Три схемы детекторных приемников

Основы радиоприема

Эта конструкция очень простая, ее сможет повторить даже первоклассник. Принцип работы устройства достаточно прост, на любой схеме приведены все элементы, которые встречаются в конструкции. При изготовлении такого радио своими руками нужно помнить о том, как формируется сигнал радиостанции.

Существует два вида сигналов, которые излучает любая радиостанция при работе в диапазоне АМ:

  1. Несущий – задается генератором определенная частота. При этом создается своеобразный фон.
  2. Модуляция – это сигнал, который создается музыкой, голосом, любыми звуками.

Эти два сигнала накладываются друг на друга. И в итоге слушатель при настройке на частоту станции может без лишних помех воспринять информацию, которая передается.

Конструкция катушки на ферромагнетике

Вместо громоздкой катушки индуктивности, описанной выше, можно использовать более мелкую. Правда, ее нужно намотать на ферритовом стержне. Найти такой можно в любом старом радиоприемнике, хоть отечественного, хоть импортного производства. По этой причине нужно упомянуть и о том, как сделать детекторный приемник с магнитной антенной (с катушкой на ферритовом стержне). Провод можно использовать намного тоньше, отводы от витков делать не придется, так как изменить индуктивность катушки можно путем перемещения витков на стержне. Диаметр провода 0,1-0,15 мм, количество витков – около ста. Если приемник изготавливается для прослушивания фиксированной частоты, то обмотку можно закрепить на стержне при помощи лака.

Усилитель для приемника.

Как известно, лучший усилитель – это антенна. Этот факт АБСОЛЮТНО применим к детекторному приемнику. Но не всегда осуществим – не всегда есть возможность использовать нормальную полноценную антенну для СВ диапазона. На старой квартире у меня была полноценная СВ антенна, но после переезда – увы это неосуществимая роскошь. Теперь, чтобы послушать СВ, приходится городить какой- то суррогат. По этому, я с «тяжелым сердцем»  принял непростое решение – оснастить детекторный радиоприемник усилителем. О да!… Увы…  Вернее, в моем детекторном приемнике есть возможность использовать усилитель – подключать его ползунковыми переключателями при необходимости (смотри схему). А вот когда я выбираюсь на дачу и экспериментирую с приемником – там уж подключаю полноценную СВ антенну и усилитель не использую. То есть мой детекторный приемник это по сути гибрид, с возможностью переходить на прием с усилителем.

Усилитель представляет собой единый блок 1-V-1 (УВЧ, детектора и УНЧ), собранный на куске текстолита навесным монтажом и коммутируемый при необходимости. Питается усилитель приемника от одного элемента — батареи АА 1.5 вольт, располагаемой на передней панели и коммутируемой переключателем так же на панели. Так как приемник работает на высокоомные наушники, то одной батареи АА хватает на несколько месяцев.

Конструкция радиоприемника

Корпус, все элементы колебательного контура и регулятор громкости взяты из ранее построенного радиоприемника. Подробности, размеры и шаблон шкалы смотрите здесь. Ввиду простоты схемы печатную плату не разрабатывал. Радио детали спаял на небольшом пятачке макетной платы.

Испытал радиоприемник. На удалении 200 км от ближайшей радиостанции с подключенной внешней антенной принял днем 2-3 станции, а вечером до 10 и более радиостанций. Смотрите видео. Содержание передач вечерних радиостанций стоит изготовления такого приемника.

Контурная катушка намотана на ферритовом стержне диаметром 8 мм и содержит 85 витков, антенная катушка содержит 5-8 витков.

Как указывалось выше, приемник может легко быть повторен начинающим радио конструктором.

Не спешите сразу покупать микросхему TA7642 или ее аналоги K484, ZN414. Я нашел микросхему в радиоприемнике стоимостью 53 рубля ))). Допускаю, что такую микросхему можно найти в каком нибудь сломанном радиоприемнике или плеере с АМ диапазоном.

Антенна и заземление для детекторного приемника.

Антенна для детекторного приемника – провод метров 20 – 40, растянутый на улице между домами или деревьями. И чем выше – тем лучше. Но живя в квартире, заиметь такую антенну не каждый сможет. Можно конечно развесить кусок провода по внутреннему периметру квартиры, но гарантии нет, что такая антенны будет работать с вашим детекторным приемником. Железобетонные стены существенно гасят полезный радиосигнал.

И еще — не пытайтесь собирать детекторный приемник днем. Даже на хорошую антенну, днем, в условиях городской застройки в лучшем случае будет слышен только гул помех. Хотя возможны исключения если есть поблизости мощная СВ радиостанция или местный подпольный СВ передатчик ;- ).

Я тоже не всегда имею доступ к хорошей антенне. Живя в многоэтажке, летом просто спускаю провод 8 метров в окно. Этого хватает, чтобы услышать ночью мощную «Radio Romania» и еще какую-то «Ваххаль – Маххаль- Буххалль».

Заземление для детекторного приемника – использую батарею отопления. Это не самое лучшее заземление, но в многоэтажке особо выбирать не приходится. Батарея отопления «ловит» много помех. По этому, подключаюсь через фильтр – обычный резистор 3,9 кОм. Как ни странно, это полностью снижает помеху в виде гула – в наушниках появляется чистый сигнал!

Плюсы радио бизнеса в интернете

Интернет радио не требует дорогостоящего оборудования и программного обеспечения.

Широкая доступность

Интернет радио доступно везде, где есть интернет. Доступность радиоволн ограничена территорией и мощностями передатчиков.

Простота общения со слушателями

Есть возможность получать обратную связь от слушателей через сайт или приложение. Слушатели могут поставить «лайк» или написать комментарий.

Сбор статистики

При подключении к интернет радио ip слушателя передается на сервер радио. Таким образом собирается информация по географии аудитории. При регистрации слушателя на сайте или в приложении через социальные сети, можно получить информацию из профиля. По собранным данным корректируется контент или настраивается таргетированная реклама.

Работа = хобби

Интернет радио — способ творчески выразиться и найти аудиторию. Пример создания интернет радио из хобби — радио 20ft radio. 6 музыкантов создали интернет радио с электронной музыкой собственного сочинения и приглашенными диджеями. Через радио они делятся творчеством и дают возможность другим диджеям быть услышанными. В 2021 году радиостанция 20ft radio вошла в шорт-лист международной интернет-премии Webby Awards.

Минимум контроля и цензуры

Трансляция через интернет радио не подлежит обязательной сертификации и лицензированию.

Интерференция и преобразование ЧМ в АМ

Если контур L1С1 нашего приемника настроить так, чтобы несущая ЧМ сигнала попала на скат резонансной кривой, то ЧМ будет преобразовываться в АМ Посмотрим, какова для этого должна быть добротность контура. Полагая полосу пропускания контура равной удвоенной девиации частоты, получаем Q = fo/2*f = 700 как для верхнего, так и для нижнего УКВ диапазонов.

Реальная добротность контура в детекторном приемнике будет, вероятно, меньше из-за невысокой собственной добротности (порядка 150…200) и шунтирования контура и антенной, и входным сопротивлением детектора. Тем не менее слабое преобразование ЧМ в АМ возможно, и, таким образом, приемник будет еле-еле работать, если его контур слегка расстроить вверх или вниз по частоте.

Однако есть значительно более мощный фактор, способствующий преобразованию ЧМ в АМ, — это интерференция. Очень редко приемник находится в зоне прямой видимости антенны радиостанции, чаще ее закрывают здания, холмы, деревья и другие отражающие предметы. К антенне приемника приходит несколько лучей, рассеянных этими предметами.

Даже в зоне прямой видимости кроме прямого луча к антенне приходит несколько отраженных. Суммарный сигнал зависит как от амплитуд, так и от фаз складывающихся компонент.

Два сигнала складываются, если они в фазе, т. е. разность их путей кратна целому числу длин волн, и вычитаются, если они в противофазе, когда разность их путей составляет то же число длин волн плюс еще пол волны. Но ведь длина волны, как и частота, изменяется при ЧМ! Будет изменяться и разность хода лучей, и их относительный сдвиг фаз. Если разность хода велика, то даже небольшое изменение частоты приводит к значительным сдвигам фаз. Элементарный геометрический расчет приводит к соотношению:

где, дельта t — разность хода лучей, требуемая для сдвига фазы на ± Пи/2, т. е. для получения полной АМ суммарного сигнала; tдельтаf — девиация частоты. Под полной АМ мы здесь понимаем изменение амплитуды суммарного сигнала от суммы амплитуд двух сигналов до их разности. Формулу можно еще более упростить, если учесть, что произведение частоты на длину волны fo*(лямбда) равно скорости света с; дельта t = c/4*дельта f.

Теперь легко сосчитать, что для получения полной АМ двухлучевого ЧM сигнала достаточна разность хода лучей около километра. Если разность хода меньше, то пропорционально уменьшится и глубина АМ. Ну, а если больше?

Тогда за один период модулирующего звукового колебания суммарная амплитуда интерферирующего сигнала несколько раз пройдет через максимумы и минимумы, и искажения при преобразовании ЧM в АМ окажутся чрезвычайно сильными, вплоть до полной неразборчивости звукового сигнала при приеме на АМ детектор.

Интерференция при ЧM — явление чрезвычайно вредное. Она вызывает не только сопутствующую паразитную АМ сигнала, как мы только что видели, но и паразитную фазовую модуляцию, что приводит к искажениям даже при приеме на хороший приемник ЧM

Вот почему важно вынести антенну в то место пространства, где преобладает один сигнал

Всегда лучше использовать направленную антенну, поскольку она увеличивает прямой сигнал и ослабляет отраженные, приходящие с других направлений.

Лишь в нашем случае самого простого детекторного приемника интерференция сыграла полезную роль и позволила прослушать передачу, но передача может быть слышна слабо или с большими искажениями не везде, а лишь в отдельных местах. Этим и объясняются периодические изменения громкости приема в Терлецком парке.

Заземление для детекторного радиоприемника

В данном разделе тоже можно много говорить, так как если антенна – это «плюсовой» провод питания, то заземление – «минусовой». И без него работать детекторный приемник, своими руками собранный, попросту не будет. Конечно, за неимением качественного заземления, можно использовать водопроводные трубы (если у вас они не пластиковые), отопительные, даже нулевой вывод в розетке. Но с последним будьте аккуратны, лучше семь раз проверьте, где находится фаза, иначе поражения током не избежать. Но позволит способ включения в «ноль» розетки сделать детекторный приемник с высокой чувствительностью и избирательностью, так как качество заземления очень хорошее.

Вполне рабочая конструкция заземления для такого приемника – это отрезок трубы длиной около метра, забитый в землю. С таким же успехом можно использовать арматуру (с ней даже проще будет работать). Неплохие результаты показывает железная плита, закопанная на глубину в пару штыков лопаты. При этом чем больше площадь металлической поверхности плиты, тем лучше. Другими словами, можно использовать любой металлический предмет, который надежно закрепить в земле

Обратите внимание на то, что в жаркую погоду нужно поливать водой место, в котором находится штырь заземления. Это улучшит контакт металла с землей

Напрашивается еще одна конструкция – обсадные металлические трубы в скважинах могут применяться в качестве заземления.

Что такое детекторный приемник – для тех, кто не знает.

Для тех, кто впервые слышит про детекторный приемник, сразу скажу – это не то радио, которое будет наполнять вашу комнату музыкой круглые сутки. Вот его некоторые особенности:

  1. — Да, это радио работает без батареек. :- ). Но…
  2. — На простой детекторный приемник не удастся услышать станции FM диапазона. Детекторный приемник принимает лишь станции AM диапазона – Средние, Длинные, и если повезет Короткие волны (СВ, ДВ, КВ ).
  3. — Детекторный приемник – это ночное радио. Из-за особенностей ДВ-СВ-КВ, нормальный прием чаще всего возможен с наступлением темного времени суток. Не пытайтесь собирать детекторный приемник днем, если вы не живете возле радиостанции.
  4. — Громкость звука детекторного приемника. Это будет еле слышное «шуршание» или в лучшем случае негромкий звук, сравнимый с шёпотом.
  5. — Количество принимаемых станций. Детекторный приемник может принимать лишь мощные или близко расположенные АМ радиостанции. По этому, скорее всего, на первых порах удастся поймать лишь одну — две радиостанции, «тонущие» в шуме помех.
  6. — Для детекторного приемника нужны специальные высокоомные наушники (наушники родом из СССР с сопротивлением 1600 Ом и более). Хотя можно использовать и обычные наушники от плеера, если подключить их через согласующий трансформатор (см. схему ниже). Без такого трансформатора на простые наушники ничего услышать не удастся. Можно еще использовать пьезо наушники.
  7. — Детекторному радиоприемнику нужна хорошая наружная антенна и заземление. Возможно, к этим благам не получится иметь доступ в вашей квартире.
  8. — Если все вышесказанное не пугает – тогда хорошая новость: детекторный радиоприемник теоретически может работать вечно :- ).

Меню

  • Главная
  • О сайте
  • Основы радиовещания

    • История изобретения радио
    • Свойства и диапазоны радиоволн
  • Передающие радиоцентры

    • Излучение радиоволн
    • Антенны ДВ радиостанций
    • Антенны СВ радиостанций
    • КВ и УКВ антенны
    • Синхронное радиовещание
  • Распространение радиоволн

    • Распространение поверхностных волн
    • Пространственные волны
    • Что и когда слышно?
  • Принципы радиопередачи и приема

    • Звуковые колебания
    • Амплитудная модуляция
    • Частотная модуляция
    • Радиоприемники и их параметры
  • Детекторные приёмники

    • Колебательный контур
    • Детектирование
    • Телефоны
  • Радиоприёмные антенны ДСВ

    • Типы и ориентация антенн
    • Проволочные антенны
    • Заземление
    • Грозозащита
    • Антенны для городских условий
    • Антенна с магнитной связью
  • Мощность, отдаваемая приемной антенной

    • Элементарная теория приемной антенны
    • Сопротивление излучения и действующая высота антенны
    • Мощность, отдаваемая антенной без потерь
    • Антенная цепь с потерями
  • Усовершенствование детекторного приёмника

    • Согласование антенной цепи
    • Оптимизация антенной цепи и связи с детектором
    • Емкостная связь детектора с антенной цепью
    • Практическая конструкция универсального детекторного приемника
    • Варианты приемника с емкостной связью
  • Высококачественные детекторные приемники

    • Двухконтурные приемники
    • Использование высококачественных телефонов
  • Портативные детекторные приемники

    • Портативные антенна и заземление
    • Необычные антенны и нестандартные решения
  • Акустические системы громкоговорящих детекторных приемников

    • Громкость звука, чувствительность и отдача акустических систем
    • Конструкции акустических систем
    • Рупорные акустические системы
  • Практические схемы громкоговорящих детекторных приемников

    • Схема без КПЕ
    • Двухполупериодные мостовые детекторы
    • Двухполупериодный детектор с индуктивной связью
    • Ключевые детекторы
    • Транзисторный детектор
    • Двухполупериодные детекторы на комплементарных транзисторах
  • Питание приёмника свободной энергией

    • Простейшая схема
    • Усовершенствование простейшей схемы
    • Питание полем мощных станций
    • Более полное использование энергии несущей
    • Приемник с мостовым усилителем
    • Налаживание приемников с питанием свободной энергией
    • Приемник с мостовыми детектором и усилителем
  • Радиотрансляция

    • Альтернатива радиоточке
    • Беспроводные радиоузлы
  • Приемники прямого усиления

    • Мистика коротких антенн
    • Истоковый детектор на полевом транзисторе
    • Магнитные антенны
    • Рамочная средневолновая антенна
  • Экономичные приемники

    • Схема на трех транзисторах
    • Карманный приемник
    • Чувствительный амплитудный детектор
    • Приемник на биполярных транзисторах с АРУ
    • Приемники с УРЧ на полевом транзисторе
    • Простые радиоприемники на микросхеме TDA1072
    • Приёмник с низковольтным питанием
  • Усовершенствованные приемники прямого усиления

    • Приемник-радиоточка
    • Двухконтурный преселектор
    • Приемник с двухконтурной входной цепью
    • Средневолновый приемник
    • Чувствительный приемник
    • Радиотракт на микросхеме
    • Приемник на МС КР174УН23
    • Приемник на МС К174ХА10
  • Регенеративные приемники

    • Принципы регенерации
    • СВ регенератор с индуктивной ОС
    • СВ регенератор с регулировкой ОС
    • Регенератор на биполярных транзисторах
    • Q-yмножители
    • Приемник с Q-умножителем
    • КВ регенератор
    • Серийный регенератор
  • Автодины

    • Захват частоты
    • Простой регенератор
    • Практическая схема
  • Синхродины

    • СВ синхродин
    • СВ синхродин с плавной регулировкой ОС
    • Обобщенная структурная схема синхродина
    • KB синхродин С. Коваленко
    • КВ синхродин с полевым транзистором

Ферровариометр детекторного приемника.

Ферритовый вариометр для детекторного приемника использовать более выгодно, нежели настройку с помощью КПЕ. Я бы даже сказа, что КПЕ вреден для детекторного приемника. Контурный конденсатор большой емкости существенно подавляет амплитуду полезного сигнала. К тому же ферровариометр обладает более глубокой перестройкой частоты и лишен такого недостатка как неравномерность чувствительности приема при перестройке. Детекторный приемник с ферритовым вариометром имеет более острую настройку по сравнению с КПЕ из за большего коэффициента перекрытия.

Вначале я планировал использовать в детекторном приемнике вот такой ферровариометр из водопроводной пластиковой трубы. Этот вариометр обладает хорошей доброностью, но он бы просто не влез в мой корпус из за громоздкой верньерной системы. Такой вариометр требует более громоздкого корпуса детекторного приемника.

По этому, я решил делать более компактный вариометр – наподобие вариометра детекторного приемника Комсомолец. Как впоследствии оказалось, такой вариометр — идеальный вариант для моего компактного детекторного приемника.

Катушка вариометра – состоит из полого картонного цилиндра с внутренним диаметром 10 мм и длиной 75 мм, щек из деревянной школьной линейки и основания. Все это склеено ПВА, вскрыто морилкой и лаком.  Катушка содержит 110 витков провода ПЭЛ-0.45 , намотанных под одну сторону каркаса и с отводами через каждые 20 витков.

Ось вариометра – изготовлена из переменного резистора СП-3 с длинной осью. Причем, взята не только сама поворотная ось, но еще и штатная втулка оси, с резьбой и гайкой резистора. Эта втулка и гайка позволяют закрепить ось на панели детекторного приемника.

Феррит вариометра – кусок феррита магнитной антенны приемника «Селга», диаметром 8 мм и длиной 4 см с приклеенной проволочной петелькой.

Рычаг вариометра – проволочная конструкция, насаженная на ось вариометра спиральной своей частью (смотри фото).

Нужно сказать, что в природе так же существует Магнитный ферровариометр на ферритовом кольце – еще более крутая вещь для детекторного приемника. Наматывается на ферритовом кольце, а перестраивается поднесением постоянного неодимового магнита. Обладает еще более лучшим перекрытием, остротой настройки и малыми габаритами. Когда-нибудь я соберу и на нем детекторный приемник. Но пока я ограничюсь своей конструкцией.

Простейший детекторный УКВ приемник

Схема приемника, отвечающего этим требованиям, показана на рис. 1 Она очень близка к той, по которой был выполнен приемник, упоминавшийся выше и позволивший обнаружить саму возможность детекторного приема. Добавлен лишь контур УКВ диапазона.

Рис. 1. Принципиальная схема простейшего детекторного УКВ приемника.

Устройство содержит штыревую телескопическую антенну WA1, непосредственно связанную с контуром L1 С1, настраиваемым на частоту сигнала. Антенна здесь также является элементом контура, поэтому для выделения максимальной мощности сигнала надо регулировать как ее длину, так и частоту настройки контура. В ряде случаев, особенно при длине антенны, близкой к четверти длины волны, ее целесообразно подключить к отводу контурной катушки, а положение отвода подобрать по максимальной громкости.

Связь с детектором регулируется подстроечным конденсатором С2. Собственно детектор выполнен на двух высокочастотных германиевых диодах VD1 и VD2. Схема полностью тождественна схеме выпрямителя с удвоением напряжения, однако продетектированное напряжение удваивалось бы лишь при достаточно большой емкости конденсатора связи С2, но нагрузка на контур была бы чрезмерной, а его добротность низкой. В результате понизились бы напряжение сигнала в контуре и громкость звука

В нашем же случае емкость конденсатора связи С2 невелика и удвоения напряжения не происходит. Для оптимального согласования детектора с контуром емкостное сопротивление конденсатора связи должно равняться среднему геометрическому между входным сопротивлением детектора и резонансным сопротивлением контура. При этом условии в детектор отдается максимальная мощность высокочастотного сигнала, соответствующая и максимальной громкости.

Конденсатор С3 — блокировочный он замыкает высокочастотные составляющие тока на выходе детектора. Нагрузкой последнего служат телефоны сопротивлением постоянному току не менее 4 кОм. Весь приемник собирается в небольшом металлическом или пластмассовом корпусе. В верхней части корпуса закреплена телескопическая антенна длиной не менее 1 м, а снизу — разъем или гнезда для подключения телефонов. Заметим, что шнур телефонов служит второй половиной принимающего диполя, или противовесом

Катушка L1 бескаркасная, она содержит 5 витков провода ПЭЛ или ПЭВ диаметром 0,6-1 мм, намотанных на оправке диаметром 7…8 мм. Подобрать необходимую индуктивность можно, растягивая или сжимая витки при настройке.

Конденсатор переменной емкости (КПЕ) С1 лучше всего использовать с воздушным диэлектриком, например, типа 1КПВМ с двумя-тремя подвижными и одной-двумя неподвижными пластинами. Его максимальная емкость невелика и может составлять 7-15 пФ. Если пластин больше (соответственно и емкость больше), целесообразно либо удалить часть пластин, либо включить последовательно с КПЕ постоянный или подстроечный конденсатор, уменьшив, таким образом, максимальную емкость. В качестве С1 подойдут также малогабаритные конденсаторы “плавной настройки’’ от транзисторных приемников с КВ диапазоном.

Конденсатор С2 — керамический подстроечный, типа КПК-1 или КПК-М емкостью 2…7 пФ Допустимо использовать и другие подстроечные конденсаторы, а также установить КПЕ, подобный С1, выведя его ручку на панель приемника. Это позволит регулировать связь “на ходу”, оптимизируя прием

Диоды VD1 и VD2, кроме указанных на схеме, могут быть типов ГД507Б, Д18, Д20 Блокировочный конденсатор С3 керамический, емкость его некритична и может иметь значение колебаться от 100 до 4700 пФ.

Налаживание приемника несложно и сводится к настройке контура конденсатором С1 на частоту станции и регулировке связи конденсатором С2 до получения максимальной громкости. Настройка контура при этом неизбежно изменится, поэтому все операции надо провести последовательно несколько раз, одновременно выбирая и наилучшее место для приема.

Оно, кстати, совсем необязательно должно совпадать (и скорее всего, не будет) с тем местом, где максимальна напряженность поля. Об этом следует поговорить подробнее и объяснить, наконец, почему вообще этот приемник может принимать сигналы с ЧМ.

Детали детекторного приемника.

Этот детекторный приемник – классика школьного приборостроения. Собран он на деревянном сосновом бруске и канцелярских кнопках. При пайке приемника на такой доске ощущается ностальгический сосново – канифольный «ламповый» аромат – весьма немаловажная составляющая. Как в детстве.

Катушка детекторного приемника намотана на пластиковой водопроводной трубе и содержит примерно 90 витков (до заполнения всей длины). Для настройки приемника используется кусок ферритового стержня от радиоприемника Селга, вводимого внутрь катушки. То есть этот детекторный приемник с настройкой вариометром.

Конденсатор С1* — как уже говорилось выше – 180 пф. Хотя может быть и другого номинала . Или можно вовсе без него, если получится принять какую-нибудь радиостанцию.

Конденсатор С2 может быть 1000 – 2200 пф. Не критично.

Диод D1 – лучший диод для детекторного приемника это Д18 или Д311. Но можно использовать и любой другой высокочастотный германиевый детекторный диод. Например Д9. Хотя звук будет немного тише. Вообще, диоды для детекторного приемника нужно подбирать – смотри ниже.

Как устроен радиопередатчик?

Основой любого радиопередатчика является — задающий генератор несущей частоты.

Эта схема генератора,сама вполне может служить маломощным передатчиком(при наличии антенны).
Электромагнитные колебания генерируемой им частоты, сами по себе не несут никакой
полезной информации. Что бы появилась возможность ее передачи, необходимо изменить несущую частоту,
промодулировав ее полезным сигналом.

Применяются три вида модуляции — амплитудная, частотная и фазная.
При амплитудной модуляции меняется амплитуда несущей частоты, в такт с
амплитудой информационного сигнала.
Частотная модуляция обуславливает девиацию (отклонения) несущей частоты в такт с амплитудой
полезного сигнала.
При фазной модуляции, подобное происходит соответственно, с фазой колебаний несущей
частоты.

Процесс модуляции осуществляется с помощью различных электронных схем.
Например, для частотной модуляции необходимо воздействовать на такие параметры задающего
генератора, как емкость или индуктивность его колебательного контура.
Если подать на переход база — эмиттер транзистора переменное напряжение низкой частоты,
это вызовет изменение его емкости, с периодом поданной частоты.
Соответственно, произойдет частотная модуляция задающего генератора.

Если собрать подобную схему, используя самые распостраненные высокочастотные
транзисторы (например кт315), микрофон динамического типа, можно получить простейший радиомикрофон.
С катушкой L1, состоящей из одного витка одножильного провода диаметром 1-1,5 см, он будет
перекрывать радиовещательный диапазон FM.

Сигнал от такого устройства можно принимать на расстоянии от 50, до 150 метров, в зависимости
от чувствительности используемого приемника. Точная подстройка осуществляется конденсатором С5.
Устройства для прослушки — жучки, собирают по схожим схемам.
Если требуется большая дальность передачи, сигнал задающего генератора необходимо дополнительно усилить,
с помощью выходного усилителя мощности и подать на передающую антенну.

Самодельные детекторы:

В таблице ниже я постепенно буду приводить информацию по самодельным детекторам (детекторным парам) с которыми я буду иметь дело, а так же буду описывать опыт их изготовления и использования. То есть таблица будет расти по мере проведения новых экспериментов.

Таблица «Самодельные детекторы».

Простейший детектор из карандаша и лезвия. При практическом использовании не так уж и легко заставить его работать.  В таком виде графитовый детектор имеет право на жизнь лишь как наглядное пособие, но не как детектор для реального детекторного приемника. Да, он что-то там иногда детектирует, но работа его капризна и очень непостоянна.

Механический графитовый детектор более стабилен в работе. Это собственно тот же простой графитовый детектор из карандаша и лезвия, но с механической регулировкой подвода карандаша к лезвию. Этот самодельный детектор уже можно использовать в реальном детекторном приемнике.

Я случайно нашел интересный детектор для детекторного радиоприемника – металлическая сетка для чистки кухонных кастрюль. Достаточно ткнуть карандашом в такую металлическую мочалку, как появляется довольно устойчивое детектирование.

Один из первый детекторов для детекторного приемника. Интересен чисто исторически, как массовый самодельный полупроводник. Кристалл галена выплавляется в домашних условиях из свинца и серы в пробирке. Обладает хорошими детектирующими свойствами для самодельного детектора.

Халькопирит — природный ископаемый минерал с формулой CuFeS2 (медный колчедан). Добывается в шахтах на значительной глубине. Поверхности обладают полупроводниковыми свойствами, хотя сам минерал больше является проводником нежели полупроводником.

Пиритовый детектор — детектор из пирита. Пирит известен  как природный минерал (дисульфит железа, серный колчедан, железный колчедан). Добывается в шахтах. Но его можно изготовить и в домашних условиях спеканием в пробирке металлических опилок и серы. Формула — FeS2. Пиритовый детектор использовался радиолюбителями на ряду с галеновым детектором, на заре радио в начале 20-х годов 20 века.


Самодельный кремниевый диод.

Самодельный кремниевый диод для детекторного приемника можно сделать из швейной иглы и кусочка кремниевой подложки микросхемы, предварительно распотрошив её. Такой самодельный кремниевый детектор обладает хорошей устойчивостью и чувствительностью. При этом состоит из доступных материалов.

Я и Диод. yaidiod.ru.

Усовершенствованная схема детекторного радиоприемника

Небольшое усовершенствование – это внедрение в схему простого усилителя низкочастотного сигнала. Для нормального прослушивания радиостанций через головные телефоны энергии, создаваемой антенной, недостаточно, поэтому нужно применить схему простейшего усилительного каскада на одном транзисторе с общим эмиттером. Для ее реализации вам нужно обзавестись транзистором типа КТ315, а также несколькими резисторами и конденсаторами. Конечно, немного усложнится схема детекторного приемника. С помощью какого элемента производится усиление в данном случае? Речь идет о транзисторе, вкратце схема его подключения описана ниже.

На базу необходимо подавать низкочастотный сигнал (с выхода радиоприемника). Между коллектором и плюсовым проводом питания включается резистор. Его сопротивление следует подобрать экспериментально, но отталкиваться стоит от значения около 10 кОм. Но базу транзистора нужно запитать от минуса и плюса. Поэтому от плюса подается питание через резистор около 200 кОм сопротивлением (также подбирается экспериментально). Между базой и эмиттером включается резистор около 5 кОм. Наушники подключаются к минусовому проводу питания и к коллектору транзистора.

Что из себя представляет детекторный приемник

Под этим термином принимается устройство, собранное по определенной схеме, способное воспроизводить радиосигнал и при этом для работы не требуется использование никаких внешних источников электрической энергии (ни розеток, ни батареек, ни ветрогенераторов и прочих устройств). Уникальность приемника заключается в получении питания из поступающего на устройство радиосигнала. Энергия радиоволн – вот источник звука, который можно услышать в наушниках собранного приемника. Данная схема и принцип работы позволяют принимать и слушать наиболее мощные, близко расположенные источники сигналов.

Чтобы обеспечить хорошую слышимость работающего детекторного приемника, необходимо обеспечить соответствующие размеры приемной антенны, а также – резисторное сопротивление используемых для приема сигнала наушников. Зависимость здесь прямо пропорциональная: чем выше сопротивление, тем более громкий сигнал будет получен.