше 100% номинального в период наименьших нагрузок этих сетей. Отклонения от указанных уровней напряжения должны быть обоснованы.
1.2.24. Выбор и размещение устройств компенсации реактивной мощности в электрических сетях производятся исходя из необходимости обеспечения требуемой пропускной способности сети в нормальных и послеаварийных режимах при поддержании необходимых уровней напряжения и запасов устойчивости.
Отклонение напряжения характеризуется показателем установившегося отклонения напряжения, для которого установлены следующие нормы:
- нормально допустимые и предельно допустимые значения установившегося отклонения напряжения δUу на выводах приемников электрической энергии равны соответственно ± 5 и ± 10% от номинального напряжения электрической сети по ГОСТ 721 и ГОСТ 21128 (номинальное напряжение);
- нормально допустимые и предельно допустимые значения установившегося отклонения напряжения в точках общего присоединения потребителей электрической энергии к электрическим сетям напряжением 0,38 кВ и более должны быть установлены в договорах на пользование электрической энергией между энергоснабжающей организацией и потребителем с учетом необходимости выполнения норм настоящего стандарта на выводах приемников электрической энергии.
РД 34.20.185-94
Инструкция по проектированию городских электрических сетей.
Гл. 5.2 Уровни и регулирование напряжения, компенсация реактивной мощности
5.2.4. Предварительный выбор сечений проводов и кабелей допускается производить исходя из средних значений предельных потерь напряжения в нормальном режиме: в сетях 10(6) кВ не более 6 %, в сетях 0,38 кВ (от ТП до вводов в здания) не более 4-6 %.
Большие значения относятся к линиям, питающим здания с меньшей потерей напряжения во внутридомовых сетях (малоэтажные и односекционные здания), меньшие значения — к линиям, питающим здания с большей потерей напряжения во внутридомовых сетях (многоэтажные многосекционные жилые здания, крупные общественные здания и учреждения).
СП 31-110-2003
Проектирование и монтаж электроустановок жилых и общественных зданий.
7. Схемы электрических сетей.
7.23 Отклонения напряжения от номинального на зажимах силовых электроприемников и наиболее удаленных ламп электрического освещения не должны превышать в нормальном режиме ±5 %, а предельно допустимые в послеаварийном режиме при наибольших расчетных нагрузках — ±10 %. В сетях напряжением 12-50 В (считая от источника питания, например понижающего трансформатора) отклонения напряжения разрешается принимать до 10 %.
Для ряда электроприемников (аппараты управления, электродвигатели) допускается снижение напряжения в пусковых режимах в пределах значений, регламентированных для данных электроприемников, но не более 15 %.
С учетом регламентированных отклонений от номинального значения суммарные потери напряжения от шин 0,4 кВ ТП до наиболее удаленной лампы общего освещения в жилых и общественных зданиях не должны, как правило, превышать 7,5 %. Размах изменений напряжения на зажимах электроприемников при пуске электродвигателя не должен превышать значений, установленных ГОСТ 13109.
ГОСТ Р 50571.15-97 (МЭК 364-5-52-93). Электроустановки зданий.
Часть 5. Выбор и монтаж электрооборудования. Глава 52. Электропроводки.
525. Потери напряжения в электроустановках зданий.
МЭК 60364-7-714-1996, IEC 60364-7-714 (1996). Электрические установки зданий.
Часть 7. Требования к специальным установкам или помещениям.
Раздел 714. Наружные осветительные установки.
в свободном переводе автора статьи:
714.512. Падение напряжения в нормальных рабочих условиях должно быть совместимо с условиями, возникающими от пускового тока ламп.
РД 34.20.501-95
Правила технической эксплуатации электрических станций и сетей РФ.
5. Электрическое оборудование электростанций и сетей.
ГОСТ Р МЭК 60204-1-99 (МЭК 60204-1). Безопасность машин.
Электрооборудование машин и механизмов. Общие требования.
13 Кабели и провода. 13.5 Падение напряжения на проводах
РМ 2559
Инструкция по проектированию учета электропотребления в жилых и общественных зданиях.
Как примерить два нормативных документа?
Несмотря на описанные выше несоответствия, оба стандарта допускают возможное отклонение характеристик от номинальной величины на 10% как в большую, так и в меньшую сторону. Однако заметьте, что норма в 220 В будет допускать отклонение напряжения в пределах от 198 В до 242 В. В то же время, новый номинал в 230 В будет иметь разброс от 207 В до 253 В между возможным минимумом и максимумом в розетке.
Чтобы выровнять несоответствие между разными стандартами ГОСТ 29322-2014 предусматривает такие варианты напряжения для сетей 230 В в таблице А.1:
- номинальное – 230 В:
- наибольшее используемое для питания – 253 В;
- наименьшее для питания – 207 В;
- наименьшее используемое – 198 В.
Как видите, здесь нижний предел допустимой нормы напряжения расширен до 198 В, что необходимо, как один из этапов эволюции старой отечественной системы к современным стандартам. Таким образом, новые нормы не исключают 220 В, а включают их, как допустимое отклонение от международного стандарта, к которому отечественные электроснабжающие организации еще не перешли в силу тех или иных обстоятельств.
Спасут ли пробки или автоматы?
Долгое время в домах использовались «пробки»: плавкие предохранители, защищающие от скачков напряжения. На смену им пришли современные и более удобные автоматы (автоматические выключатели). На сегодняшний день в большинстве квартир это единственные средства защиты от неполадок в сети.
Пробки и автоматические выключатели позволяют защититься от короткого замыкания, перегрева проводки и возгорания при перегрузке. Однако мощный электрический импульс может успеть пройти через автомат и вывести технику из строя. Такое случается, например, в следствие удара молнии. То есть обычные пробки не могут обеспечить полноценную защиту от перепадов напряжения.
Рассчитываем нагрузку
Самыми распространенными электророзетками являются такие, к которым подведен силовой кабель под напряжением 220в. В большей части жилых помещений используется силовая линия в 220 вольт. Существует ошибочное мнение, что в розетке 220в есть сила тока. Само устройство может только поддерживать определенную силу тока при подключеннии к нему бытовых приборов и техники.
Можно самостоятельно узнать, на сколько ампер рассчитана та или другая розетка. Обычно для этого используется специальное приспособление (амперметр), которое позволяет точно определить силу напряжения в сети. Амперметр позволяет узнать, какой силе электротока подвергается конкретный участок в цепи. В первую очередь для этого нужно сделать последовательную цепь, которая должна включать в себя – бытовой прибор, затем сила тока, которую нужно рассчитать, а затем и сам амперметр с результатом.
Измерительное устройство следует подключать так, чтобы соблюдалась полярность. Положительная полярность должна быть подсоединена к «+» самого источника электричества, а отрицательная к его «-». Если подсоединить все правильно, то значение на амперметре будет достаточно точным. Допустимая погрешность показаний может иметь значение меньше 1%. Этот прибор можно приобрести в специализированных магазинах.
Также можно сделать расчет силы тока без использования амперметра. Согласно физическим законам существует определенная зависимость между напряжением в электрической сети и силы тока, которая по ней протекает. В связи с этим можно использовать закон Ома. Расчеты можно сделать по формуле I=U/R, где
I – сила электротока на определенном участке электрической цепи (ампер);
U – напряжение на этом же участке (вольт);
R – постоянное значение сопротивления проводника (ом).
Определить на сколько ампер рассчитана электророзетка можно и другим способом. В данной ситуации нам должно быть известно значение мощности электросети, а также вольтаж в используемой розетке.
Существует формула, по которой рассчитывают возможное развитие мощности электроприбора – P=I*U, где
P – мощность (ватт), а другие значения соответствуют тому же определению.
Преобразовав данную формулу, получим I=P/U. В этом случае сила электротока будет равняться соотношению мощности и напряжения. Так на 220 ваттной электросети при напряжении 220 вольт в обычной бытовой розетке сила тока будет равняться 1 А.
Может ли гулять частота электричества в квартире?
Ну в основном конечно по частоте 2-2,5%. Это для номинального режима работы оборудования тех же электростанций. Но могут быть и большие отклонения.
1.5. Генераторы постоянного тока и синхронные компенсаторы при номинальной частоте вращения, а генераторы переменного тока, кроме того, и при номинальном коэффициенте мощности должны развивать номинальную мощность при отклонениях напряжения от номинального на ±5%. Мощность генераторов и синхронных компенсаторов при отклонениях напряжения от номинального значения более чем на ±5% (но не более чем на ±10%) должна быть по требованию потребителя указана предприятием-изготовителем. Двигатели должны сохранять номинальную мощность (в технически обоснованных случаях — номинальный момент) при отклонениях напряжения сети от номинального значения в пределах
от минус 5 до плюс 10%. Генераторы и двигатели переменного тока должны сохранять номинальную мощность при отклонениях частоты переменного тока на ±2,5% номинального значения. Двигатели переменного тока при одновременном отклонении напряжения и частоты переменного тока от номинальных значений должны сохранять номинальную мощность, если сумма абсолютных процентных значений этих отклонений не превосходит 10% и каждое из отклонений не превышает нормы. …
МАШИНЫ ЭЛЕКТРИЧЕСКИЕ ВРАЩАЮЩИЕСЯ. ТУРБОГЕНЕРАТОРЫ Общие технические условия
4.4 Машины должны допускать продолжительную работу с номинальной мощностью и номинальным коэффициентом мощности, а также с оговоренным соглашением, разделом 7 и приложением А, максимальными нагрузками, при отклонениях напряжения ±5 % и частоты ±2% номинальных значений, как это показано заштрихованной площадью на рисунке 1. Предельные превышения температуры или предельные температуры, указанные в таблице 1, следует применять только к режиму работы с номинальными напряжением и частотой.
Таблица 1 — Предельные температуры и превышения температур … Примечания 1 По мере увеличения отклонения напряжения и частоты от номинальных превышения температур или температуры могут прогрессивно увеличиваться. Продолжительная работа с номинальной мощностью в некоторых граничных токах заштрихованной площади может привести к росту превышений температур приблизительно на 10 К. Машины также должны обеспечивать номинальную мощность при номинальном коэффициенте мощности при изменении напряжения ±5 % и частоты от плюс 3 % до минус 5 % номинальных значений, как это определено внешней пунктирной границей на рисунке 1, однако при этом будут иметь место дальнейшие повышения превышений температур. 2 Для уменьшения сокращения срока службы из-за повышения температур или превышений температур работа машины вне пределов заштрихованной площади должна быть ограничена по продолжительности и числу случаев По мере возможности должна снижаться мощность машины или должны предприниматься другие меры Турбогенераторы должны допускать продолжительную работу со сниженной нагрузкой при одновременных отклонениях напряжения сверх ±5 %, но не более чем до ±10 %, и частоты до ±2 % номинальных значений. Допустимые нагрузки в зависимости от их продолжительности и числа случаев работы вне заштрихованной зоны должны быть указаны изготовителем в инструкции по эксплуатации машины 3 Режимы работы при повышенном напряжении в сочетании с пониженной частотой или при пониженном напряжении и повышенной частоте являются анормальными При этом работа в первом из режимов может привести к увеличению превышения температуры обмотки возбуждения. При режимах работы, показанных на рисунке 1, перевозбуждение или недовозбуждение машины и ее трансформатора не превышают 5 %. 4 Следует учитывать влияние отклонения частоты от номинальной на работу других элементов турбоагрегата, например турбины и вспомогательного оборудования Изготовителю турбины следует указывать пределы изменения частоты и время, в течение которого турбина может работать при этой частоте. Следует также учитывать возможность работы вспомогательного оборудования при изменении напряжения и частоты
Величина допустимого падения напряжения: ПУЭ
Согласно принятым правилам устройства электроустановок (ПУЭ) еще в бывшем СССР, падением напряжения признается разность показателей напряжения на разных точках сети. Как правило, это точки начала и конца цепи. В установленных нормах по закону полагается различать понятия отклонение напряжения от ее потери. Если первый случай в общепринятом масштабе рассматривается на примере лампы накаливания, показатель отклонения которого признается номинальным и обязательным к исполнению, то в случае с потерей, рассматриваемой на шинах станции, – это признается рекомендуемым показателем.
Нормальное падение работы напряжения в сети:
- В так называемых воздушных линиях – до 8%;
- В кабельных линиях электроснабжения – до 6%;
- В сетях на 220 В – 380 В – в районе 4-6%.
При этом падением в рамках аварийного режима признается падение до 12% в сети – это установленный предел. Падение более установленной нормы сулит включение системы защитной автоматики, которая должна срабатывать при достижении пониженной нормы на протяжении не менее 30 секунд.
Также в некоторых источниках можно найти стандарты напряжения, превышающие даже новые показатели в 230 В и 400 В. Не стоит путать примеры бытового использования с заводом или фабрикой, на которых показатели естественно значительно превышают бытовую среду.
Какое в России напряжение в сети 220 или 230 Вольт? Или до 253 Вольт!
Почти все ответят на этот вопрос однозначно: в России напряжение в сети — 220 Вольт. Мы с этим родились, это мы слышим везде и всюду. Но так ли это на самом деле? Нет! Уже с 2014 года по ГОСТу сетевое напряжение в России 230 Вольт! И действительно уже много где, незаметно для нас напряжение в наших домах и квартирах составляет 230 Вольт.
Имеет ли это какое то практическое значение? И да и нет. Если мы покупаем современную электротехнику — она естественно будет иметь необходимые параметры по электропитанию.
Некоторые читатели могут вспомнить, как несколько лет назад вдруг всплыла тема, что на всех лампочках накаливания указано напряжение 230 Вольт, а в сети у всех якобы 220 Вольт и лампочки накаливания не дотягивали до указанной на них мощности. Естественно, эта проблема носила какой то непонятный смысл для бытовых потребителей и все про неё забыли.
Но есть ли действительно смысл обратить внимание на напряжение в сети. Как правило все производители электроприборов и оборудования рассчитывают параметры с учётом того, что напряжение всё равно не бывает стабильным, а может отклоняться на +-10%. Всё вроде должно работать и проблем никаких быть не должно
Ведь если прибор был рассчитан на напряжение 220 Вольт + 10% то при напряжении до 242 Вольт всё будет в пределах расчёта. Но сейчас по ГОСТу — 230 Вольт и допуск ещё +10%, а это уже 253 Вольта! То есть у нас в сети допустимое напряжение 253 Вольта! И электроприборы которые были рассчитаны на 220 Вольт уже могут не выдержать напряжения
Всё вроде должно работать и проблем никаких быть не должно. Ведь если прибор был рассчитан на напряжение 220 Вольт + 10% то при напряжении до 242 Вольт всё будет в пределах расчёта. Но сейчас по ГОСТу — 230 Вольт и допуск ещё +10%, а это уже 253 Вольта! То есть у нас в сети допустимое напряжение 253 Вольта! И электроприборы которые были рассчитаны на 220 Вольт уже могут не выдержать напряжения.
Из практики, азиатские производители электроприборов до сих пор делают для российского потребителя приборы которые рассчитаны на 220 Вольт. Плюс ко всему, если отечественные и мировые производители техники учитывают все допуски, которые могут быть, в сети, то безымянные азиатские производители этого не делают. В итоге даже при напряжении в сети 230 Вольт могут начаться проблемы! В первую очередь проявляется это в перегреве блоков питания и сетевых адаптеров и преждевременном выходе их из строя. Особенно опасным может оказаться повышение сетевого напряжения ещё выше. То есть по норме ГОСТа до 253 Вольт. При таком напряжении вероятность выхода из строя техники очень высока!
Так что если Вы заметили, что что-то из вашей техники стало вести себя не так. Стали выходить из строя адаптеры и блоки питания. Что то стало перегреваться, проверьте напряжение в сети! Наверняка оно стало 230 Вольт.
Основные причины отклонения от номинального перенапряжения в многоквартирном доме
Много жилых домов проектировалось до середины 90 – х годов прошлого века без учета сегодняшних реалий и в первую очередь электроснабжение. В то время не учитывалось микроволновая печь, второй холодильник, телевизор, компьютер и так далее. Сегодня это атрибуты обыкновенной квартиры. Но электрическая проводка осталась без изменений. По этой причине на электрическую сеть воздействует увеличенная нагрузка, и она не выдерживает.
При прохождении по кабелю рабочего тока больше, чем его номинальный, он начинает греться. Как мы знаем из школьных курсов Физики, при нагревании материал расширяется. Алюминиевая или медная жила кабеля не исключение. Когда вечером люди с работы они включают электробытовые приборы, это тем самым влияет на кабель, он расширяется, а потом сужается, контакты в месте соединения расслабляются или вообще могут отгореть если они плохо сделаны.
Основная причина перенапряжения в многоквартирных домах это ослабление нулевого рабочего проводника (ноль) или его отгорание в результате перегрузки или несвоевременного проведения ППР (планово-предупредительный ремонт).
Если нулевой проводник отгорел в РЩ (распределительный щит) в жилом доме, то отклонение от номинального будет по всему дому. Если в этажном щите на первом этаже в подъезде, то от него и выше по всем квартирам. То есть перенапряжение будет в квартирах от места отгорания нулевого проводника. Величина может колебаться от 140 В до 360 В, это зависит от нагрузки, которая включена в квартирах.
Защита электросети от скачков напряжения: как предотвратить скачки напряжения и возможный ущерб от них
Как избежать скачков напряжения в сети? К счастью, существуют как технические, так и организационные меры, позволяющие защитить электросети от скачков напряжения.
К техническим мерам можно отнести:
-
Использование стабилизатора напряжения сети.
Это устройство позволяет компенсировать скачки в ту или иную сторону. Лучшие модели выдают стабильное напряжение 220 вольт(± 5%) даже при перепадах в сети от 140 до 260 вольт. -
Установку реле, отключающего приборы от сети
при предельных изменениях напряжения. Такие реле обезопасят бытовые электроустановки от выхода из строя. При стабилизации сети, реле возобновляет питание подключенных устройств. -
Установку источников бесперебойного питания (ИБП).
Такая мера позволит сохранить исправность бытовой техники даже при полном кратковременном пропадании напряжения. В ИБП применяются встроенные аккумуляторные батареи, которые и осуществляют электроснабжение при пропадании сетевого. Применяются в основном для работы с компьютерной техникой. Такие приборы защитят и от пониженного напряжения и от скачков электросети.
- Устройство надежной грозозащиты жилых зданий.
К организационным мерам относятся:
- выключение приборов перед ремонтными и электромонтажными работами и включение в сеть только после проверки выходного напряжения
- выключение особо чувствительных устройств из розетки при грозовой опасности
К сожалению, не всегда удается своевременно предохранить свою технику от неполадок в сети.
Параметры домашней электрической сети
После выяснения того, что ток в розетке наших домов переменный, необходимо знать его главные параметры, которым относятся величина напряжения, и частота. Напряжение домашних электрических сетей составляет 220в. Весь мир пользуется электричеством с частотой 50 Герц, за исключением США, где этот параметр имеет значение 60 Гц.
По проводу фактических значений напряжения и частоты необходимо знать:
- Частота 50 Гц задается генерирующим устройством электростанции и всегда соответствует заданному значению.
- Напряжение в отдельно взятом доме или квартире может отличаться от номинального значения 220 В. На это могут оказывать влияние техническое состояние, величина и распределение нагрузки сети, питающей многоквартирный дом или жилой район, степень загруженности ее трансформаторной подстанции. Эти отклонения, могут быть весьма значительными и достигать 20-25 Вольт. В этом случае целесообразно подключение домашней электросети производить через стабилизатор напряжения.
Обязательное регулирование напряжения в электрических сетях
Осуществить собственное регулирование напряжения не только трудозатратно, но и потребует финансовых вложений. Еще более трудным вариантом является добиваться стабилизации тока в сети от организации-поставщика. Это можно сделать путем подачи жалоб, личных обращений, исков в суд, однако, результат далеко не всегда достигается даже этими методами.
Если вы все-таки решили самостоятельно исправить картину, то это возможно следующим образом:
- Метод централизованного регулирования напряжения. Этот подход предполагает подсчет того, сколько изменений потребуется для стабилизации ситуации и соответствующее регулирование в центральном блоке питания.
- Метод линейного воздействия. Осуществляется с помощью так называемого линейного регулятора, который изменяет фазы с помощью вторичной обмотки на цепи.
- Использование конденсаторных батарей в сети. Этот способ в теоретической части называется компенсацией реактивной мощности.
- Также предельно нестабильную сеть можно подправить с помощью продольной компенсации. Она подразумевает последовательное подключение к сети конденсаторов.
Также актуальным вариантом, при не слишком выраженным отклонении от установленной нормы, является установка одного крупного или нескольких мелких стабилизаторов в сети. Это потребует некоторых финансовых вложений, специальные навыки монтажа, а также не подходит для максимально колеблющихся систем электроснабжения, ведь просто не смогут делать большой объем работы и регулировать большое количество напряжения.
Итак, как уже было определено, новым общепринятым стандартом считается напряжение в сети в квартире от 230 В до 400 В. Для примера, шкала напряжения бывает и 240 В, 250 В, с учетом максимально допустимой погрешности. Однако для привычной нам розетки э1ф рабочее напряжение – это все тот же уровень 220в, который привычен для нас всех еще с советского периода.
Напряжение 220 Вольт
Очень много вопросов в рунете именно по напряжению “из розетки”. Самый часто задаваемый вопрос выглядит так:
– Какой ток в розетке?
Здесь вопрос, конечно же, поставлен неправильно. Током чаще всего называют именно силу тока. Правильнее было бы задать вопрос: “Какое напряжение в розетке?”
У нас в России в домашней сети переменное напряжение с частотой в 50 Герц, максимальной амплитудой приблизительно в 310 Вольт и действующим напряжением в 220 Вольт. Думаю, это будет самый развернутый ответ.
Итак, теперь давайте разбираться что к чему.
Как же выглядит этот “ток из розетки” на осциллографе? Ну примерно вот так:
По вертикали у нас одна клеточка равняется 100 Вольтам. Следовательно, максимальная амплитуда Umax будет равна где-то 330 Вольт
амплитудное значение напряжения
По идее должно быть 310 Вольт. Хотя оно и не удивительно. Напряжение в сети редко когда бывает стабильным. Все, конечно же, зависит от потребителей и трансформатора на электростанции, который их питает.
Когда я был еще совсем маленьким, рядом с телевизором у нас стояло очень интересное устройство. На нем была шкала, и мы вечером подкручивали крутилку, чтобы шкала показывала ровно 220 Вольт, иначе телевизор отказывался работать. С возрастом я понял, что это был ручной стабилизатор напряжения, так как именно вечером все соседи начинали “жрать” электричество и поэтому в сети было вольт 190-200. Это уже сейчас во всех телевизорах и других бытовых приборах эти стабилизаторы встроены прямо внутри прибора, и поэтому надобность в стабилизаторах резко отпала.
СТАНДАРТНЫЕ НАПРЯЖЕНИЯ СЕТЕЙ И ОБОРУДОВАНИЯ ПЕРЕМЕННОГО ТОКА В ДИАПАЗОНЕ СВЫШЕ 35 ДО 230 кВ ВКЛЮЧИТЕЛЬНО
Стандартные напряжения указаны в табл.4. В одной стране рекомендуется использовать только одну из указанных в табл.4 серий и только одно напряжение из следующих групп:- группа 1 — 123…145 кВ; — группа 2 — 245, 300 (см. разд.5); 363 кВ (см. разд.5).
Таблица 4В киловольтах
Наибольшее напряжение для оборудования |
Номинальное напряжение сети |
|
Серия 1 |
Серия 2 |
|
(52) |
(45) |
— |
72,5 |
66 |
69 |
123 |
110 |
115 |
145 |
132 |
138 |
(170) |
(150) |
— |
245 |
220 |
230 |
Значения в скобках непредпочтительны. Эти значения не рекомендуется использовать при создании новых сетей. Значения, приведенные в табл.4, соответствуют междуфазному напряжению.
Как измерить напряжение в розетке мультиметром
Определить, какое напряжение в розетке, проще всего при помощи тестера (мультиметра):
- 1. щупы прибора подключаются к клеммам или вставляются в гнёзда COM и VΩmA, на некоторых типах приборов один из щупов необходимо подключить к клемме «*»;
- 2. переключатель устанавливается в положение ACV, диапазон измерений выбирается 250, 500 или 750В;
- 3. в советских приборах серии «Ц» переключателем устанавливается только диапазон, а для измерения переменного напряжения необходимо дополнительно нажать кнопку «~».
После подключения проводов, выбора диапазона и типа напряжения щупы вставляются в розетку. Результат измерений на дисплее цифрового прибора виден сразу, показания стрелочного вольтметра необходимо пересчитывать с учётом величины диапазона.
Важно! Во время измерений провода и щупы находятся под напряжением, поэтому дотрагиваться до оголённых выводов запрещено!
Способы расчета оплаты
Формула расчета электроэнергии зависит от того, установлен в квартире индивидуальный прибор учета (ИПУ) или нет, и какая система начисления платы применяется. Помимо индивидуального потребления, в квитанции за коммунальные услуги включают стоимость затрат электричества на общедомовые нужды (ОДН).
По данным электросчетчика
Самый простой и понятный способ расчета стоимости энергопотребления – по показаниям электросчетчика.
- Формула расчета по одноставочной системе выглядит так:
Пример 1. По данным ИПУ за август 2021 года было потреблено 239 кВт. В квартире установлена газовая плита. Стоимость киловатта в регионе составляет 5,38 руб. Тогда стоимость предоставления ресурса равна:
239 * 5,38 = 1285,82 руб.
- Формула для расчета электропотребления по двухтарифному счетчику немного сложнее:
Пример 2. По данным двухтарифного электросчетчика за август 2017 года расход энергии составил 239 киловатт, из них с 7 до 23 часов – 167, с 23 до 7 часов – 72. В квартире газовое оборудование. Тариф на электроснабжение, дифференцированный по двум зонам суток – 4,19 и 2,92 руб./кВт соответственно. Тогда стоимость услуги равна:
167 * 6,19 + 72 * 1,79 = 1162,61 руб.
- Посчитать сумму за электроэнергию по многотарифному счетчику можно по формуле:
Пример 3. По данным многотарифного счетчика за август 2021 года энергопотребление в квартире с газовой плитой составило 239 киловатт, из них: пиковая зона – 120, полупик – 47, ночь – 72. Стоимость киловатта в пиковую зону – 6,46 руб., полупиковую – 5,38, ночную – 1,79. Итоговая сумма равна:
120 *6,46 + 47 * 5,38 + 72 * 1,79 = 1156,94 руб.
По данным в примерах получилось, что самым выгодным оказался многотарифный способ расчета. Потребитель может сам определить, какая система принесет экономию именно для него. Для этого надо узнать примерное электропотребление по каждой зоне суток и умножить его на действующие тарифы.
Оплата с учетом социальной нормы потребления
В 2012 году было утверждено Распоряжение Правительства РФ № 1650-р, в котором предлагается проект перехода к системе расчета коммунальных платежей с учетом социальной нормы потребления. В настоящее время система действует в ряде регионов страны (Ростовская, Нижегородская и др. области).
Норма расхода электроэнергии зависит от количества проживающих граждан, сезона, типа отопления и плиты, расположения жилья (город или село). В системе действует 2 тарифа: один на оплату за электроэнергию в пределах социальной нормы, другой – на расход свыше норм.
Формула расчета следующая:
Пример 4. В квартире, расположенной в Ростове-на-Дону, проживает 3 человека. За месяц семья потребила 243 киловатт электроэнергии по данным счетчика. Социальная норма установлена 196 кВт. Ставка в пределах соц.нормы – 3,72, сверх нормы – 5,19 руб./кВт. Тогда сумма за электропотребление составит:
196 * 3,72 + (243 -196) * 5,19 = 973,06 руб.
Система способствует воспитанию экономичного потребления ресурсов. Также она применяется и в случаях оплаты по зонам суток.
Без данных электросчетчика
В зависимости от причин, по которым отсутствуют показания счетчика электроэнергии, формула расчета будет разной.
- Прибор учета отсутствует или показания не передаются более 6 месяцев. Стоимость потребления ресурса будет рассчитана по формуле:
Норма потребления зависит от типа плиты, установленной в квартире, количества комнат и количества проживающих.
Пример 5. В двухкомнатной квартире с установленной электроплитой зарегистрирована семья из двух человек. Электросчетчик отсутствует, хотя возможность его установки имеется. Норматив потребления на 1 человека – 117 кВт. Установленный тариф – 4,04 руб./кВт. Стоимость потребленного ресурса составит:
2 * 117 * 4,04 * 1,6 =1512,58 руб.
Такая система расчета выгодна, когда в квартире проживает больше человек, чем зарегистрировано. Отсутствие какого-либо потребителя ресурса доказывается документально.
- Показания счетчика не переданы вовремя или он неисправен.
В таких ситуациях считают средний показатель энергопотребления за последние шесть месяцев, а в некоторых случаях за последние три.
Стоимость электроэнергии рассчитывается по формуле:
Пример 6. Потребитель просрочил сдачу показаний счетчика. В квартире электрическая плита. За последние полгода электропотребление по переданным показаниям составляло: март – 167, апрель – 185, май – 160, июнь – 179, июль – 159, август – 173 киловатт. Тариф – 4,04 руб./кВт. Сумма к оплате равна:
((167 + 185 + 160 + 179 + 159 + 173) / 6) * 4,04 = 686,82 руб.
Оплата электроэнергии по счетчику принесет экономию потребителю. Если возможность монтажа ИПУ есть, его лучше установить.
Техника безопасности, электричество и техническое обслуживание электрических сетей
Обслуживание электроприборов часто входит в сферу обязанностей домашнего мастера. Техника безопасности и электричество в доме — это две неразрывно связанные аксиомы, которые следует соблюдать. Техническое обслуживание электрических сетей должен производить специалист, который имеет соответствующий допуск к работе с указанным уровнем напряжения в доме.
Никогда не прикасайтесь к проводам под напряжением, сначала отключите источник питания и только затем, спустя три-пять секунд, приступайте к работе.
Не полагайтесь на изолированные ручки инструмента, они защищают только от случайных прикосновений к оголенным проводам.
Не используйте для изоляции подручные материалы, применяйте только изоленту.
При работе с электричеством надевайте обувь на резиновой подошве.
Избегайте влажности, во влажном помещении работать с электричеством опасно, а с влажными руками нельзя даже близко подходить к оголенным проводам.
Перед окончанием работ проанализируйте свои действия и убедитесь, что вы ничего не упустили из виду.
Класс напряжения — Wiki Power System
Класс напряжения
— это типовое значение линейного (междуфазного) напряжения в электрических сетях, которое является номинальным для различных групп оборудования: трансформаторов, линий, генераторов, реакторов и прочих. Класс напряжения определяет требуемый уровень электрической изоляции электрооборудования. Порядок класса напряжения определяет то, для каких целей и задач применяется это оборудование.
В частности, низкие напряжения используются для распределения мощности между мелкими потребителями на малые расстояния, средние классы — для распределения мощности между средними потребителями и группами потребителей на умеренной дистанции, высокие и сверхвысокие классы — для распределения мощности между крупными потребителями и для передачи мощности на большие расстояния.
Иными словами низкие и средние классы напряжения характерны для распределительных сетей, в то время как высокие и сверхвысокие классы — для системообразующих сетей, связывающих отдельные энергосистемы.
Необходимость применения различных классов напряжения
Энергосистема на разных классах напряжения
На заре электроэнергетики, когда идея объединенных энергосистем ещё не возникла, электрические сети использовались изолированно на отдельных предприятиях, аналогично тому, как до этого применялись механические передаточные системы. Каждое из предприятий стремилось построить свою собственную станцию и управлять её самостоятельно.