Особенности маркировки проволочных резисторов
Правила, принятые по цветной маркировке резисторов, распространяются на все их типы, в том числе на проволочные варианты исполнения.
В данном случае, есть только несколько отличительных признаков, которые нужно учитывать:
- 1 полоса, которая шире других и обычно белого цвета, не является частью маркировки, а обозначает только тип резистора.
- Десятичные показатели более 4 не могут быть применены при маркировке.
- Последняя полоса может указывать на особые свойства, к примеру, огнестойкость.
Таблица, которая используется в этом случае, несколько отличается. Отличие заключается в величине множителя.
Цифровые маркировки
Цифровые маркировки содержат показатель (N) множителя (10 N) в качестве последней цифры, остальные две или три — мантисса сопротивления.
Номинал пассивных компонентов для поверхностного монтажа маркируется по определенным стандартам и не соответствует напрямую цифрам, нанесенным на корпус. Статья знакомит с этими стандартами и поможет Вам избежать ошибок при замене чип-компонентов.
Основой производства современных средств радиоэлектронной и вычислительной техники является технология поверхностного монтажа или SMT-технология (SMT — Surface Mount Technology). Эту технологию отличает высокая автоматизация монтажа печатных плат. Специально для SMT технологии были разработаны серии миниатюрных безвыводных электронных компонентов, которые еще называют SMD (Surface Mount Devices) компонентами или чип-компонентами. Размеры чип-компонентов стандартизованы во всем мире, как и способы их маркировки.
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЧИП-РЕЗИСТОРОВ На рис.1 представлен внешний вид чип-резисторов, а в таблицах 1,2 приведены их геометрические размеры и основные технические данные. Типоразмеры SMD резисторов обозначаются четырехзначным числом по стандарту IEA. Обозначения самих же SMD резисторов некоторых зарубежных производителей приведены в табл.3. В нашей стране чип-резисторы также производятся (серия Р1-12).
МАРКИРОВКА ЧИП-РЕЗИСТОРОВ Для маркировки чип-резисторов применяется несколько способов. Способ маркировки зависит от типоразмера резистора и допуска.
Резисторы типоразмера 0402 не маркируются.
Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу (то есть номинал резистора без множителя), а последняя — показатель степени по основанию 10 для определения множителя.
При необходимости к значащим цифрам может добавляться буква R для обозначения десятичной точки. Например, маркировка 563 означает, что резистор имеет номинал 56х103 Ом = 56 кОм.
Обозначение 220 означает, что номинал резистора равен 22 Ома.
Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырьмя цифрами, первые три из которых обозначают мантиссу, а последняя — показатель степени по основанию 10 для задания номинала резистора в Омах.
Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750х10 Ом = 7,5 кОм. Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 (таблица 4) двумя цифрами и одной буквой.
Цифры задают код, по которому из таблицы определяют мантиссу, а буква — показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка 10С означает, что резистор имеет номинал 124х102 Ом = 12,4 кОм. Литература — Журнал «Ремонт электронной техники» 2 1999:::
Самым распространённым и очень широко применяемым в электронике элементом. является резистор. Это элемент, создающий сопротивление
электрическому току. Номинальные значения зависят от класса точности. Он указывает на отклонение, от номинала, которое допускается техническими условиями. Имеются три класса точности:
- 5 %-ный ряд;
- 10 %-ный;
- 20 %- ный.
Например, если взять резистор I класса с номинальным значением сопротивления 100 кОм, то его натуральная величина находится в пределах от 95 до 105 кОм. У такого же компонента III класса точности величина будет лежать в 20%ном интервале, и равняться 80 или 120 кОм. Кто хорошо знаком с электротехникой, может вспомнить, что существуют прецизионные резисторы с 1%ным допуском.
Термин SMD резистор появился сравнительно недавно. Surface Mounted Devices дословно можно перевести на русский язык как «устройство, монтируемое на поверхность». Чип резисторы, как их ещё называют, используют при поверхностном монтаже печатных плат. Они имеют гораздо меньшие габариты
, чем их проволочные аналоги. Квадратная, прямоугольная или овальная форма и низкая посадка позволяет компактно размещать схемы и экономить площадь.
На корпусе имеются контактные выводы, которые при монтаже крепятся прямо на дорожки печатной платы. Подобная конструкция делает возможным крепить элементы без применения отверстий. Благодаря этому полезная площадь платы используется с максимальным эффектом, что позволяет уменьшить габариты устройств. В связи с тем, что имеют место небольшие размеры элементов, достигается высокая плотность монтажа
Основное преимущество таких элементов — это отсутствие гибких выводов, что позволяет не сверлить отверстия в печатной плате. Вместо них используются контактные площадки.
Переменные резисторы.
Конструктивно, переменные резисторы состоят из токопроводящей поверхности
с двумя омическими контактами,
по сути — открытого плоскостного постоянного резистора, проволочного или угольного, и скользящего
по ней контакта — токосъемника.
Величину электрического сопротивления переменного резистора можно плавно изменять,
от нуля, до номинального значения. Это достигается за счет перемещения скользящего контакта
по токопроводящей поверхности.
На рисунке ниже, изображен переменный резистор без задней крышки и его схемное обозначение.
Предназначение подстроечных резисторов — точная настройка режимов
работы электронных устройств.
Причем, положение настройки как правило, не изменяется в течении всего
дальнейшего срока эксплуатации устройства.
Поэтому, устройство привода перемещения скользящего контакта приспособлено
для регулирования с помощью отвертки, а к прочности проводящего слоя не
прилагается особых требований.
Регулировочные резисторы предназначенны для регулярного применения — например,
для изменения уровня громкости звуковоспроводящих устройств.
Их механические свойства должны соответствовать особым требованиям —
проводящий слой, по которому скользит токосьемник должен отличаться
особой устойчивостью к механическому воздействию.
Привод для перемещения скользящего контакта снабжается удлиненной
ручкой, для большего удобства в эксплуатации.
Сопротивление резистора в цепи.
Чтобы лучше представить себе работу резистора в цепи, обратимся к водопроводной аналогии. Поток воды между двумя произвольно выбранными сечениями трубы зависит как от разности давлений в этих сечениях, так и от характеристик самой трубы. Разность давлений создается силой тяжести или насосом. Если разность давлений постоянна, то поток будет зависеть в основном от двух параметров: от внутреннего диаметра трубы и от ее длины. Может быть так, что при большом диаметре внутренности трубы забиты ржавчиной, и она оказывает большое сопротивление потоку.
Примерно то же происходит с потоком электронов при движении между узлами кристаллической решетки. В зависимости от того, как расположены атомы внутри материала проводника, какие размеры имеет сам проводник, электроны под воздействием поля в одних случаях легче, в других с большими трудностями перемещаются от точки к точке. Количественно поток воды можно измерить в литрах за секунду, величину электрического тока (потока электронов) в проводнике измеряют в амперах. Увеличение сопротивления будет наблюдаться при увеличении длины проводника и при уменьшении его сечения. Единица измерения величины сопротивления проводников — 1 Ом.
Сопротивление в резисторе очень сильно зависит от материала, из которого изготовлены проводники. Сравним медь и сплав нихром. Если удельное сопротивление меди составляет 0,0175 Ом*мм², то сопротивление нихрома – 1,1 Ом*мм², то есть в 60 раз больше. Практически это значит, что если на концах одинаковых по геометрии проводов из меди и нихрома обеспечить разность потенциалов в 1 вольт, то ток в медном образце будет в 60 раз больше, чем в нихромовом.
Чаще всего постоянный резистор представляет собой сравнительно компактный элемент цилиндрической формы с двумя выводами. К выводам подсоединены концы намотанного или осажденного на корпус проводника.
Кроме сопротивления резистор характеризуется еще рассеиваемой мощностью. Это очень важная характеристика. Известно, что при прохождении тока через проводник выделяется тепло. Если площадь, через которую оно рассеивается, будет недостаточна, то резистор через некоторое время перегорит. Рассеивание происходит путем нагрева воздуха, либо другой среды, которая окружает резистор, и через излучение. Рассеиваемая мощность – это такая мощность, которая может выделяться на резисторе в виде тепла в течение продолжительного времени без его разрушения.
Советуем изучить Инвертор 12 220 повышенной мощности своими руками
Еще одна характеристика – точность сопротивления резистора. Изготовить даже два абсолютно одинаковых резистора практически невозможно по ряду причин. Но можно изготавливать большие партии резисторов, сопротивление которых не будет выходить за заданные пределы. Поэтому постоянные резисторы характеризуются еще определенной точностью, которую указывают в процентах. Эта величина задает тот интервал значений, за которую величина сопротивления выходить не должна. Очень точные резисторы стоят очень дорого, менее точные – дешевле.
Не может быть любой и сама величина сопротивления резистора. Было бы неразумно требовать от промышленности, чтобы изготавливались и 100 Ом и 100,05 Ом. Возможные значения сопротивлений образуют так называемые ряды и обозначаются: E3, E6, E12, E24… Чем больше номер ряда, тем больше значений в нем предусмотрено для величин сопротивлений резисторов. Сравним:
— ряд E6: 1, 1.5, 2.2 Ом
— ряд E12: 1, 1.2, 1.5, 1.8, 2.2 Ом
Видим, что в ряд E12 включены промежуточные номиналы `1.2 и 1.8, которых не найти в E6. Существуют также ряды E48, E96. Самый большой выбор представлен рядом E192.
Очень просто изображаются постоянные резисторы на электрических схемах: прямоугольник с двумя выводами. Если в схеме нужно указать мощность рассеивания резистора, то используют следующие условные обозначения:
— две наклонные черточки – 0,125 Вт;
— одна наклонная черточка – 0,250 Вт;
— одна вертикальная – 1 Вт;
— две вертикальных – 2 Вт.
Как рассчитать мощность резистора?
Мощность рассеивания резистора
У резистора есть довольно важный параметр, который целиком и полностью влияет на надёжность его работы. Этот параметр называется мощностью рассеивания. Он уже упоминался в статье о параметрах резистора.
Сама по себе мощность постоянного тока рассчитывается по простой формуле:
Здесь, P(Вт) – мощность;
U(В) – напряжение;
(А)
Как видим, мощность зависит от напряжения и тока. В реальной цепи через резистор протекает определённый ток. Поскольку резистор обладает сопротивлением, то под действием протекающего тока резистор нагревается. На нём выделяется какое-то количество тепла. Это и есть та мощность, которая рассеивается на резисторе.
Если в схему установить резистор меньшей мощности рассеивания, чем требуется, то резистор будет нагреваться и в результате сгорит. Поэтому, если в схеме нужно заменить резистор мощностью 0,5 Ватт, то ставим на 0,5 Ватт и более. Но никак не меньше!
Каждый резистор рассчитан на свою мощность. Стандартный ряд мощностей рассеивания резисторов состоит из значений:
- 0,125 Вт
- 0,25 Вт
- 0,5 Вт
- 1 Вт
- 2 Вт
- Более 2 Вт.
Чем больше резистор по размерам, тем, как правило, на большую мощность рассеивания он рассчитан.
Допустим, у нас есть резистор с номинальным сопротивлением 100 Ом. Через него течёт ток 0,1 Ампер. На какую мощность должен быть рассчитан этот резистор?
Тут нам потребуется формула. Выглядит она так:
Здесь, P(Вт) – мощность;
R(Ом) – сопротивление цепи (в данном случае резистора);
I(А) – ток, протекающий через резистор.
Все расчёты следует производить, строго соблюдая размерность. Так, если сопротивление резистора не 100 Ом, а 1 кОм, то в формулу нужно подставить значение в Омах, т.е. 1000 Ом (1 кОм = 1000 Ом). Тоже правило касается и других величин (тока, напряжения).
Рассчитаем мощность для нашего резистора:
Мы получили мощность 1 Ватт. Теперь небольшое отступление.
В реальную схему необходимо устанавливать резистор с мощностью в полтора – два раза выше рассчитанной.
Поэтому нам подойдёт резистор мощностью 2 Вт (см. резисторов).
Также есть и другая формула для расчёта мощности. Она применяется в том случае, если неизвестен ток, который протекает через резистор.
Всё бы хорошо, но в жизни бывают случаи, когда применяется последовательное или параллельное соединение резисторов. Как рассчитать мощность рассеивания для каждого из резисторов в последовательной или параллельной цепи?
Допустим, нам требуется заменить резистор сопротивлением 100 Ом. Протекающий через него ток равен 0,1 Ампер. Следовательно, мощность этого резистора 1 Ватт.
Для его замены можно применить два соединённых последовательно резистора сопротивлением 20 Ом и 80 Ом. На какую мощность должны быть рассчитаны эти резисторы?
Для последовательной цепи действует одно правило. Через последовательно соединённые резисторы течёт один и тот же ток. Теперь применим формулу для расчёта мощности и получим, что мощность рассеивания резистора на 20 Ом должна быть равна 0,2 Вт, а резистора на 80 Ом — 0,8 Вт. Выбираем резисторы согласно стандартному ряду мощностей:
R1 – 20 Ом (0,5 Вт);
R2 – 80 Ом (1 Вт)
Как видим, если сопротивления резисторов будут разные, то и мощность на них будет выделяться разная.
Мощность, рассеивающаяся на резисторе, зависит в первую очередь от тока, который течёт через данный резистор. А ток зависит от сопротивления резистора. Поэтому, если вы соединяете последовательно резисторы разных номиналов, то и рассеивающаяся мощность распределиться между ними.
Это обстоятельство необходимо учитывать при самостоятельном конструировании электронных самоделок иначе при неправильном подборе резисторов может получиться так, что на одном резисторе выделиться больше мощности, чем на другом, и он будет работать в тяжёлом температурном режиме.
Чтобы не ломать голову и не рассчитывать мощность каждого в отдельности резистора, можно поступать так:
Мощность каждого резистора, входящего в составляемую нами цепь (параллельную или последовательную) должна быть равна мощности заменяемого резистора. Иными словами, если нам надо заменить резистор, мощностью 1 Вт, то каждый из резисторов для его замены должен иметь мощность не менее 1 Ватта. На практике это самое быстрое и эффективное решение.
Для параллельного соединения резисторов нужно учитывать, что через резистор с меньшим сопротивлением протекает больший ток. Следовательно, и мощности на нём будет рассеиваться больше.
Нравится
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Что собой представляет маркировка smd резисторов
Резисторы smd – это постоянные детали, которые необходимы для поверхностного монтажа на плату. Если сравнивать smd резисторы и металлопленочные резисторы, то первые будут в несколько раз меньше, но есть и такие которые имеют большие размеры, именно поэтому существует маркировка smd резисторов. По форме они также отличаются, есть квадратные, прямоугольные и круглые и даже овальные. Внимательно изучая смд резистор маркировку, можно отметить, что маркировка бывает цифровая или буквенная.
Главным отличием смд резисторов является наличие небольших контактов, которые вставляются в печатную плату. Рассмотрим, для чего нужна маркировка резисторов.
Для чего нужна маркировка резисторов
Учитывая тот факт, что смд резисторы имеют небольшой размер, на них нельзя нанести цветовую маркировку, поэтому производителями был разработан иной способ маркировки. Как правило, обозначение smd резисторов содержат три или четыре цифры, могут присутствовать буквы.
- Цифровая маркировка резисторов необходима для того, чтобы указывать на численное значение сопротивления резистора, последняя цифра является множителем. Она же может указывать на степень, которую надо возвести 10, чтобы получить окончательный результат. Например, определить сопротивление можно таким образом: 450 = 45 х 10равно 45 Ом.
- Если маркировка имеет вид EIA-96, то это означает, что резисторы высокой точности. Этот стандарт предназначается для резисторов, которые имеют небольшое сопротивление в 1%. Такая система маркировки имеет три элемента: 2 цифры, которые указывают на код номинала, а буквы являются множителем. Цифры – это код, которое дает число сопротивления. Например, код 04 может указывать на 107 Ом.
Для удобного расчета применяется калькулятор, который поможет быстро найти величину сопротивления. Для расчета надо ввести код, который есть на компоненте и сопротивление сразу отобразиться внизу. Такой калькулятор подходит не только для стандарта. Чтобы более точно проверить сопротивление, лучше всего для расчета применять мультиметр. Какой лучше мультиметр выбрать, читайте здесь.
Какие характеристики показывает
Самой главной характеристикой деталей является величина номинального сопротивления, допуск на величину и коэффициент температуры. С любой из этих характеристик связана мощность smd резисторов и сопротивление между ним и окружающей температурой. В некоторых областях учитываются даже шумовые характеристики.
Чтобы подробно разобраться в этом вопросе, надо внимательно изучить все характеристики:
- Величина номинального сопротивления. Допуск на величину номинального сопротивления задается в процентах. Такое значение указывает на сопротивление резистора при внешних воздействиях на него.
- Температура. Как правило, естественной температурой считается +20°С и должно быть нормальное атмосферное давление. СМД резисторы выпускаются с допуском на номинальное сопротивление в пределах от ±0.05% до ±5%.
- Точность. Самыми точными резисторами можно считать те, которые высчитываются по формуле ТКС=DR/(R*DТ). DR означает изменение сопротивления при перемене температуры на величину DТ, R – номинальное значение сопротивления.
Если компоненты можно просчитать по этой формуле, то это означает, что они обладают наивысшей точностью.
Стандартная цветовая маркировка резисторов
Для всех типов постоянных резисторов с гибкими выводами применяются системы маркировки с 3, 4, 5, и 6 цветными кольцами.
Цветная маркировка с 3-мя полосками
Эта система маркировки используется только для резисторов с допустимым отклонением ±20%. Цвета полос соответствую универсальной таблице, приведенной выше. Первыми двумя полосами маркируется сопротивление, третья полоса указывает показатель десятичного множителя.
В соответствии с приведенными на рисунке обозначениями сопротивление резистора определяется следующим образом
R = (10D1 + D2) * 10E
Принцип работы симистора позволяет использовать обратную связь. Такое действие можно сравнить с работой двери в метро. Именно этой особенностью и объясняется широкое применение регулятора мощности на симисторе в различных схемах регулирования.
Прежде, чем приниматься за изготовление простейшего импульсного питающего устройства, необходимо ознакомиться с его принципиальными схемами. Практические рекомендации по выбору основных элементов для сборки можно изучить здесь.
Для показанного резистора величина сопротивления:
D1 (красное кольцо) = 2
D2 (красное кольцо) = 2
E (зеленое кольцо) = 5
R = (20+2)*105 = 2200000 Ом = 2.2 Мом
Маркировка 4-мя цветными кольцами
Такая система маркировки применяется для резисторов номинальных рядов E12 и E24. Как и в случае с кодировкой тремя кольцами первые два используются для указания номинала, третье – величины показателя десятичного множителя. Четвертое цветное кольцо отражает допуск по сопротивлению. Для рядов E12 и E24 применяются только два цвета последней полосы серебристый для маркировки допуска ±10% (E12) и золотистый – допуска ±5% (E24).
R = (10D1 + D2) * 10E ± S
Номинал приведенного на рисунке резистора:
R = (50+1)*102=5100Ом = 5.1Ком ± 5%.
Цветная маркировка 5-ю полосками
Для маркировки резисторов с допусками менее 5%, номинал которых содержит 3 значащих цифры, используют нанесение на корпус 5-ти цветных полос. Принцип считывания сопротивления остается неизменным – первые 3 полосы обозначают цифры номинального ряда, четвертая – величину десятичного множителя, пятая – допуск.
R = (100D1 + 10D2 + D3) * 10E ± S
Цветовые обозначения допусков для номинальных рядов E48 (±2%), E96 (±1%) и E192 (±0,5%), а также прецизионных резисторов сведены в таблицу:
Использование универсальной таблицы цветов и таблицы цветового обозначения допусков дает следующую расшифровку маркировки приведенного на рисунке резистора:
R = (200+50+5)*101 = 255*10 = 2550 Ом = 2.55кОм ± 0.5%
Использование 6-ти цветных колец для маркировки резисторов
Кроме номинала и допуска в цветной маркировке резисторов может быть приведен такой важный параметр, как ТКС.
ТКС — температурный коэффициент сопротивления, показывает максимальное значение, на которое может измениться сопротивление резистора при изменении температуры на 1 градус. Для маркировки на корпусе величина ТКС показывается в ppm/OC. Величина ppm (аббревиатура parts per million) отражает миллионные доли номинала резистора.
Для организации домашнего освещения наиболее популярным вариантом выключателя стал двухклавишный. Это объясняется его широким спектром применения и высоким уровнем экономии ресурсов, как материальных, так и энергетических. Чтобы правильно подключить двухклавишный выключатель света, не потребуется особых знаний, достаточно хорошо подготовиться и придерживаться схемы установки.
Микроволновка — самый распространенный бытовой электроприбор в каждом доме. При возникновении поломок, совсем не обязательно нести её в сервисный центр, а вполне возможно сделать ремонт в домашних условиях, предварительно изучив устройство и принцип работы СВЧ-печи.
Таблица соответствия цветов маркировочных колец и величин ТКС приведена ниже.
Пример цветной маркировки резисторов с использованием шести колец показан ниже. При использовании такой системы обозначений считывание номинала и допуска ничем не отличается от случая пятизначной цветной маркировки. Шестая полоса показывает ТКС резистора.
R = (100D1 + 10D2 + D3) * 10E ± S (Appm/OC)
Расшифровка обозначения для приведенного на рисунке резистора дает следующие результаты:
R= (500+6+2)*101 = 5620Ом = 5.62кОм ± 1% (10 ppm/OC)
Шестое цветное кольцо маркировки может быть использовано для отображения информации о надежности резистора. В этом случае ширина шестого кольца должна превосходить все остальные в 1.5 раза. Показатель надежности рассматривается как процент отказов элемента на 1000 часов работы. Нормируемые величины надежности и их цветные обозначения представлены в следующей таблице
Цветовая маркировка
Чтобы определить значение сопротивления резистора с цветовой маркировкой, сначала надо повернуть его таким образом, чтобы его серебряная или золотая полосы находились справа, а группа других полосок — слева. Если же вы не можете найти серебряную или золотую полоску, то надо повернуть резистор таким образом, чтобы группа полосок находилась с левой стороны.
Цвет полоски – закодированная цифра: Черный – 0 Коричневый – 1 Красный – 2 Оранжевый – 3 Желтый – 4 Зеленый – 5 Синий – 6 Фиолетовый – 7 Серый – 8 Белый – 9
Третья полоска имеет другое значение: она указывает количество нулей, которое следует добавить к полученному предыдущему цифровому значению.
Цвет полоски – Количество нулей Черный – Нет нулей — Коричневый – 1 – 0 Красный – 2 – 00 Оранжевый – 3 – 000 Желтый – 4 – 0000 Зеленый – 5 – 00000 Синий – 6 – 000000 Фиолетовый – 7 – 0000000 Серый – 8 – 00000000 Белый – 9 – 000000000
Следует помнить, что цветовая маркировка является вполне согласующейся и логичной, например, зеленый цвет означает либо величину 5 (для первых двух полосок), либо 5 нулей (для третьей полоски).
Сама последовательность цветов совпадает с последовательностью цветов в радуге (с красного по фиолетовый цвета) (!!!)
Если на резистор нанесена группа из четырех полосок вместо трех, то первые три полоски являются цифрами, а четвертая полоска означает количество нулей. Третья цифровая полоска дает возможность указать сопротивление резистора с более высокой точностью.
Давайте же рассмотрим неизвестный нам резистор.
В основном на резисторе бывают три, четыре, пять и даже шесть полосок. Первая полоска находится ближе всего к выводу резистора и ее делают шире, чем все другие полоски, но иногда это правило не соблюдается. Для того, чтобы не перелопачивать справочники по цветовой маркировке резисторов, в интернете можно скачать множество различных программ для определения номинала резистора.
Очень неплохой онлайн калькулятор вы также можете найти здесь.
Разновидности маркировки SMD резисторов
Важной характеристикой резисторов считается типоразмер. Простыми словами говоря, это величина, длина и ширина корпуса. Именно учитывая эти элементы, удается подобрать соответствующие разводке платы
Именно учитывая эти элементы, удается подобрать соответствующие разводке платы.
Рассмотрим, некоторые типовые размеры резисторов и их расшифровку по цифрам:
- SMD-резисторы 0201: длина =0,6 мм, ширина =0,3 мм, высота =0,23 мм. Номинальные значения составляют 0 Ом, 1 Ом — 30 МОм. Мощность всего 0,05 Вт, напряжение максимум 50 В.
- SMD-резисторы0402: длина =1,0 мм, ширина =0,5 мм, высота =0,35 мм. Номинальные значения составляют 0 Ом, 1 Ом — 30 МОм. Мощность всего 0,05 Вт, напряжение максимум 100 В.
- SMD-резисторы 0603: длина =1,6 мм, ширина =0,8 мм, высота =0,45 мм. Номинальные значения составляют 0 Ом, 1 Ом — 30 МОм. Мощность всего 0,01 Вт, напряжение максимум 100 В.
- SMD-резисторы 0805: длина =2,0 мм, ширина =1,2 мм, высота =0,4 мм. Номинальные значения составляют 0 Ом, 1 Ом — 30 МОм. Мощность всего 0,125 Вт, напряжение максимум 200 В.
- SMD-резисторы 1206: длина =3,2 мм, ширина =1,6 мм, высота =0,5 мм. Номинальные значения составляют 0 Ом, 1 Ом — 30 МОм. Мощность всего 0,25 Вт, напряжение максимум 400 В.
- SMD-резисторы 2010: длина =5,0 мм, ширина =2,5 мм, высота =0,55 мм. Номинальные значения составляют 0 Ом, 1 Ом — 30 МОм. Мощность всего 0,75 Вт, напряжение максимум 200 В.
- SMD-резисторы 2512: длина =6,35 мм, ширина =3,2 мм, высота =0,55 мм. Номинальные значения составляют 0 Ом, 1 Ом — 30 МОм. Мощность всего 1 Вт, напряжение максимум 400В.
Из этого следует, что если увеличивается маркировка чип резисторов, то повышается и номинальная рассеиваемая мощность.
Трехзначные цифры
Если маркировка осуществляется при помощи 3-х цифр, то первые две указывают на количество Ом, а последняя – количество нулей. Именно таким образом маркируются резисторы из ряда Е-24, отклонение может составлять 5%. Например, типоразмер резисторов с маркировкой 0603, 0805 и 1206.
Четырехзначные цифры
Если маркировка осуществляется при помощи 4-х цифр, то тогда первые 3 цифры – это количество Ом, а последняя – нули. Именно так составляется описание резисторов из ряда Е-96 с типоразмерами 0805, 1206. Если дополнительно еще можно рассмотреть буквенные значения, например букву R, то она играет роль запятой, которая делит доли. Например, если маркировка 4402, то это можно расшифровать, как 44 000 Ом или 44 кОм.
Стандарт EIA-96
Если резистор представлен комбинацией из букв и цифр, то первые два знака – значение Ом. Начинать маркировать детали могут с букв именно таким, и является стандарт EIA-96.
Заключение
Рассмотрим на примере как определяются основные параметры резисторов в соответствии с таблицей маркировки резисторов по ГОСТ 28883-90.
Пример: Определим параметры резистора с пятью кольцами: красный, фиолетовый, черный, коричневый, зеленый, номиналы резисторов указаны в Ом.
- первая цифра (1 — элемент) – 2;
- вторая цифра (2 — элемент) – 7;
- третья цифра (3 — элемент) – 0;
- множитель – 10;
- допуск,% – ±0,5.
Соответственно получается: 270 * 10 = 2700 Ом ±0,5% или 2,7 кОм ± 0,5%.
www.sesaga.ru
www.beam-robot.ru
www.wpcalc.com
www.fantasylab.ru
www.raschet.info
Предыдущая
РезисторыЧто такое терморезистор?
Следующая
РезисторыПеременный резистор