Заказные номера
Позволяет функционировать электродвигателю с заявленной номинальной мощностью, соответствующей паспорту.
Если сгорит два из трёх — вообще ни один не будет работать, поскольку они попарно подключаются на линейное напряжение. Без нулевого провода лампы можно соединять звездой при условии, что их мощность одинакова, и распределяется равномерно между фазами.
Контакты БКМ обеспечивают самоподхват силовых контактов и удерживают их во включенном положении.
Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов
Особое внимание следует обратить на трех фазные двигатели западноевропейского образца, так как они предназначены для работы от напряжения в или вольт. Например, начало вывода 1 находится напротив конца 1
А это более наглядная картинка: Как правило, используется два конденсатора или два набора конденсаторов , которые условно называются пусковые и рабочие.
Использовать частотный преобразователь, который преобразует одну фазу вольт в три фазы вольт в этой статье мы рассматривать такой метод не будем Использовать конденсаторы этот метод мы и рассмотрим более подробно
Важно А вот такая картина будет, если мы перепутаем начало и конец одной из обмоток, а точнее не начало и конец, а направление обмотки. А вот к началам обмоток необходимо подать напряжение, то есть, соединить их с проводами трех фаз
На схемах обычно концы обмотки нумеруются с лева на право. Именно за счёт этого и появляется возможность использовать для одного двигателя сразу два напряжения.
Для того, чтобы подключить такой электродвигатель к отечественным сетям, необходимо использовать только подключение по типу треугольник. Эти условия являются взаимоисключающими, поскольку для подключения к однофазной сети В номинальное напряжение обмотки двигателя должно составлять те же самые В. Существуют электромоторы, которые изначально не рассчитаны на возможность подключения в бытовую сеть.
Различные производители изготавливают реле пуска, необходимое для запуска электродвигателя. При рассмотрении генераторов, схемы — звезда и треугольник по параметрам аналогичны при функционировании электродвигателей
Важно А вот такая картина будет, если мы перепутаем начало и конец одной из обмоток, а точнее не начало и конец, а направление обмотки. Контакт Q1 мотор-автомата служит для защиты от перегрузки двигателя.
Как работает пусковой переключатель со звезды на треугольник
Особенность работы в “Звезде”
В соответствии с ГОСТ 28173 (МЭК 60034-1) двигатели могут эксплуатироваться при отклонении напряжения ± 5 % или отклонении частоты ± 2 %. При этом параметры двигателей могут отличаться от номинальных, а превышения температуры обмоток могут быть более предельного по ГОСТ 28173 (МЭК 60034-1) на 10 °С.
К чему это я? Дело в том, что при пуске, когда двигатель работает в “Звезде”, он работает не в режиме (напряжение отличается на 70%!), что может привести к его перегреву, если это будет длиться долго. Будьте внимательны, защищайте двигатель от перегрева и перегрузки! Но это уже совсем другая история)
Выбор схемы соединения фаз электродвигателя
Для включения асинхронного электродвигателя в сеть его статорная обмотка должна быть соединена звездой или треугольником.
Чтобы электродвигатель включить в сеть по схеме “звезда”, нужно все концы фаз (С4, С5, С6) соединить электрически в одну точку, а все начала фаз (C1, С2, С3) присоединить к фазам сети. Правильное соединение концов фаз электродвигателя по схеме “звезда” показано на рис. 1, а.
Для включения электродвигателя по схеме “треугольник” начало первой фазы соединяют с конном второй и начало второй — с концом третьей, а начало третьей — с концом первой. Места соединений обмоток подключают к трем фазам сети. Правильное соединение концов фаз электродвигателя по схеме “треугольник” показано рис. 1, б.
Рис. 1. Схемы включения трехфазного асинхронного электродвигателя в сеть: а – фазы соединены звездой, б – фазы соединены треугольником
Соединение фаз двигателя по схеме “звезда”
Соединение фаз двигателя по схеме “треугольник”
Дли выбора схемы соединения фаз трехфазного асинхронного электродвигателя можно использовать данные таблицы 1.
Таблица 1. Выбор схемы соединения обмоток
Напряжение электрического двигателя, В | Напряжение сети, В | |
380/220 | 660/380 | |
380/220 | звезда | – |
660/380 | треугольник | звезда |
Из таблицы видно, что при подключении асинхронного двигателя с рабочим напряжением 380/220 В к сети с линейным напряжением 380 В соединять его обмотки можно только звездой! Соединять концы фаз такого электродвигателя по схеме “треугольник” нельзя. Неправильный выбор схемы соединения обмоток электродвигателя может привести к выходу его из строя во время работы.
Вариант соединения обмоток треугольником предусмотрен для подключения двигателей 660/380 В к сети с линейным напряжением 660В и фазным 380 В. В этом случае обмотки двигателя могут соединяться по схеме, как “звезда”, так и “треугольник”.
Такие двигатели могут включаться в сеть при помощи переключателя схем со звезды на треугольник (рис. 2). Это техническое решение позволяет уменьшить пусковой ток трехфазного асинхронного короткозамкнутого электродвигателя большой мощности. При этом сначала обмотки электродвигателя соединяют по схеме “звезда” (при нижнем положении ножей переключателя), потом, когда ротор двигателя наберет номинальную частоту вращения, его обмотки переключают в схему “треугольник” (верхнее положение ножей переключателя).
Рис. 2. Схема включения трехфазного электродвигателя в есть при помощи переключателя фаз со звезды на треугольник
Снижение пускового тока при переключении его обмоток со звезды на треугольник происходит потому, что вместо предназначенной для данного напряжения сети схемы “треугольник” (660В) каждая обмотка двигателя включается на напряжение в √3 раза меньше (380В). При этом потребляемый ток снижается в 3 раза. Снижается также в 3 раза и мощность, развиваемая электродвигателем при пуске.
Но, в связи со всем вышесказанным, такие схемные решения можно использовать только для двигателей с номинальным напряжением 660/380 В и включении их в сеть с таким же напряжением. При попытке включения электродвигателя с номинальным напряжением 380/220 В по такой схеме он выйдет из строя, т.к. его фазы нельзя включать в сеть “треугольником”.
Номинальное напряжение электрического двигателя можно посмотреть на его корпусе, где в в виде металлической пластинки размещается его технический паспорт.
Для изменения направления вращения электродвигателя достаточно поменять местами две любые фазы сети независимо от схемы его включения. Для изменения направления вращения асинхронного электродвигателя применяют электрические аппараты ручного управления (реверсивные рубильники, пакетные переключатели) или аппараты дистанционного управления (реверсивные электромагнитные пускатели). Схема включения трехфазного асинхронного электродвигателя в сеть реверсивным рубильником показана на рис. 3.
Рис. 3. Схема включения трехфазного электродвигателя в сеть реверсивным рубильником
Пуск короткозамкнутого электродвигателя с переключением со звезды в треугольник
применяют для снижения пускового тока, который в 5 – 7 раз превышает рабочий ток двигателя. У двигателей сравнительно большой мощности пусковой ток настолько велик, что может вызвать перегорание предохранителей, отключение автомата и привести к значительному снижению напряжения. Уменьшение напряжения снижает накал ламп, уменьшает вращающий момент электродвигателей 2, может вызвать отключение контакторов и магнитных пускателей. Поэтому стремятся уменьшить пусковой ток, что достигается несколькими способами. Все они в итоге сводятся к понижению напряжения в цепи статора на период пуска. Для этого в цепь статора на период пуска вводят реостат, дроссель, автотрансформатор либо переключают обмотку со звезды в треугольник. Действительно, перед пуском и в первый период пуска обмотки соединены в звезду. Поэтому к каждой из них подводится напряжение, в 1,73 раза меньшее номинального, и, следовательно, ток будет значительно меньше, чем при включении обмоток на полное напряжение сети. В процессе пуска электродвигатель увеличивает частоту вращения и ток снижается. Тогда обмотки переключают в треугольник.
Предупреждения: 1. Переключение со звезды в треугольник допустимо лишь для двигателей с легким режимом пуска, так как при соединении в звезду пусковой момент примерно вдвое меньше момента, который был бы при прямом пуске. Значит, этот способ снижения пускового тока не всегда пригоден, и если нужно снизить пусковой ток и одновременно добиться большого пускового момента, то берут электродвигатель с фазным ротором, а в цепь ротора вводят пусковой реостат. 2. Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, то есть имеющие, обмотки, рассчитанные на линейное напряжение сети.
Как управлять переключениями электродвигателя
Часто для пуска электрического двигателя большой мощности используется переключение соединения «треугольник» в «звезду», это необходимо для снижения параметров тока при пуске. Иными словами, пуск двигателя происходит в режиме «звезда», а вся работа осуществляется на соединении «треугольник». Для этой цели используется контактор на три фазы.
Необходимо при автоматическом переключении выполнить обязательные условия:
- сделать блокировку контактов от одновременного срабатывания;
- обязательное исполнение работы, с задержкой времени.
Задержка времени необходима для 100%-го отключения соединения «звезда», иначе при включении соединения «треугольник» возникнет между фазами КЗ. Используется реле времени (РВ), которое выполняет задержку переключения на интервал от 50 до 100 миллисекунд.
Какими способами можно сделать задержку времени переключений
Когда применяется схема «звезда и треугольник», надо обязательно выполнять задержку времени включения соединения (Δ), пока не отключится соединение (Y), специалистами отдается предпочтение трем методам:
- с помощью контакта нормально разомкнутого в реле времени, который проводит блокировку схемы «треугольник», когда происходит пуск электродвигателя, а момент переключения контролирует токовое реле (РТ);
- используя таймер в реле времени современного исполнения, который имеет способность переключать режимы с интервалом от 6 до 10 секунд.
Стандартная схема переключения
Классический вариант переключения со «звезды» на «треугольник» специалистами считается надежным способом, он не требует больших затрат, прост в исполнении, но, как и любой другой способ, имеет недостаток — это габаритные размеры РВ (реле времени). Этот тип РВ гарантированно выполняет задержку времени намагничиванием сердечника, а чтобы размагнитить его, требуется время.
Схема смешанного (комбинированного) включения работает следующим образом. Когда оператор включает трехфазный выключатель (АВ), пускатель электродвигателя приготовлен к действию. Через контакты кнопки «Стоп», нормально замкнутого положения и через нормально разомкнутые контакты кнопки «Пуск», которую нажимает оператор, электрический ток проходит в катушку контактора (КМ). Контакты (БКМ) обеспечивают самоподхват силовых контактов и удерживают их во включенном положении.
Реле в схеме (КМ) обеспечивает способность отключения оператором кнопкой «Стоп» электрический двигатель. Когда «фаза управления» проходит через пусковую кнопку, она также проходит замкнутые нормально расположенные контакты (БКМ1) и контакты (РВ) — запускается контактор (КМ2), силовые контакты его обеспечивают подачу напряжения на соединение (Y), начинается раскрутка ротора электродвигателя.
https://youtube.com/watch?v=l1LB48MiwDA
Когда оператор осуществляет пуск двигателя, контакты (БКМ2) в контакторе (КМ2) размыкаются, это порождает неработающее состояние силовых контактов (КМ1), которые обеспечивают питание соединения двигателя Δ.
Токовое реле (РТ) срабатывает практически сразу из-за высоких значений тока, которое включено в цепь токовых трансформаторов (ТТ1) и (ТТ2). Управляющая цепь катушки контактора (КМ2) шунтируется контактами токового реле (РТ), что не дает сработать (РВ).
В цепи контактора (КМ1) блок контактов (БКМ2) размыкается при запуске (КМ2), что не дает сработать катушке (КМ1).
С набором нужного параметра оборотов вращения ротора двигателя контакты токового реле размыкаются, так как пусковой ток уменьшается в управлении контактора (КМ2), одновременно с размыканием контактов, подающих напряжение на соединение обмотки (Y), БКМ2 соединяются, что приводит в рабочее положение контактор (КМ1), а в его цепи блок контактов БКМ2 размыкается, и, как следствие, обесточивается РВ. Преобразование включения «треугольника» в «звезду» происходит после остановки двигателя.
Важно! Временное реле отключается не сразу, а с задержкой, что дает некоторое время в цепи (КМ1) контактам реле быть замкнутым, этим обеспечивается пуск (КМ1) и работа двигателя по схеме «треугольник»
Недостатки стандартной схемы
Несмотря на надежность работы классической схемы переключения с одного соединения на другое соединение электрического двигателя большой мощности, она имеет свои неудобства:
надо правильно делать расчет нагрузки на вал электродвигателя, иначе он будет долго набирать обороты, что не даст быстро сработать токовому реле и затем переключиться на работу по соединению Δ, а также в этом режиме крайне нежелательно долго эксплуатировать двигатель;
Соединение «звездой» и его преимущества
Реверсивная схема двигателя 380 на 220 Вольт
Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.
При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.
Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.
Основные преимущества применения схемы «звезда»:
- Устойчивый и длительный режим безостановочной работы двигателя;
- Повышенная надежность и долговечность, за счет снижения мощности оборудования;
- Максимальная плавность пуска электрического привода;
- Возможность воздействия кратковременной перегрузки;
- В процессе эксплуатации корпус оборудования не перегревается.
Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.
Подключение трехфазного двигателя к однофазной сети по схеме звезда
Условные обозначения и расшифровка
Группы маркируются числами от 0 до 11. Для удобства и стандартизации принято следующее:
- однотипные соединения (∆/∆, Y/Y) имеют четные номера;
- разнотипные соединения (∆/Y, Y/∆) – нечетные.
Трехфазные трансформаторы выполняются на стержневых магнитопроводах. Каждая из фаз располагается на отдельном стержне. Это во многом упрощает дальнейшую работу и согласование устройств между собой.
Если у трансформатора одинаковые фазы намотаны на одних стержнях, то группы соединений при этом называются основными (0, 6, 11, 5). Остальные группы – производные.
Так как минимальный сдвиг фаз может составлять 30, то количество вариантов равно 12, что соответствует положениям стрелок часов. 0-е и 12-е положения совпадают. На основании этого говорят, что номер группы совпадает с положением часовой и минутной стрелок. Сдвиг фаз вычисляется просто:
Номер группы*30.
Приняты следующие обозначения на электросхемах и устройствах:
- Y, У – звезда;
- Yн, Ун – звезда на стороне низкого напряжения;
- Yо, Уо – звезда с нулевой точкой;
- ∆, Д, D – треугольник;
- ∆н, Дн, Dн – треугольник на стороне низкого напряжения.
Советуем изучить — Рабочие и электрозащитные характеристики заземляющих устройств
Пример маркировки двухобмоточного трансформатора:
- ∆/Yн – 11. Первичная обмотка треугольник, вторичная (понижающая) звезда. Сдвиг фаз 330;
- Y/Yо -0. Обе обмотки соединены звездой, вторичная с выведенной нулевой точкой. Сдвиг фаз отсутствует.
Также на электрических схемах обмотки высокого напряжения (ВН) обозначают символами:
- A,B, C – начало обмотки;
- X, Y, Z – конец обмотки.
Аналогично для стороны низкого напряжения:
- a, b, c;
- x, y, z.
Подобным образом маркируются многообмоточные устройства, например:
Yо/Y/∆ – 0 – 11.
Вместо нулевой группы может указываться двенадцатая, что совершенно равнозначно.
Что нужно знать о двигателе перед подключением
Трёхфазный электродвигатель бывает по способу работы двух типов:
Вся необходимая информация указывается на корпусе устройства:
Более подробная информация относительно технических параметров даётся в прилагаемом к электродвигателю техпаспорте. Конструктивно устройство состоит из следующих основных элементов:
Концы всех трёх обмоток двигателя выведены в распредкоробку, расположенную в верхней части корпуса. Трёхфазные электромоторы бывают рассчитанными только на одно напряжение, например, на 380В, либо на два – на 220 и на 380 вольт.
Для устройств, работающих с двумя типами напряжения, в распредкоробку выводятся сразу шесть концов, а для моторов, предназначенных только для одного типа напряжения – три. На внутренней поверхности крышки коробки наносится схема подсоединения выводов к питающей электросети.
Схемы соединений обмоток треугольник и звезда для чайников.
Наиболее распространенный вопрос у начинающих изучения устройства трансформаторов или иных электротехнических устройств это «Что такое звезда и треугольник?». Чем же они отличаются и как устроены, попробуем разъяснить в нашей статье.
Рассмотрим схемы соединений обмоток на примере трехфазного трансформатора. В своем строении он имеет магнитопровод, состоящий из трёх стержней. На каждом стержне есть две обмотки – первичная и вторичная. На первичную подается высокое напряжения, а со вторичной снимается низкое напряжение и идет к потребителю. В условном обозначении схема соединений обозначается дробью (например, Y⁄∆ или Y/D или У/Д), значение числителя – соединение обмотки высшего напряжения (ВН), а значение знаменателя – низшего напряжения (НН).
Каждый стержень имеет как первичную обмотку так и вторичную (три первичных и три вторичных обмотки). У каждой обмотки есть начало и конец. Обмотки можно соединить между собой способом звезда или треугольник. Для наглядности обозначим вышеперечисленное схематически (рис. 1)
При соединении звездой, концы обмоток соединяются вместе, а из начал идут три фазы к потребителю. Из вывода соединений концов обмоток, выводят нейтральный провод N (он же нулевой). В итоге получается четырёх — проводная, трёхфазная система, которая часто встречается вдоль линий воздушных электропередач.(рис. 2)
Преимущества такой схемы соединения в том, что мы можем получить 2 вида напряжения: фазное (фаза+нейтраль) и линейное. В таком соединении линейное напряжение больше фазного в √3 раз. Зная, что фазное напряжение дает нам 220В, то умножив его на √3 = 1,73, получим примерно 380В – напряжение линейное. Но что касается электрического тока, то в этом случае фазный ток равен линейному, т.к. что линейный, что фазный токи одинаково выходят из обмотки, и другого пути у него нет. Так же стоит отметить что только в соединении звезда имеется нейтральный провод, который является «уравнителем» нагрузки, чтобы напряжение не менялось и не скакало.
Рассмотрим теперь соединение обмоток треугольником. Если мы конец фазы А, соединим с началом фазы В, конец фазы В соединим с началом фазы С, а конец фазы С соединим с началом фазы А, то получим схему соединения обмотки треугольником. Т.е. в этой схеме обмотки соединены последовательно. (рис. 3)
В основном такая схема соединения применяется для симметричной нагрузки, где по фазам нагрузка не изменяется. В таком соединении фазное напряжение равно линейному, а вот электрический ток, наоборот, в такой схеме разный. Ток линейный больше фазного тока в √3 раз. Соединение обмотки треугольником обеспечивает баланс ампер-виток для тока нулевой
последовательности. Простыми словами, схема соединения треугольником обеспечивает сбалансированное напряжение.
Подведем итоги. Для базового определения схем соединения обмоток силовых трансформаторов, необходимо понимать, что разница между этими соединениями состоит в том, что в звезде все три обмотки соединены вместе одним концом каждой из обмоток в одной (нейтральной) точке, а в треугольнике обмотки соединены последовательно. Соединение звезда позволяет нам создавать два вида напряжения: линейное (380В) и фазное (220В), а в треугольнике только 380В.
Выбор схемы соединения обмоток зависит от ряда причин:
- Схемы питания трансформатора
- Мощности трансформатора
- Уровня напряжения
- Асимметрии нагрузки
- Экономических соображений
Так например, для сетей с напряжением 35 кВ и более выгодно соединить обмотку трансформатора схемой звезда, заземлив нулевую точку. В данном случае получится, что напряжение выводов трансформатора и проводов линии передачи относительно земли будет всегда в √3 раз меньше линейного, что приведёт к снижению стоимости изоляции.
На практике чаще всего встречаются следующие группы соединений: Y/Y, D/Y, Y/D.
Группа соединений обмоток Y/Y (звезда/звезда) чаще всего применяется в трансформаторах небольшой мощности, питающих симметричные трёхфазные электроприборы/электроприемники. Так же иногда применяется в схемах большой мощности, когда требуется заземление нейтральной точки.
Группа соединения обмоток D/Y (треугольник/звезда) применяется, в основном в понижающих трансформаторах больших мощностей. Чаще всего трансформаторы с таким соединением работают в составе систем питания токораспределительных сетей низкого напряжения. Как правило, нейтральная точка звезды заземляется, для использования как линейного, так и фазного напряжений.
Группа соединений обмоток Y/D (звезда/треугольник) используется, в основном, в главных трансформаторах больших силовых станций и подстанций, не служащих для распределения.
Преимущества двух схем
У схемы звезда достаточно серьезные достоинства:
- плавный запуск электрического двигателя;
- номинальная его мощность будет соответствовать паспортным данным;
- двигатель будет работать нормально и при кратковременных высоких нагрузках, и при долгосрочных небольших перегрузов;
- в процессе работы корпус мотора не будет перегреваться.
Что касается схемы треугольник, то основное ее преимущество – это достижение электрическим двигателем в процессе его работы максимальной мощности. Но при этом рекомендуется строго придерживаться эксплуатационных режимов, которые расписаны в паспорте мотора. Тестирование электродвигателей, соединенных по схеме треугольник, показало, что его мощность в три раза больше, чем соединенных по схеме звезда.
Если говорить о генераторах, которые выдают ток в питающую сеть, то схемы соединения звезда и треугольник по своим техническим параметрам точно такие же. То есть, выдаваемое напряжение треугольником будет больше, правда, не в три раза, но не менее 1,73 раза. По сути, получается, что напряжение генератора при звезде, равное 220 вольт, преобразуется в 380 вольт, если провести переключение с одного варианта на другой. Но необходимо отметить, что мощность самого агрегата при этом остается неизменной, потому что все подчиняется закону Ома, в котором напряжение и сила тока находятся в обратной пропорциональности. То есть, увеличение напряжения в 1,73 раза, снижает ток точно на такую же величину.
Отсюда вывод: если в клеммной коробке генератора располагаются все шесть концов обмоток, то можно будет получить напряжение двух номиналов, отличающихся друг от друга коэффициентом 1,73.
Соединение «треугольником» и его преимущества
Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.
При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.
Основные преимущества применения схемы «треугольник»:
- Увеличение до максимального значения мощности электрооборудования;
- Использование пускового реостата;
- Повышенный вращающийся момент;
- Большие тяговые усилия.
Недостатки:
- Повышенный ток пуска;
- При длительной работе двигатель сильно греется.
Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.
Подключение трехфазного двигателя к однофазной сети по схеме треугольник
Соединение в звезду электроприемников
Электроприемники могут представлять либо сосредоточенную, либо рассредоточенную нагрузку. Кроме того, она может быть равномерной, как, например, обмотки трехфазных электродвигателей, так и неравномерной, как, например, освещение домов, улиц и тому подобного.
Сосредоточенной нагрузкой являются: электродвигатель (рисунок 4, а), конденсаторная батарея (рисунок 4, б), театральная люстра (рисунок 4, в), где все три фазы расположены в непосредственной близости.
Распределенной нагрузкой являются: осветительные сети домов (рисунки 4, г и д), где от вводного ящика 1 по лестничным клеткам расходятся стояки 2, а от них в свою очередь сделаны ответвления 3 в квартиры
Очень важно понять, что в осветительных сетях не на всех участках существует трехфазная нагрузка
Действительно, до вводного ящика идут четыре питающих провода: А, В, С и 0. Это настоящая трехфазная сеть – в ней по нулевому проводу проходит только ток небаланса всего дома, определяющийся неравномерностью нагрузки фаз. Это же относится к стоякам 2 на рисунке 4, г, где по нулевому проводу проходит ток небаланса в пределах данной лестничной клетки.
Что же касается стояков на рисунке 4, д, в каждом из которых только одна фаза и нуль, а также ответвлений в квартиры, то они хоть и питаются от трехфазной сети, но представляют собой однофазную нагрузку, так как и по фазному и по нулевому проводам проходит один и тот же ток (других путей нет). Поэтому сечения фазного и нулевого проводов должны быть одинаковы.
Рисунок 4. Соединение в звезду электроприемников.
Заметьте: при равномерной нагрузке (рисунок 4, а – в) применена трехпроводная схема. При неравномерной нагрузке (рисунки 4, г и д) – четырехпроводная.
Чтобы понять, почему делают именно так, обратимся к рисунку 5. На рисунке 5, а показаны три группы одинаковых ламп (то есть имеющих равные номинальные напряжения, в нашем примере 127 В, и равные мощности). При этих условиях и линейном напряжении сети 220 В лампы горят нормальным накалом. Но количество одновременно включенных ламп, а также их мощность в сетях освещения зависят от желания потребителей. В частном случае нагрузка одной из фаз, например фазы с, может быть на некоторое время совсем отключена (рисунок 5, б). И тогда нагрузки двух других фаз окажутся соединенными последовательно. Если они равны, то линейное напряжение разделится между ними поровну и лампы будут гореть с недокалом, так как 220 В / 2 = 110 В – меньше номинального напряжения 127 В.
Значительно хуже, если часть ламп, присоединенных к одной из фаз, например к фазе b, будет отключена, например так, как показано на рисунке 5, в. Действительно, сопротивление одной лампы в 3 раза больше сопротивления группы из трех таких же ламп, соединенных параллельно. Значит, напряжение 220 В разделится между ними неравномерно: на большее сопротивление придется 165 В (¾ от 220 В) и лампа может перегореть; на меньшее сопротивление придется 55 В (¼ от 220 В) 2.
При четырехпроводной схеме (рисунок 5, г) неравномерность нагрузки фаз не сказывается столь сильно на накале ламп благодаря тому, что нагрузка каждой фазы непосредственно присоединена к обоим выводам фазной обмотки генератора или вторичной обмотки трансформатора.
Следует, однако, отметить, что неравномерность нагрузки фаз даже и при наличии нулевого провода – явление нежелательное, особенно в тех случаях, когда нагрузка питается от вторичной обмотки трансформатора, соединенной в звезду, так как при неравномерной нагрузке в трансформаторе нарушается его магнитное равновесие. Этот важный вопрос рассмотрен в статье «Понятие о магнитном равновесии трансформатора».
Рисунок 5. Особенности соединений в звезду осветительной нагрузки.