Превратите шим модулятор в цифро-аналоговый преобразователь

Содержание

Введение. Понятие ШИМ

Широко-импульсная модуляция (сокращенно ШИП) — это техника, используемая для преобразования аналогового сигнала в цифровой. Ведь компьютер не может выдавать аналоговый сигнал: выходы цифровой техники могут принимать только одно из двух значений – например, 0V или 5V. Поэтому используется счетчик высокой точности для кодирования аналогового сигнала в ШИМ-сигнал, которые – уже цифровой, поскольку в любой момент времени он принимает значение либо 5V (ВКЛ), либо 0V (ВЫКЛ). Напряжение подается на аналоговую нагрузку (например, светодиод, или сервопривод) в виде повторяющейся последовательности ВКЛ и ВЫКЛ. Получаемое выходное напряжение вычисляется по продолжительности сигналов ВКЛ и ВЫКЛ, по следующей формуле: Выходное напряжение = (Время ВКЛ / время импульса) * максимальное напряжение.

Взгляните на рисунок ниже для лучшего понимания.

ШИМ имеет множество применений, например:

  • регулирование яркость свечения ламп,
  • скорости вращения мотора,
  • генерация звука и т.д.

ШИМ имеет 3 параметра:

Период
Скважность
Величина

У Ардуино 6 портов, поддерживающие ШИМ: это цифровые пины 3, 5, 6, 9, 10 и 11.

В предыдущем примере мы подключили LED к цифровому пину. Теперь мы будем менять его яркость с помощью ШИМ-сигнала.

История

Некоторым машинам (например, двигателю швейной машины ) требуется частичная или регулируемая мощность. В прошлом управление (например, ножной педалью швейной машины) реализовывалось с помощью реостата, подключенного последовательно с двигателем, чтобы регулировать количество тока, протекающего через двигатель. Это была неэффективная схема, так как это также тратило впустую мощность в виде тепла в резистивном элементе реостата, но терпимо, потому что общая мощность была низкой. Хотя реостат был одним из нескольких методов управления мощностью (см. Автотрансформаторы и Variac для получения дополнительной информации), дешевый и эффективный метод переключения / регулировки мощности еще не был найден. Этот механизм также должен был иметь возможность приводить в действие двигатели для вентиляторов, насосов и роботизированных сервоприводов и должен был быть достаточно компактным, чтобы взаимодействовать с регуляторами яркости ламп. ШИМ возник как решение этой сложной проблемы.

Одно из первых применений ШИМ было в Sinclair X10, аудиоусилителе мощностью 10 Вт, доступном в виде комплекта в 1960-х годах. Примерно в то же время ШИМ начал использоваться в управлении двигателями переменного тока.

Следует отметить, что в течение примерно столетия некоторые электродвигатели с регулируемой скоростью имели приличный КПД, но они были несколько более сложными, чем электродвигатели с постоянной скоростью, и иногда требовали громоздких внешних электрических устройств, таких как группа резисторов с регулируемой мощностью или вращающиеся преобразователи. например, диск Уорда Леонарда .

Практический тест — Уменьшается ли мерцание с DC dimming?

У AMOLED дисплеев частота ШИМ зачастую лежит в пределах 200 — 250 Гц на всех уровнях яркости до 99%.

Первый вывод, к которому мы пришли, изучая показатели на осциллографе — эффект от применения DC dimming действительно есть. Амплитуда сигнала становится намного более плоской, частоте варьируется гораздо меньше. Уже только за счет данной особенности нагрузка на глаза кардинально снижается.

Результат OnePlus 7 Pro еще более интересен. При 50% яркости мерцания нет вообще, а появляется оно лишь на низкой яркости. У Xiaomi Black Shark 2 все немного по другому: частота мерцания принудительно ограничивается до 60 Гц на всем диапазоне яркости.

От коэффициента заполнения к аналоговому напряжению

Номинальное напряжение ЦАП, наблюдаемое на выходе фильтра нижних частот, определяется только двумя параметрами: коэффициентом заполнения и напряжением высокого логического уровня ШИМ сигнала; на схеме это напряжение высокого логического уровня обозначено буквой A как «амплитуда». Связь между коэффициентом заполнения, амплитудой и номинальным напряжением ЦАП довольно интуитивно понятна: в частотной области фильтр нижних частот подавляет высокочастотные составляющие входного сигнала. Эквивалентом этого эффекта во временной области является сглаживание или усреднение – таким образом, посредством фильтрации нижних частот ШИМ сигнала мы извлекаем его среднее значение. Предположим, что коэффициент заполнения составляет 50% (т.е. длительность активного состояния равна длительности неактивного состояния), и мы работаем с логикой 3,3 В. Вы, вероятно, можете догадаться, какое будет номинальное напряжение ЦАП: 1,65 В, потому что сигнал половину своего времени равен 3,3 В и половину 0 В, и, таким образом, сглаженная версия окажется прямо посередине. Мы можем обобщить это следующим образом:

\

Что такое ШИМ?

Для получения на выходе сигнала требуемой формы силовой ключ должен открываться всего лишь на определенное время, пропорциональное вычисленным показателям выходного напряжения. В этом и заключается принцип широтно-импульсной модуляции (ШИМ, PWM). Далее сигнал такой формы, состоящий из импульсов, разнящихся по своей ширине, поступает в область фильтра на основе дросселя и конденсатора. После преобразования на выходе будет практически идеальный сигнал требуемой формы.

Область применения ШИМ не ограничивается импульсными стабилизаторами и преобразователями напряжения. Использование данного принципа при проектировании мощного усилителя звуковой частоты дает возможность существенно снизить потребление устройством электроэнергии, приводит к миниатюризации схемы и оптимизирует систему теплоотдачи. К недостаткам можно причислить посредственное качество сигнала на выходе.

Причины и области применения ШИМ

Принцип широтно-импульсной модуляции используется в регуляторах частоты вращения мощных асинхронных двигателей. В этом случае модулирующий сигнал регулируемой частоты (однофазный или трехфазный) формируется маломощным генератором синусоиды и накладывается на несущую аналоговым способом. На выходе получается ШИМ-сигнал, который подается на ключи потребной мощности. Дальше можно пропустить получившуюся последовательность импульсов через фильтр низкой частоты, например через простую RC-цепочку, и выделить исходную синусоиду. Или можно обойтись без нее – фильтрация произойдет естественным образом за счёт инерции двигателя. Очевидно, что чем выше частота несущей, тем больше форма выходного сигнала близка к исходной синусоиде.

Возникает естественный вопрос – а почему нельзя усилить сигнал генератора сразу, например, применением мощных транзисторов? Потому что регулирующий элемент, работающий в линейном режиме, будет перераспределять мощность между нагрузкой и ключом. При этом на ключевом элементе впустую рассеивается значительная мощность. Если же мощный регулирующий элемент работает в ключевом режиме (тринистор, симистор, RGBT-транзистор), то мощность распределяется во времени. Потери будут намного ниже, а КПД – намного выше.

В цифровой технике особой альтернативы широтно-импульсному регулированию нет. Амплитуда сигнала там постоянна, менять напряжение и ток можно лишь промодулировав несущую по ширине импульса и впоследствии усреднив её. Поэтому ШИМ применяют для регулирования напряжения и тока на тех объектах, которые могут усреднять импульсный сигнал. Усреднение происходит разными способами:

  1. За счет инерции нагрузки. Так, тепловая инерция термоэлектронагревателей и ламп накаливания позволяет объектам регулирования заметно не остывать в паузах между импульсами.
  2. За счёт инерции восприятия. Светодиод успевает погаснуть от импульса к импульсу, но человеческий глаз этого не замечает и воспринимает как постоянное свечение с различной интенсивностью. На этом принципе построено управление яркостью точек LED-мониторов. Но незаметное мигание с частотой несколько сот герц все же присутствует и служит причиной усталости глаз.
  3. За счет механической инерции. Это свойство используется при управлении коллекторными двигателями постоянного тока. При правильно выбранной частоте регулирования двигатель не успевает затормозиться в бестоковых паузах.

Поэтому ШИМ применяют там, где решающую роль играет среднее значение напряжения или тока. Кроме упомянутых распространенных случаев, методом PWM регулируют средний ток в сварочных аппаратах и зарядных устройствах для аккумуляторных батарей и т.д.

Если естественное усреднение невозможно, во многих случаях эту роль на себя может взять уже упомянутый фильтр низкой частоты (ФНЧ) в виде RC-цепочки. Для практических целей этого достаточно, но надо понимать, что без искажений выделить исходный сигнал из ШИМ с помощью ФНЧ невозможно. Ведь спектр PWM содержит бесконечно большое количество гармоник, которые неизбежно попадут в полосу пропускания фильтра. Поэтому не стоит строить иллюзий по поводу формы восстановленной синусоиды.

Очень эффективно и эффектно управление методом ШИМ RGB-светодиодом. Этот прибор имеет три p-n перехода – красный, синий, зеленый. Изменяя раздельно яркость свечения каждого канала, можно получить практически любой цвет свечения LED (за исключением чистого белого). Возможности по созданию световых эффектов с помощью PWM безграничны.

Наиболее употребительная сфера применения цифрового сигнала, промодулированного по длительности импульса – регулирование среднего тока или напряжения, протекающего через нагрузку. Но возможно и нестандартное использование этого вида модуляции. Все зависит от фантазии разработчика.

Что такое импульсный блок питания и где применяется

Что такое аттенюатор, принцип его работы и где применяется

Что такое частотный преобразователь, основные виды и какой принцип работы

Преобразователи напряжения с 12 на 220 вольт

Что такое диодный мост, принцип его работы и схема подключения

Что такое триггер, для чего он нужен, их классификация и принцип работы

Принцип работы ШИМ контроллера

Задача ШИМ контроллера состоит в управлении силовым ключом за счёт изменения управляющих импульсов. Работая в ключевом режиме, транзистор находится в одном из двух состояний (полностью открыт, полностью закрыт). В закрытом состоянии ток через p-n-переход не превышает несколько мкА, а значит, мощность рассеивания стремится к нулю. В открытом состоянии, несмотря на большой ток, сопротивление p-n-перехода чрезмерно мало, что также приводит к незначительным тепловым потерям. Наибольшее количество тепла выделяется в момент перехода из одного состояния в другое. Но за счёт малого времени переходного процесса по сравнению с частотой модуляции, мощность потерь при переключении незначительна.

https://youtube.com/watch?v=6OPdstU6MP4

Широтно-импульсная модуляция разделяется на два вида: аналоговая и цифровая. Каждый из видов имеет свои преимущества и схемотехнически может реализовываться разными способами.

Аналоговая ШИМ

Принцип действия аналогового ШИ-модулятора основан на сравнении двух сигналов, частота которых отличается на несколько порядков. Элементом сравнения выступает операционный усилитель (компаратор). На один из его входов подают пилообразное напряжение высокой постоянной частоты, а на другой – низкочастотное модулирующее напряжение с переменной амплитудой. Компаратор сравнивает оба значения и на выходе формирует прямоугольные импульсы, длительность которых определяется текущим значением модулирующего сигнала. При этом частота ШИМ равна частоте сигнала пилообразной формы.

Цифровая ШИМ

Широтно-импульсная модуляция в цифровой интерпретации является одной из многочисленных функций микроконтроллера (МК). Оперируя исключительно цифровыми данными, МК может формировать на своих выходах либо высокий (100%), либо низкий (0%) уровень напряжения. Однако в большинстве случаев для эффективного управления нагрузкой напряжение на выходе МК необходимо изменять. Например, регулировка скорости вращения двигателя, изменение яркости светодиода. Что делать, чтобы получить на выходе микроконтроллера любое значение напряжения в диапазоне от 0 до 100%?

Вопрос решается применением метода широтно-импульсной модуляции и, используя явление передискретизации, когда заданная частота переключения в несколько раз превышает реакцию управляемого устройства

Изменяя скважность импульсов, меняется среднее значение выходного напряжения. Как правило, весь процесс происходит на частоте в десятки-сотни кГц, что позволяет добиться плавной регулировки. Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления

Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:

Технически это реализуется с помощью ШИМ-контроллера – специализированной микросхемы, которая является «сердцем» любой цифровой системы управления. Активное использование контроллеров на основе ШИМ обусловлено их неоспоримыми преимуществами:

  • высокой эффективности преобразования сигнала;
  • стабильность работы;
  • экономии энергии, потребляемой нагрузкой;
  • низкой стоимости;
  • высокой надёжности всего устройства.

Получить на выводах микроконтроллера ШИМ сигнал можно двумя способами: аппаратно и программно. В каждом МК имеется встроенный таймер, который способен генерировать ШИМ импульсы на определённых выводах. Так достигается аппаратная реализация. Получение ШИМ сигнала с помощью программных команд имеет больше возможностей в плане разрешающей способности и позволяет задействовать большее количество выводов. Однако программный способ ведёт к высокой загрузке МК и занимает много памяти.

Примечательно, что в цифровой ШИМ количество импульсов за период может быть различным, а сами импульсы могут быть расположены в любой части периода. Уровень выходного сигнала определяется суммарной длительностью всех импульсов за период. При этом следует понимать, что каждый дополнительный импульс – это переход силового транзистора из открытого состояния в закрытое, что ведёт к росту потерь во время переключений.

Как сделать ШИМ блок питания (контроллер)

Как вы уже поняли, сердцем ШИМ контроллера будет мультивибратор или модулятор. Мультивибратор можно сделать даже на двух транзисторах, в виде самого рядового мультивибратора. А модулятор можно сделать на базе микроконтроллера. Чаще всего применяются именно микроконтроллеры. После остается лишь преобразовать низкий сигнал в управляющий силовой. Скажем с помощью транзистора. Пример для светодиода.

Если наша нагрузка имеет индуктивную составляющую, то транзистор защищается с помощью диода, который подключается параллельно нагрузке.

Это вроде того, как диод используется при управлении транзистором реле. В данном случае обмотка двигателя также может выдать высокий ток, который будет теперь идти не только через транзистор, но и через диод. О конкретных примерах БП ШИМ можно узнать из статьи «Драйвер для светодиодов».

Как проверить ШИМ-контроллер

Есть несколько способов как сделать проверку ШИМ-контроллера. Можно, конечно это сделать без мультиметра, но зачем так мучаться, если можно воспользоваться нормальным прибором.

Прежде, чем проверять работу ШИМ-контроллера, необходимо выполнить базовую диагностику самого блока питания. Она выполняется так:

Шаг 1. Внимательно осмотреть в выключенном состоянии сам источник питания, в котором установлен PWM. В частности надо тщательно осмотреть электролитические конденсаторы на предмет вздутости.

Шаг 2. Провести проверку предохранителя и элементов входного фильтра блока питания на исправность.

Шаг 3. Провести проверку на короткое замыкание или обрыв диодов выпрями­тельного моста. Прозвонить их можно не вы­паивая из платы. При этом надо быть уверен­ным, что проверяемая цепь не шунтируется обмотками трансформатора или резистором. Если есть на это подозрение, то всё таки придётся выпаивать элементы и проверять уже по отдельности.

Шаг 4. Провести проверку исправностм выходных цепей, а именно электролитических конденсаторов низкочастотных филь­тров, выпрямительных диодов, диодных сборок и т.п.

Шаг 5. Провести проверку силовых транзисторов высокочастотного преобразователя и тран­зисторов каскада управления. При этом в обязательном порядке проверьте возвратные диоды, которые включенны параллельно электродам коллектор-эмиттер силовых транзисторов.

Проверка ШИМ-контроллера — видео инструкции:

https://youtube.com/watch?v=igS7mn50x2Q

https://youtube.com/watch?v=2jn4sYBS9Nw

Контакты ШИМ в микроконтроллере AVR ATmega16

Микроконтроллер Atmega16 имеет 4 контакта для использования ШИМ модуляции — PB3(OC0), PD4(OC1B), PD5(OC1A), PD7(OC2). Более наглядно они представлены на следующем рисунке.

Также ATmega16 имеет два 8-битных (Timer0 и Timer2) и один 16-битный таймер (Timer1). Для понимания принципов формирования ШИМ мы должны понимать основы работы с этими таймерами. Как известно, частота представляет собой количество циклов в секунду поэтому она однозначно связано зависимостью с временем. То есть чем более высокая частота нам нужна, тем более быстрый таймер мы должны использовать. Чем выше частота ШИМ, тем более точно мы можем управлять ее параметрами.

В данной статье для управления ШИМ в микроконтроллере ATmega16 мы будем использовать его Timer2

С его помощью можно выбрать коэффициент заполнения/скважность (duty cycle) ШИМ в широких пределах. Кратко рассмотрим основы этого процесса

ШИМ – основы

Вы, наверное, уже знаете, что такое широтно-импульсная модуляция; тем не менее, мы кратко рассмотрим основные концепции, чтобы убедиться, что у нас есть прочная основа, когда будем рассматривать, как именно фильтр нижних частот превращает цифровой сигнал в программируемое аналоговое напряжение.

Рисунок 1 – ШИМ сигнал

Типовой цифровой тактовый сигнал представляет собой последовательность периодов, в которых длительность напряжения высокого логического уровня равна длительности напряжения низкого логического уровня. ШИМ сигнал, напротив, представляет собой последовательность периодов, в которых длительность напряжения высокого логического (или низкого логического) уровня изменяется в зависимости от внешних условий, и эти изменения могут использоваться для передачи информации. Если вы знакомы с радиочастотными схемами, вы знаете, что информация передается с помощью синусоидальных сигналов, к которым применяется некоторый тип модуляции. Эта ситуация аналогична работе ШИМ – вместо амплитудной или частотной модуляции мы имеем широтно-импульсную модуляцию. Возможно, вам будет полезно подумать об этом концептуальном сходстве: мы все знаем, что аналоговый аудиосигнал может быть передан от антенны до радиоприемника для чего, несущая сначала модулируется, а затем полученный сигнал обрабатывается таким образом, чтобы устранить несущую и восстановить оригинальную аудиоинформацию. Аналогично, мы можем генерировать программируемое аналоговое напряжение путем широтно-импульсной модуляции цифровой несущей и затем «передавать» этот модулированный сигнал на фильтр нижних частот.

На приведенной выше диаграмме высокий логический уровень обозначен как «ON» (включен) или активное состояние, а низкий логический уровень обозначен «OFF» (выключен) или неактивное состояние. В первом периоде продолжительность активного состояния равна продолжительности неактивного состояния. Затем в течение следующих двух периодов длительность активного состояния увеличивается на ширину одной клетки; это означает, что длительность неактивного состояния должна уменьшиться на ширину одной клетки, потому что несущая частота ШИМ (и, следовательно, период ШИМ) постоянна

В контексте нашего ЦАП на базе ШИМ нам не нужно знать абсолютное значение длительности активного и неактивного состояния; важно соотношение между этими длительностями, то есть коэффициент заполнения ШИМ сигнала:

Рисунок 2 – ШИМ сигнал

\

Широтно-импульсная модуляция (ШИМ). Аналоговая и цифровая

Принцип ШИМ – широтно-импульсная модуляция заключается в изменении ширины импульса при постоянстве частоты следования импульса. Амплитуда импульсов при этом неизменна.

Широтно-импульсное регулирование находит применение там, где требуется регулировать подаваемую к нагрузке мощность. Например, в схемах управления электродвигателями постоянного тока, в импульсных преобразователях, для регулирования яркости светодиодных светильников, экранов ЖК-мониторов, дисплеев в смартфонах и планшетах и т.п.

Большинство вторичных источников питания электронных устройств в настоящее время строятся на основе импульсных преобразователей, применяется широтно-импульсная модуляция и в усилителях низкой (звуковой) частоты класса D, сварочных аппаратах, устройствах зарядки автомобильных аккумуляторов, инверторах и пр. ШИМ позволяет повысить коэффициент полезного действия (КПД) вторичных источников питания в сравнении с низким КПД аналоговых устройств.

Широтно-импульсная модуляция бывает аналоговой и цифровой.

Аналоговая широтно-импульсная модуляция

Как уже упоминалось выше, частота сигнала и его амплитуда при ШИМ всегда постоянны. Один из важнейших параметров сигнала ШИМ – это коэффициент заполнения, равный отношению длительности импульса t к периоду импульса T. D = t/T. Так, если имеем сигнал ШИМ с длительностью импульса 300 мкс и периодом импульса 1000 мкс, коэффициент заполнения составит 300/1000 = 0,3. Коэффициент заполнения также выражается в процентах, для чего коэффициент заполнения умножается на 100%. По примеру выше процентный коэффициент заполнения составляет 0,3 х 100% = 30%.

Скважность импульса – это отношение периода импульсов к их длительности, т.е. величина, обратная коэффициенту заполнения

S = T/t.

Частота сигнала определяется как величина, обратная периоду импульса, и представляет собой количество полных импульсов за 1 секунду. Для примера выше при периоде 1000 мкс = 0,001 с, частота составляет F = 1/0,001 – 1000 (Гц).

Сигнал ШИМ формируется микроконтроллером или аналоговой схемой. Этот сигнал обычно управляет мощной нагрузкой, подключаемой к источнику питания через ключевую схему на биполярном или полевом транзисторе. В ключевом режиме полупроводниковый прибор либо разомкнут, либо замкнут, промежуточное состояние исключается. В обоих случаях на ключе рассеивается ничтожная тепловая мощность. Поскольку эта мощность равна произведению тока через ключ на падение напряжения на нем, а в первом случае к нулю близок ток через ключ, а во втором напряжение.

В переходных состояниях на ключе присутствует значительное напряжение с прохождением значительного тока, т.е. значительна и рассеиваемая тепловая мощность. Поэтому в качестве ключа необходимо применение малоинерционных полупроводниковых приборов с быстрым временем переключения, порядка десятков наносекунд.

Если ключевая схема управляет светодиодом, то при малой частоте сигнала светодиод будет мигать в такт с изменением напряжения сигнала ШИМ. При частоте сигнала выше 50 Гц мигания сливаются вследствие инерции человеческого зрения. Общая яркость свечения светодиода начинает зависеть от коэффициента заполнения – чем ниже коэффициент заполнения, тем слабее светится светодиод.

При управлении посредством ШИМ скорости вращения двигателя постоянного тока частота ШИМ должна быть очень высокой, и лежать за пределами слышимых звуковых частот, т.е. превышать 15-20 кГц, в противном случае двигатель будет «звучать», издавая раздражающий слух писк с частотой ШИМ. От частоты зависит и стабильность работы двигателя. Низкочастотный сигнал ШИМ с невысоким коэффициентом заполнения приведет к нестабильной работе двигателя и даже возможной его остановке.

Тем самым, при управлении двигателем желательно повышать частоту сигнала ШИМ, но и здесь существует предел, определяемый инерционными свойствами полупроводникового ключа. Если ключ будет переключаться с запаздываниями, схема управления начнет работать с ошибками. Чтобы избежать потерь энергии и добиться высокого коэффициента полезного действия импульсного преобразователя, полупроводниковый ключ должен обладать высоким быстродействием и низким сопротивлением проводимости.