Управление
Включение светодиода происходит при прохождении прямого тока, когда анод подключен к плюсу, катод к минусу. Многоцветный спектр излучения можно получить, изменяя интенсивность свечения каналов (RGB). Результирующий оттенок определяется соотношением яркостей отдельных цветов. Если все 3 цвета одинаковы по интенсивности свечения, результирующий цвет получается белым.
На цифровых выходах платы Arduino формируются периодические прямоугольные импульсы напряжения, как на рисунке 4., с изменяемой скважностью. Рис
4
Рис. 4
Чем ниже скважность импульсов канала, тем ярче свечение соответствующего led диода. Программа управления скважностью импульсов цветовых каналов зашита в микросхеме контроллера
Такое изменение скважности импульсов, осуществляемое в целях управления процессом, называется ШИМ (широтно – импульсной модуляцией).
На Рис.4 приведены примеры диаграмм прямоугольных импульсов различной скважности. Управление цветом и интенсивностью свечения rgb диода может осуществляться и без ШИМ
На приведенной ниже схеме применено аналоговое управление трехцветными светодиодами. Суть его заключается в регулировании постоянного тока диодов определенного цвета
Управление цветом и интенсивностью свечения rgb диода может осуществляться и без ШИМ. На приведенной ниже схеме применено аналоговое управление трехцветными светодиодами. Суть его заключается в регулировании постоянного тока диодов определенного цвета.
Рис. 5
На схеме (Рис.5) rgb диоды (led1- led10) имеют общий анод. Катоды одного цвета всех диодов объединены, и через резисторы R4.1, R4.2, R4.3 соединяются с эмиттером соответствующего транзистора. Таким образом, все светодиоды красного цвета подключены к транзистору VT1.1, зеленые светодиоды – к VT1.2, синие – к VT1.3. При перемещении движков потенциометров R1.1, R1.2, R1.3 изменяется ток базы соответствующего транзистора. Величина тока базы определяет степень открытия перехода «эмиттер – коллектор», и, в конечном счете, яркость свечения соответствующего цвета. Перед подключением нужно правильно определить полярность светодиода, иначе он не будет светиться.
Применение цифровых программируемых контроллеров предоставляет практически безграничные возможности управления цветом. В тех же случаях, когда не требуется создание цветовых динамических образов, может быть применен аналоговый способ управления. Это могут быть наружные или интерьерные светильники для статической подсветки с выбором цвета.
Применение светодиодов
Сферы применения светодиодов постоянно расширяются. Первоначально они использовались как световые индикаторы в схемах включения или работы электронной аппаратуры. Например, включение передатчика, переход на повышенную или пониженную мощность и т.д. Могли фиксировать автоматическое включение, например, при появлении сигнала вызова или для привлечения внимания. Использовались мигающие или одноцветные светодиоды – красные, желтые, зеленые, синие.
Малогабаритные сверхъяркие DIP-светодиоды соединяли в последовательно-параллельные цепочки и питали их прямо от сети 220 В. Поместив такие последовательные группы диодов в прозрачную гибкую ПВХ-трубку и залив их прозрачным герметиком, получили «гибкий неон» – светящийся «жгут». Его можно проложить по бортику бассейна, бордюру дорожки, украсить крышу дома или дерево в саду.
Использование гибкого неона.
Появление гибких многослойных плат и SMD-корпусов для поверхностного монтажа привело к созданию гибких светодиодных лент.
Вначале это были средства декоративной отделки интерьера помещений. Увеличение мощности SMD-диодов и плотности их размещения на плате позволило начать использование светодиодных лент вначале для вспомогательного, а потом и основного освещения. Увеличение степени пылевлагозащиты лент привело к их использованию для декоративной подсветки, а потом и основного освещения в условиях улицы.
Одновременно шла разработка светодиодных ламп для замены ламп накаливания в светильниках – бра, люстрах, настольных лампах. Появились лампы-ретрофиты – полные аналоги ламп накаливания и люминесцентных трубок по форме, размерам колб, напряжению питания. Началась постепенная замена ламп накаливания на светодиодные ретрофиты. При этом прекращалось производство ЛН – вначале 100 Вт и более, потом 75, 60 и т.д.
Разработка мощных единичных светодиодов, особенно в корпусе Emitter или PCB Star, способствовала появлению фонариков со встроенным аккумулятором. Яркость и длительность свечения после одного цикла заряда в разы превосходила прежние модели.
Отличная управляемость светодиодов электронными средствами — контроллерами и диммерами – регуляторами яркости, позволила использовать мощные прожекторы в светодинамической иллюминации улиц и площадей городов и поселков в любом регионе страны.
Применение в декоративной подсветке зданий.
Светодиодные ленты типа RGB, RGBW и RGBWW дали возможность не только получить мощные потоки белого света, но и в широких пределах изменять его белый оттенок от желтоватого теплого до синеватого и голубого холодного.
Управляемость новых источников света позволяет широко использовать их в световой рекламе – «бегущих строках», световых табло, информационных экранах и т.п. Используют эти яркие цветные и белые источники света в фасадной рекламе и на крышах – плоские и объемные буквы и рисунки, фирменные названия, изображения товарных знаков и многое другое.
И все эти конструкции работают много дольше аналогов на обычных лампах, почти не требуя обслуживания и потребляя при этом в разы меньше электроэнергии. Технические характеристики светодиодов и светотехнической аппаратуры постоянно растут. Стоимость светодиодов уменьшается, а применение расширяется.
Принцип работы цветного светодиода
Известно, что при смешивании одних цветов можно получить другие. На этом принципе и построена система работы RGB-светодиода. В основе LED-элемента лежат три цвета, по первым буквам которых он и получил свое название – red (красный), green (зеленый) и blue (синий). Если подать питание на все оттенки разом, можно получить ровное белое свечение. А если исключить из цепи синий, диод будет гореть желтым.
Такие LED-элементы могут конструктивно отличаться друг от друга. Существуют разновидности с отдельными выводами анодов, но общим катодом (СС), или, наоборот, (СА). Отдельно стоит отметить тип RGB светодиодов для LED-полосы – это SMD-элементы, имеющие 6 выводов – аноды и катоды каждого цвета отдельно.
HDR10
Что касается HDR-видео, то в нём есть два основных соперника: Dolby Vision и HDR10. В этой статье я сосредоточусь на HDR10, потому что это открытый стандарт, который быстрее стал популярным. Этот стандарт выбран для Xbox One S и PS4. Мы снова начнём с рассмотрения используемой в HDR10 части цветности цветового пространства, определённой в Рекомендации ITU-R BT.2020 (UHDTV). В ней указаны следующие координаты цветности основных цветов:
И снова в качестве белой точки используется D65. При визуализации на схеме xy Rec. 2021 выглядит следующим образом:
Охват Rec. 2020 Очевидно заметно, что охват этого цветового пространства значительно больше, чем у Rec. 709.
Теперь мы переходим к разделу стандарта о яркости, и здесь снова всё становится более интересным. В своей кандидатской диссертации 1999 года “Contrast sensitivity of the human eye and its effect on image quality” («Контрастная чувствительность человеческого глаза и её влияние на качество изображения») Питер Бартен представил немного пугающее уравнение:
(Многие переменные этого уравнения сами по себе являются сложными уравнениями, например, яркость скрывается внутри уравнений, вычисляющих E и M).
Уравнение определяет, насколько чувствителен глаз к изменению контрастности при различной яркости, а различные параметры определяют условия просмотра и некоторые свойства наблюдателя. «Минимальная различаемая разница» (Just Noticeable Difference, JND) обратна уравнению Бартена, поэтому для дискретизации EOTF, чтобы избавиться от привязки к условиям просмотра, должно быть верно следующее:
Общество инженеров кино и телевидения (Society of Motion Picture and Television Engineers, SMPTE) решило, что уравнение Бартена будет хорошей основой для новой EOTF. Результатом стало то, что мы сейчас называем SMPTE ST 2084 или Perceptual Quantizer (PQ).
PQ был создан выбором консервативных значений для параметров уравнения Бартена, т.е. ожидаемых типичных условий просмотра потребителем. Позже PQ был определён как дискретизация, которая при заданном диапазоне яркости и количестве сэмплов наиболее точно соответствует уравнению Бартена с выбранными параметрами.
Дискретизированные значения EOTF можно найти с помощью следующей рекуррентной формулы нахождения k < 1. Последним значением дискретизации будет являться необходимая максимальная яркость:
Для максимальной яркости в 10 000 нит с использованием 12-битной дискретизации (которая используется в Dolby Vision) результат выглядит следующим образом:
EOTF PQ Как можно заметить, дискретизация не занимает весь диапазон яркости.
В стандарте HDR10 тоже используется EOTF PQ, но с 10-битной дискретизацией. Этого недостаточно, чтобы оставаться ниже порога Бартена в диапазоне яркости в 10 000 нит, но стандарт позволяет встраивать в сигнал метаданные для динамической регуляции пиковой яркости. Вот как 10-битная дискретизация PQ выглядит для разных диапазонов яркости:
Разные EOTF HDR10 Но даже так яркость немного выше порога Бартена. Однако ситуация не настолько плоха, как это может показаться из графика, потому что:
- Кривая логарифмическая, поэтому относительная погрешность на самом деле не так велика
- Не стоит забывать, что параметры, взятые для создания порога Бартена, выбраны консервативно.
На момент написания статьи телевизоры с HDR10, представленные на рынке, обычно имеют пиковую яркость 1000-1500 нит, и для них достаточно 10 бит. Стоит также заметить, что изготовители телевизоров могут сами решать, что им делать с яркостями выше диапазона, который они могут отображать. Некоторые придерживаются подхода с жёсткой обрезкой, другие — с более мягкой. Вот пример того, как выглядит 8-битная дискретизация Rec. 709 с пиковой яркостью 100 нит:
EOTF Rec
709 (16-235) Как можно видеть, мы намного выше порога Бартена, и, что важно, даже самые неразборчивые покупатели будут настраивать свои телевизоры на значительно большие 100 нит пиковые яркости (обычно на 250-400 нит), что поднимет кривую Rec. 709 ещё выше
Виды светодиодов для LED фонарей — Большая ярмарка
Качественный и надежный фонарик пригодится любому человеку, однако использовать его можно совершенно по-разному.
Одно дело, если Вам нужно изредка организовать дополнительную подсветку в подвале или кладовке и совсем другое — постоянное использование фонаря в экстремальных условиях дикой природы.
В первом случае подойдет практически любой не брендированный фонарик: вполне можно положиться на собственную интуицию. Однако, если Вы планируете использовать прибор длительное время, старайтесь не приобретать самые дешевые варианты.
Если Ваша профессиональная деятельность или любимое увлечение связано с военными или поисковыми операциями, покупайте только фонари известных марок. Ничто не стоит так дорого как доброе имя: производители дорожат своим брендом и поддерживают его репутацию, постоянно внедряя в модели технические улучшения.
При выборе мобильного осветительного прибора нужно учитывать целых ряд различных факторов, например таких, как материал исполнения корпуса, источники питания, однако сердцем современного фонаря остаются светодиоды — полупроводники, которые способны излучать яркое оптическое свечение, если пропустить через них в прямом направлении электрический ток. Виды светодиодов и их характеристики — это то, что нужно поставить на первое место при выборе фонаря.
Трудно себе представить, что такое важное практическое изобретение как светодиоды долгое время использовалось только в качестве световой индикации. Первый светодиод был запатентирован в 1927 году Лосевым О.В., однако широкое практическое употребление длительное время было заморожено из-за слабого уровня развития полупроводниковых технологий
На данном этапе современные производители используют самые разные виды светодиодов для фонарей. Как же в них разобраться?
Тонкости выбора: современные виды светодиодов и их характеристики
В 95% в новых моделях фонарей применяются светодиоды Cree, которые выпускаются в разных сериях. За короткое время это предприимчивый производитель практически выжил с рынка всех конкурентов.
Главное отличие светодиодов привязано к максимальной яркости свечения и размерам. Из всего предлагаемого разнообразия отдельно стоит выделить следующие основные серии:
- XP-E и XP-E2 имеют стандартные размеры 3,5х3,5 мм, рассчитаны на силу тока 1А и мощность 3,5Вт. Как правило, используются в брелочных и мелких моделях.
- XP-G, XP-G2 при аналогичных размерах диода мощность составляет 4,9 Вт, сила тока — 1,5 А, яркость до 490 лм. Используют в мелких фонарях, как и предыдущую серию.
- XM-L и XM-L2 при размерах 5х5 мм обеспечивают 10 Вт мощности, 3А тока и 1040 лм яркости. Такие диоды в количестве одного или нескольких штук применяются в средних и больших фонарях.
Светодиоды, которые дополнительно промаркированы цифрой 2, отличаются тем, что выдают яркость на 10-20% выше.
В последнее время популярность набирают также светодиоды Nichia 219, которые практически совершили прорыв. Они отличаются от фирмы Cree более качественной цветопередачей, которая приятна для глаза.
Важный световой параметр: бин яркости или световая температура
Виды светодиодов для фонарей имеют разную температуру свечения. Будьте внимательны: наиболее комфортный спектр свечения подбирается индивидуально, а у солидных производителей одна модель может выпускаться с различными вариантами светодиода разных оттенков.
Производители разделяют их на основные группы, которые достаточно просто различить, благодаря стандартной маркировке:
- Warm White — теплые цвета. Такие светодиоды стоят дороже, так как дают меньшее искажение природных цветов.
- Neutral White — нейтральные. Являются золотой серединой. Как и светодиоды с теплым спектром оптимально подходят для бытовых целей.
- Cool White — холодные. Как правило, монтируются в более бюджетных моделях, несколько искажают натуральные цвета за счет синеватого оттенка, однако, по сравнению с теплыми, обеспечивают более высокую яркость. Используются в мощных тактических и поисковых фонарях.
LED драйверы: стабилизация тока
Во всех качественных моделях светодиод питается не напрямую от аккумуляторов, а через стабилизирующее устройство — драйвер. Помимо экономии заряда батареи, наличие этой комплектующей обеспечивает ряд таких важных дополнительных функций, как возможность ступенчатого регулирования яркости свечения, режим мигания, контроль температуры, разряда батареи, режимов эксплуатации.
Выбирая оптимальные виды светодиодов для фонарей, следует помнить, что, чем больше площадь светодиода, тем легче создать с его помощью широкий луч и наоборот. Чем больше люменов издает фонарь, тем ярче поток света и тем короче время работы элементов питания.
Что такое RGB светодиод и устройство
В отличии от устройства обычных светодиодов, где имеется анод и катод, в RGB чипах для каждого из цветов имеется свой пин — катод, четвертая нога — анод. Анод самый длинный, определить где какой пин для цвета — необходимо смотреть datasheet Вашего диода.
—> —>
Аббревиатура RGB — основана на первых трех буквах от английских слов (Red, Green, Blue — красный, зелёный, синий). Благодаря смешению этих цветов можно получать различные цветовые решения. Данный принцип основан на восприятии цвета человеческим глазом.
Цвета, на которые способен RGB светодиод
При смешении основных цветов RGB — например, синего (B) и красного (R), мы получаем пурпурный (M magenta), при смешении зеленого (G) и красного (R) — жёлтый (Y yellow), при смешении зеленого (G) и синего (B) — циановый (С cyan). Если мы соединим все три цвета сразу, то получим белый.
Получение белого цвета
Если у обычного светодиода, как правило, установлены кристаллы белого цвета, то RGB светодиод имеет три кристалла с красным, синим и зеленым цветом. Под микроскопом это выглядит следующим образом:
Фото RGB под микроскопом
Для получения разнообразных цветов, а не только основных: зеленого, синего, красного, необходимо управление диодами, отличное от белых. В следующих главах мы рассмотрим некоторые основы управления RGB светодиодами.
RGBW светодиоды
Получить чистый белый свет на стандартных RGB устройствах достаточно сложно. Проблема заключается в регулировке яркости. Если нужен белый, но довольно тусклый оттенок, приходится очень точно настраивать питание трех кристаллов. Учитывая, что каждый из них имеет собственный номинал напряжения, изменяющийся нелинейно, получать неяркие тона — сложная задача.
Для упрощения процесса и увеличения возможностей светодиодов выпускают четырехцветные, или RGBW устройства (от английского Red, Green. Blue и White). Дополнительный белый чип снимает нагрузку с контроллера, облегчает расчеты и увеличивает качество цветопередачи. Питание таких устройств обеспечивается специальными контроллерами с инфpaкрасными ПДУ.
Подключение светодиодной ленты к сети 220В схема
Чтобы запитать светодиодную ленту от сети обычной бытовой сети переменного тока 220В 50Гц нужно выполнить три условия:
- преобразовать переменное напряжение сети в постоянное;
- выровнять уровни напряжений: снизить сетевое напряжение до 12В или изменить схему подключения светодиодов, чтобы на них можно было подавать высокое напряжение;
- стабилизировать параметры электрического питания.
Проще всего использовать готовый блок питания для светодиодной ленты 12В, он рассчитан на безопасное напряжение. Но в применении этого блока питания есть и минусы: он стоит денег и собрать его не так просто, кроме того из-за низкого напряжения светодиодные ленты не стоит располагать далеко от блока питания, для компенсации потерь напряжения придется использовать толстые провода.
Второй вариант: переделать светодиодную ленту и вместо последовательно-параллельного включения светодиодов использовать последовательное.
При такой схеме включения светодиодная сборка питается малым током, но при большом напряжении. Кроме того, если пожертвовать гальванической развязкой, то схема драйвера питания сильно упрощается.
Внимание!!! Схемы без гальванической развязки от сети можно применять там, где нет опасности поражения электрическим током, например в сухом помещении на потолке
- Самое интересное, что схему подобного драйвера можно сделать из деталей отслуживший свой срок энергосберегающей лампочки!
- Рассмотрим подключение светодиодной ленты к сети 220В схема приведена на рисунке.
Таблица номиналов элементов схемы:
- C1 – 2,2 мкФ 400 В
- R1 – 1,3 кОм
- R2 – 4,3 кОм
- R3 – 47 Ом
- VD1 .. VD4 – 1N4007
- VT1, VT2 — 13002
На схеме можно выделить три узла:
- выпрямитель переменного напряжения и фильтр на элементах C1, R1, VD1 – VD4;
- стабилизатор тока на R2, R3, VT1, VT2;
- сборка из светодиодов HL1 – HLN.
Про работу выпрямителя можно почитать здесь. В данной схеме кроме диодного моста из 4-х диодов добавлены токоограничивающий резистор R1 защищающий от бросков тока, фильтрующий конденсатор C1.
При подаче на вход данного выпрямителя сетевого напряжения 220В / 50Гц, на выходе выпрямителя (на конденсаторе С1) появиться постоянное напряжение равное примерно 300В с пульсацией частотой 100Гц.
Чем больше будет емкость конденсатора, тем меньше будет пульсация.
Светодиоды требуют питания стабилизированным током, часто их питают стабилизированным напряжением через резистор ограничивающий ток, например как в светодиодных лентах. Но зачем нам идти на компромиссы, если сделать стабилизатор тока, работающий при больших напряжениях проще, чем стабилизатор напряжения. Работа схемы стабилизатора тока рассматривалась тут.
Такой участок подключается параллельно куче других таких же участков и все это подключается к 12 В.
На каждом диоде падает напряжение от 3,3 В до 3,6 В, таким образом на токоограничивающий резистор остается около полутора Вольт.
Чтобы повысить напряжение участки из трех диодов включаем последовательно с друг другом, а резистора можно выпаять, закорачивать или заменять перемычками, т.е
как будет удобнее с точки зрения топологии.Внимание!!! Соблюдайте полярность, при ошибка в полярности подключения светодиода при таком напряжении будет для светодиода фатальной
Ток которые протекает через тройку светодиодов можно примерно посчитать, разделив полтора Вольта на сопротивление токоограничивающего резистора. То есть при сопротивлении 150 Ом, ток через светодиоды составит 10 мА.
Именно такая лента со светодиодами на 10 мА попалась мне, для неё и были рассчитывать параметры драйвера. Если нужно уменьшить ток, то придется пропорционально увеличивать значение сопротивления резистора R3.
При сетевом напряжении в 220 В, описанная схема способна обеспечить последовательное подключение до 25 групп из трех диодов или 75 единичных. Если напряжение в сети часто бывает пониженным, то лучше снизить количество групп светодиодов до 20 или даже 15.
А вот и плата от энергосберегающей лапочки, откуда можно получить нужные радиоэлементы.
Лампочка разбилась, а плата осталась в рабочем состоянии.
Кстати полярность подключения диодов, выводы транзисторов можно срисовать прямо с этой платы, все что нужно там помечено.
Добываем элементы из этой платы и собираем новую схему.
На фото видно, что транзисторы в маломощном корпусе TO-92 такой корпус не рассеет мощность больше 600 мВт. И суммарная мощность схема с таким транзистором не позволит отдавать в нагрузку более пары Ватт.
Если потребуется собрать схему для более мощной нагрузки, то транзистор VT2 должен быть в более мощном корпусе и желательно с радиатором.
RGBW и RGBWW светодиодные ленты
Для достижения лучшего качества белого цвета цветной светодиодной лентой помимо трехцветных светодиодов на ленты стали устанавливать дополнительные белые светодиоды, который управлялись по отдельному каналу. Такие светодиодные ленты маркируются как RGBW. Белый светодиод в таких лентах имеет цветовую температуру порядка 6000К. Причем остается возможность включения белого света путем комбинации всех цветов или отдельным каналом белыми светодиодами.
Белые светодиоды могут устанавливаться поочередно с RGB светодиодами, но для достижения лучшего качества чаще всего такие ленты имеют два ряда светодиодов, один RGB, другой белые светодиоды 5050. В последнее время на ленты RGBW все чаще стали устанавливать новые светодиоды, на которых помимо трех цветных кристаллов имеется и кристалл белого светодиода.
Но на этом не остановились, и добавили еще один светодиод с теплым белым светом с цветовой температурой в пределах 2900K. Такую светодиодную ленту маркируют RGBWW. Самый простой способ реализации заключается в установке помимо отдельного холодного белого светодиода еще одного теплого белого светодиода. Сейчас встречаются даже комбинированные белые светодиоды, способные излучать как белый, так и теплый белый свет, и комбинированные светодиоды с пятью кристаллами.
Применение белого и теплого белого светодиода позволяет более точно установить требуемый оттенок белого света, и к тому же получить его большую яркость.
RGBW светодиоды
Для того чтобы получить чисто белый цвет, используя разноцветный rgb светодиод, необходима точная балансировка яркости свечения по кристаллу каждого цвета. На практике это бывает затруднительно. Поэтому, для воспроизведения белого цвета и увеличения разнообразия цветовых эффектов, rgb диод стали дополнять четвертым кристаллом белого свечения. Чаще всего, RGBW светодиоды используются в светодиодных лентах RGBW SMD. Для питания таких светодиодных лент созданы специальные RGBW контроллеры, как правило, управляемые пультами дистанционного управления на инфракрасных лучах.
На фотографии представлен мощный четырехцветный светодиодный модуль SBM-160-RGBW-H41-RF100 производства Luminus Devices Ink.
Рис. 6
Каковы основные характеристики светодиодов?
При выборе таких элементов для той или иной цели, каждый обращает внимание на их технические данные. Основное, на что следует обратить внимание, приобретая приборы на их основе:
- ток потребления;
- номинальное напряжение;
- потребляемая мощность;
- температура цвета;
- сила светового потока.
Это то, что мы можем увидеть на маркировке светодиодных ламп. На самом же деле, характеристик намного больше. О них сейчас и поговорим.
Ток потребления светодиода – что это такое
Ток потребления светодиода равен 0.02 А. Но это относится лишь к элементам с одним кристаллом. Существуют и более мощные световые диоды, в составе которых может быть 2, 3 и даже 4 кристалла. В этом случае ток потребления будет увеличиваться, кратно числу чипов. Именно этот параметр и диктует необходимость подбора резистора, который впаивается на вводе. В этом случае сопротивление светодиода не дает высокому току мгновенно сжечь LED элемент. Это может произойти по причине высокого тока сети.
RGB прожекторы с контроллером и пультом ДУ действительно хороши
Номинальное напряжение
Напряжение светодиода имеет прямую зависимость от его цвета. Это происходит по причине разности материалов для их изготовления. Рассмотрим эту зависимость.
Цвет светодиода | Материал | Прямое напряжение при 20 мА | |
---|---|---|---|
Типовое значение (В) | Диапазон (В) | ||
ИК | GaAs, GaAlAs | 1,2 | 1,1-1,6 |
Красный | GaAsP, GaP, AlInGaP | 2,0 | 1,5-2,6 |
Оранжевый | GaAsP, GaP, AlGaInP | 2,0 | 1,7-2,8 |
Желтый | GaAsP, AlInGaP, GaP | 2,0 | 1,7-2,5 |
Зеленый | GaP, InGaN | 2,2 | 1,7-4,0 |
Голубой | ZnSe, InGaN | 3,6 | 3,2-4,5 |
Белый | Синий/УФ диод с люминофором | 3,6 | 2,7-4,3 |
Сопротивление световых диодов
Сам по себе один и тот же светодиод может иметь различное сопротивление. Меняется оно в зависимости от включения в цепь. В одну сторону – около 1 кОм, в другую – несколько МОм. Но здесь есть свой нюанс. Сопротивление светодиода нелинейно. Это значит, что оно может изменяться в зависимости от подаваемого на него напряжения. Чем выше напряжение, тем ниже будет сопротивление.
Точечный потолочный светильник на диодах очень экономичен
Светоотдача и угол свечения
Угол светового потока светодиодов может различаться, в зависимости от их формы и материала изготовления. Он не может превышать 120. По этой причине, если требуется большее рассеивание, применяют специальные отражатели и линзы. Это качество «направленного света» и способствует наибольшей силе светового потока, которая может достигать 300-350 Лм у одного светодиода на 3 Вт.
Мощность светодиодных ламп
Мощность светодиода – величина сугубо индивидуальная. Она может варьироваться в диапазоне от 0.5 до 3 Вт. Определить ее можно по закону Ома P = I×U, где I – сила тока, а U – напряжение светодиода.
Мощность – довольно важный показатель. Особенно когда необходимо рассчитать какой блок питания необходим для того или иного количества элементов.
Цветовая температура
Этот параметр схож с другими лампами. Наиболее приближены то температурному спектру к светодиодным люминесцентные лампы. Измеряется цветовая температура в К (Кельвин). Свечение может быть теплым (2700-3000К), нейтральным (3500-4000К) или холодным (5700-7000К). На самом деле оттенков много больше, здесь указаны основные.
На такой платформе могут быть сотни кристаллов
Размер чипа LED элемента
Этот параметр самостоятельно измерить при покупке не удастся и сейчас уважаемому читателю станет понятно почему. Самые распространенные размеры – это 45х45 mil и 30х30 mil (соответствуют 1 Вт), 24х40 mil (0.75 Вт) и 24х24 mil (0.5 Вт). Если перевести в более привычную систему измерений, то 30х30 mil будут равны 0.762х0.762мм.
Чипов (кристаллов) в одном светодиоде может быть много. Если элемент не имеет слоя люминофора (RGB – цветной), то количество кристаллов можно подсчитать.
Важно! Не стоит приобретать очень дешевые светодиоды китайского производства. Они могут оказаться не только низкого качества, но и характеристики их чаще всего завышены.
Подделку довольно тяжело отличить от оригинала при покупке
Код
Загрузите следующий эскиз на свою плату Arduino:
/ * Все ресурсы для этого проекта: http://randomnerdtutorials.com/ * / int redPin = 3 ; // Красный вывод RGB -> D3 int greenPin = 5 ; // Зеленый вывод RGB -> D5 int bluePin = 6 ; // Синий вывод RGB -> D6 int potRed = A0 ; // Потенциометр управления Красный контакт -> A0 int potGreen = A1 ; // Потенциометр контролирует зеленый контакт -> A1 int potBlue = A2 ; // Потенциометр контролирует синий контакт -> A2 void setup () { pinMode ( redPin , OUTPUT ); pinMode ( bluePin , OUTPUT ); pinMode ( greenPin , OUTPUT ); pinMode ( potRed , INPUT ); pinMode ( potGreen , INPUT ); pinMode ( potBlue , INPUT ); } void loop () { // Считывает текущую позицию потенциометра и преобразует // в значение от 0 до 255 для управления соответствующим выводом RGB с PWM // RGB LED COMMON ANODE analogWrite ( redPin , ( 255. 1023. ) * analogRead ( potRed ) ); analogWrite ( greenPin , ( 255. 1023. ) * analogRead ( potGreen )); analogWrite ( bluePin , ( 255. 1023. ) * analogRead ( potBlue )); // Uncomment для RGB LED COMMON CATHODE / * analogWrite (redPin, 255- (255./1023.) * AnalogRead (potRed)); analogWrite (greenPin, 255- (255./1023) * analogRead (potGreen).); analogWrite (bluePin, 255- (255./1023) * analogRead (potBlue).); * / delay ( 10 ); }
Как выбрать качественную светодиодную ленту для RGB подсветки
Выбор RGB подсветки обусловлен несколькими критериями:
- условия работы;
- размеры и конфигурация оформляемой поверхности;
- ожидаемый уровень освещенности;
- мощность, напряжение питания.
Сопоставление этих параметров позволяет подобрать наиболее подходящую светодиодную подсветку
Помимо приведенных показателей важно выбирать среди известных и надежных производителей, поскольку дешевые изделия из развивающихся стран не способны продемонстрировать качественную и долговечную работу
Если в происхождении ленты возникают сомнения, лучше поискать в другом магазине. Это займет некоторое время, но поможет подобрать оптимальный и качественный вариант RGB подсветки для существующих условий.