Какое выбрать реле напряжения для защиты бытовых приборов

Содержание

Перепады напряжения – неизбежность?

Наши жилые дома запитываются по трехфазной системе. К дому подходит четыре провода: три фазовых и один нулевой. Если замерить напряжение между любым фазовым и нулевым проводами, то всегда будет 220 В, если между двумя фазовыми проводами – всегда получим 380 В. В связи с тем, что состояние щитовых оставляет желать лучшего, когда нулевой провод отходит, остается то напряжение, которое есть между двумя фазами, то есть 380 В.

Обрыв нуля в трехфазной сети часто вводит в заблуждение: провод обрывается, а напряжение не исчезает, а наоборот, увеличивается. Это и есть причиной резких перепадов напряжения, точнее, скачков высокого напряжения, которые приводят к порче элекроприборов, электропроводки, а также риску пожара. Можно ли от этого защититься?

Существует ряд вариантов защиты от высокого напряжения и несколько причин, из которых мы рассмотрели только одну. Идеальным решением было бы обновить всю энергосистему не только в квартире, но и во всем доме. Однако в многоквартирных домах это проблематично, кроме того, помимо обрыва нулевого проводника, существуют и другие причины резкого скачка напряжения вверх:

  • Удар молнии в линию электропередачи.
  • Разрыв проводов от падения на линию электропередач дерева.
  • Ошибки в настройке общего электрощитка.
  • Одновременное включение или отключение большого количества электроприборов.

Не от каждого случая можно защититься превентивными мерами, поэтому применяют специальные устройства, которые реагируют на скачок и своевременно предотвращают тот вред, который может быть нанесен в результате скачка.

Как выставить время повторного отключения?

На корпусной части прибора, рядом с дисплеем, имеется кнопка настройки времени повторного включения. Она находится между кнопками ▲ и ▼, обозначена значком часов. После нажатия на нее и удержания на дисплее появится настроечное число, выставленное на заводе. Чаще всего это 15 секунд.

Что дает эта функция? Если, например, на одной фазе произойдет перепад разности потенциалов, превышающий предельные значения, реле отключит питание сети.

После того, как напряжение нормализуется, контрольный прибор включит подачу электричества через тот период, который установлен при заводской настройке (15 секунд). Для изменения значения удерживайте кнопку настройки до появления этой цифры на экране. После этого установите нужную цифру, манипулируя верхней или нижней кнопкой. Шаг изменения, предусмотренный устройством – 5 секунд.

Пример видео, где показана работа реле напряжения

Решать проблему скачков напряжения в сетях помогают специальные устройства – реле контроля напряжения. Принцип действия таких реле достаточно прост, есть “электронный блок”, который следит, чтобы напряжение находилось в заданных уставками пределах и при отклонениях сигнализирует расцепителю (силовой части), который отключает сеть. Все бытовые реле контроля напряжения включаются автоматически через определенное время. Для обычных потребителей достаточно задержки в несколько секунд, но для холодильников и кондиционеров с компрессорами нужна задержка в несколько минут.

Реле контроля напряжения бывают однофазные и трехфазные. Однофазные реле напряжения отключают одну фазу, а трехфазные – одновременно все три фазы. При трехфазном подключении в быту, следует применять однофазные реле напряжение, чтобы колебания напряжения на одной фазе, не привели к отключению других фаз. Трехфазные используют для защиты двигателей и других трехфазных потребителей.

Я разделяю приборы защиты от перенапряжений на три типа: УЗМ-51М от “Меандра”, Zubr от “Электроникс” и все остальные. Никому ничего не навязываю – это мое личное мнение.

Реле напряжения Zubr (Rbuz)

Данное устройство предназначено для защиты от перепадов напряжения (отгорания нуля). Производят ЗУБР в Донецке.

Отмечу особенности этого реле напряжения.

Индикация напряжения на устройстве – показывает значение напряжения в реальном времени. Это достаточно удобно и необходимо для оценки ситуации с напряжением в сети. Погрешность показаний низкая, разница относительно высокоточного мультиметра Fluke 87 всего 1-2 Вольта.

Реле напряжения Zubr выпускают на различные номинальные токи: 25, 32, 40, 50 и 63А. Устройство при номинальном токе на 63А выдерживает в течение 10 минут ток 80А.

Верхнее значение по напряжению выставляется от 220 до 280 В с шагом 1 Вольт, нижнее – от 120 до 210 В. Время повторного включения от 3 до 600 сек., с шагом 3 секунды.

Я выставляю на реле Zubr, максимальное (верхнее) значение по напряжению 250 Вольт, а нижнее значение – 190 Вольт.

У приборов с индексом t в названии, например Zubr D63t, есть термозащита от внутреннего перегрева.  Т.е. при увеличении температуры самого прибора до 80 градусов (например из-за нагрева контактов) – он отключается.

Реле Zubr занимает 3 модуля или 53 мм  на дин-рейке и бывают только однофазными.

В паспорте и приведенных схемах подключения Зубр, не сказано про ограничения по току, но в старой документации, ранее указывалось, что не более 0,75 от номинального.

Способы защиты от перенапряжений в электрических сетях

Перенапряжение – это ненормальный режим работы в электрических сетях, который заключается в чрезмерном увеличении значения напряжения выше допустимых значений для участка электрической сети, который является опасным для элементов оборудования данного участка электрической сети.

Изоляция оборудования электроустановок рассчитана на нормальную работу при определенных значениях напряжения, в случае наличия перенапряжения, изоляция приходит в негодность, что приводит к повреждению оборудования и представляет опасность для обслуживающего персонала или людей, которые находятся в непосредственной близости к элементам электрических сетей.

Перенапряжения могут быть двух видов – природными (внешними) и коммутационными (внутренними). Природные перенапряжения – это явление атмосферного электричества. Коммутационные перенапряжения возникают непосредственно в электрических сетях, причинами их проявления могут быть большие перепады нагрузки на линиях электропередач, феррорезонансные явления, послеаварийные режимы работы электрических сетей.

Способы защиты от перенапряжений

В электроустановках для защиты оборудования от возможных перенапряжений применяют такое защитное оборудование, как разрядники и ограничители перенапряжения нелинейные (ОПН) .

Основным конструктивным элементом данного защитного оборудования является элемент с нелинейными характеристиками. Характерная особенность данных элементов заключается в том, что они изменяют свое сопротивление в зависимости от приложенного к ним значения напряжения. Рассмотрим вкратце принцип работы данных защитных элементов.

Разрядник или ограничитель перенапряжения присоединяется к шине рабочего напряжения и к контуру заземления электроустановки. В нормальном режиме, то есть, когда сетевое напряжение находится в пределах допустимых значений, разрядник (ОПН) имеет очень большое сопротивление, и он не проводит напряжение.

В случае возникновения перенапряжения на участке электрической сети сопротивление разрядника (ОПН) резко падает, и данный защитный элемент проводит напряжение, способствуя утечке возникшего скачка напряжения в заземляющий контур. То есть на момент перенапряжения разрядник (ОПН) осуществляет электрическое соединение провода с землей.

Разрядники и ОПН устанавливаются для защиты элементов оборудования на территории распределительных устройств электроустановок, а также в начале и в конце линий электропередач напряжением 6 и 10 кВ, которые не оборудованы грозозащитным тросом.

Для защиты от природных (внешних) перенапряжений на металлических и железобетонных конструкциях открытых распределительных устройств устанавливают стержневые молниеотводы . На высоковольтных линиях напряжением 35 кВ и выше применяют грозозащитный трос (тросовый молниеотвод), который располагается в верхней части опор линий электропередач на всей их протяженности, соединяясь с металлическими элементами линейных порталов открытых распределительных устройств подстанций. Молниеотводы притягивают атмосферные заряды на себя, тем самым предупреждая их попадания на токоведущие части электрооборудования электроустановок.

Для обеспечения надежной защиты оборудования электроустановок от возможных перенапряжений, разрядники и ограничители перенапряжений, как и все элементы оборудования, должны проходить периодические ремонты и испытания. Также необходимо в соответствии с установленной периодичностью проверять сопротивление и техническое состояние заземляющих контуров распределительных устройств.

Перенапряжения в низковольтных сетях

Явление перенапряжений также характерно и для низковольтных сетей напряжением 220/380 В. Перенапряжения в низковольтных сетях приводят к выходу из строя не только оборудования данных электрических сетей, но и электроприборов, которые включены в сеть.

Для защиты от перенапряжений в домашней электропроводке используют реле напряжения или стабилизаторы напряжения, источники бесперебойного питания, в которых предусмотрена соответствующая функция. Также существуют модульные устройства защиты от импульсных перенапряжений, предназначенные для установки в домашний распределительный щиток.

В низковольтных распределительных устройствах предприятий, электроустановок, ЛЭП для защиты от перенапряжений применяют специальные ограничители перенапряжений по принципу работы схожие с высоковольтными ОПН.

В чем причины перепадов напряжения в сети?

Система электроснабжения в нашем государстве далеко не совершенна. Из-за этого положенная величина напряжения 220В, с расчетом на которую изготавливают всю бытовую технику, выдерживается далеко не всегда. В зависимости от того, какая нагрузка в конкретный момент приходится на сеть, напряжение в ней может колебаться в значительных пределах.

Скачки напряжения в наших сетях не являются редкостью из-за того, что подавляющее большинство всех элементов энергоснабжающей системы разрабатывалось несколько десятилетий назад и не рассчитывалось на современную нагрузку. Ведь практически в любой современной квартире имеется множество домашних энергопотребителей. Конечно, это делает проживание более комфортным, но вместе с тем значительно увеличивает потребление электричества. Линия далеко не всегда может справиться с такими нагрузками, следствием чего становятся частые перепады напряжения.

Один из способов защиты от перенапряжения сети на видео:

Надеяться на то, что вскоре старая система будет полностью переделана с учетом современных требований, не стоит. Поэтому защита от скачков напряжения электролинии и подключенных к ней аппаратов – это та задача, при решении которой хозяевам приходится думать собственной головой и работать своими руками.

Теперь поговорим о причинах, из-за которых возникают скачки напряжения, более подробно. Обычно изменения разности потенциалов происходят без резких бросков, и современная техника, рассчитанная на работу в пределах от 198 до 242В, способна справиться с ними без ущерба для себя.

Речь пойдет о тех случаях, когда напряжение в течение долей секунды повышается в разы, а затем столь же быстро снижается. Это и есть то явление, которое называется – скачок напряжения. Вот каковы причины, по которым оно чаще всего происходит:

  • Одновременное включение (или, наоборот, отключение) нескольких приборов.
  • Обрыв нулевого проводника.
  • Удар молнии в линию электропередачи.
  • Разрыв жил внутри провода из-за падения на ЛЭП дерева
  • Неправильное подключение кабелей в общем электрощите.

Как видим, скачок напряжения может произойти по разным причинам. Предугадать, когда он произойдет, попросту нереально, а значит, подумать о защите от перепадов напряжения следует заблаговременно.

Пример монтажа реле напряжения на видео:

Как выбрать контактор для электродвигателя с частыми пусками

Выбор контактора для электродвигателей с частыми пусками отличается от выбора для обычных силовых соединений

Прежде всего необходимо обратить внимание на категории применения, допустимую частоту включения, механическую и коммутационную износостойкость

В связи с тем, что у каждого электродвигателя собственный характер работы, данные параметры подбираются индивидуально для каждой модели.

Категории применения

Первое, на что нужно обратить внимание при выборе, это категории применения – режимы срабатывания расцепителя. Электродвигатель – сложный механизм с пусковым током и повторно-кратковременными включениями, при которых он работает не в штатном режиме

Электродвигатель – сложный механизм с пусковым током и повторно-кратковременными включениями, при которых он работает не в штатном режиме.

При этом нагрузка на сеть также отличается от номинальной, и механизм расцепления должен нормально срабатывать в нестандартных условиях.

Для переменного тока категории применения обозначаются маркировкой AC. Отличаются характером срабатывания:

  • AC-1 – для электрических моторов с активной или малоиндуктивной нагрузкой;
  • AC-2 – старт с фазным ротором, реверсивное торможение;
  • AC-3 – прямой пуск короткозамкнутого ротора, отключение вращающихся двигателей;
  • AC-4 – пуск и остановка электромоторов с короткозамкнутым ротором посредством противовключения. Для такого режима применяются спаренные (реверсивные) контакторы с механической блокировкой, не допускающей одновременного запуска нескольких потребителей. При этом уменьшается In и базовое количество циклов.

Для постоянного существуют собственные категории – DC:

  • DC-1 (аналог AC-1) – активная или малоиндуктивная нагрузка;
  • DC-2 – пуск электродвигателей с параллельным возбуждением, отключение при номинальной частоте вращения;
  • DC-3 – запуск моторов с параллельным возбуждением, отключение при медленном вращении ротора или в неподвижном состоянии;
  • DC-4 – пуск электродвигателей с последовательным возбуждением и остановка при номинальных оборотах;
  • DC-5 – старт двигателей с последовательным возбуждением и остановка с неподвижным или медленно вращающимся ротором, торможение противотоком.

Промышленные электромоторы с частыми пусками должны поддерживать категорию AC-3, AC-4 – для переменного электротока, и DC-3, DC-4, DC-5 для постоянного.

Номинальный ток и напряжение питания катушки управления

Номинальный ток – наиболее значимый параметр, подбираемый по мощности потребителя.

Главный вопрос: как правильно считать? Любой электродвигатель при запуске кратковременно выдает мощность, часто в 5-7 раз превышающую номинальную.

Трёхфазные устройства

Реле контроля напряжения 3 фазное, часто называемое реле контроля фаз, используется в сетях 380В. Количество защитных функций трёхфазных устройств больше, чем у однофазных. Это и контроль наличия всех трёх фаз, и контроль уровня напряжения во всех фазах, и проверка правильной последовательности фаз, а также проверка уровня симметрии фаз относительно друг друга.

Обычное трёхфазное реле имеет три входных клеммы «L1», «L2» и «L3», к которым подключаются фазы A, B, C. Также есть выходные клеммы в виде блок-контактов.

Входные клеммы служат для измерения и контроля трёхфазного электрического питания, назначение выходных клемм – сигнализация или управление работой контактора.

Очень часто на производстве внутри вводных шкафов и щитов используются трёхфазные реле напряжения (контроля фаз), способные производить измерения и контроль электрических параметров одновременно в двух независимых друг от друга трёхфазных сетях. Обычно контролируется сеть основного питания и сеть резервного питания. Для управления силовыми контакторами используются выходные блок-контакты трёхфазного реле. Блокировочных контактов может быть несколько.

У трёхфазных реле напряжения, также как и у однофазных, можно производить регулировку значений минимального и максимального напряжения. А вот что касается регулировки по времени, то можно задавать не только время возврата, но и время срабатывания в аварийных ситуациях.

Ввод 1

У заказчика есть 4 ввода на два здания, все они имеют отличия, буду обращать внимание читателей по ходу статьи. Первый ввод

В электрощитовой увидел такую картину:

Первый ввод. В электрощитовой увидел такую картину:

1 – электрощитовая

Вверху слева – щиток с вводным рубильником, трехполюсный автомат D80.

Подробнее внутренности щитка:

1 – внутренности электрощита

Вверху – Трехфазный счетчик Энергомера, цифровой вольтметр Digitop ВМ-3, переключатель улица-генератор.

Вот поближе первый ряд, он будет очень важен для нас, поскольку там будут происходить все подключения:

1 – Выходы счетчика на переключатель

На рубильнике, вверху слева – провода (белый, голубой, коричневый), в разрыв которых нужно будет включить нашу схему реле защиты. Вот это место, ещё ближе:

1 – Переключатель счетчик-генератор

Гибкие провода справа на рубильнике – от генератора, который установлен на крыше здания.

Не смотря на то, что электрощит этот собирала солидная фирма, сразу видно грубую ошибку – обратите внимание на автоматы 25 Ампер:

1 – Грубая ошибка в выборе защитных автоматов

И если в правой части фото провод сечением 2,5 мм² понять и простить можно, то шесть проводков 1,5 мм² ни в какие ворота уже не лезет. Тут бы понизить номинал до 13 или 10А, но надо разбираться с нагрузкой, да и не за этим я пришёл на этот объект. Кому интересно – подробно рассматриваю эту проблему в статье про выбор автоматов в квартирный щиток. Там же – много ссылок на релевантные статьи.

Ладно, приступаем к сборке нашей схемы, которую я вынес в отдельный щиток:

Процесс сборки электрощита 1

Провод для монтажа использовал ПВ1, одножильный, сечением 4 мм². А точнее – распущенный на жилы ВВГ4х4. Подключал в разрыв через клеммное соединение под винт, сфотографировать не получилось, ниже ещё примеры будут.

Вот что в итоге получилось:

1 – Окончательный вид трехфазного реле контроля напряжения

Напечатал на обратной стороне крышки инструкцию по эксплуатации и настройке для пользователей. Текст приведу ниже.

Реле напряжения трехфазное DigiTOP VP-380V

  • от 3 шт. — 2120 р.
  • от 5 шт. — 1980 р.

Трехфазное реле напряжения VP-380 DigiTOP предназначено для контроля текущих фаз в сети 380В и защиты 3-фазных нагрузок от перекоса напряжений по фазам (асимметрия, допуски расхождения напряжений по фазам устанавливает пользователь), пропадания одной или нескольких фаз или нуля, от неправильного чередования фаз (а, в, с). Одновременно отображает значения действующих напряжений на всех трех фазах. Трехфазное реле напряжения VP-380V управляет внешним четырехполюсным контактором любой мощности через собственное исполнительное реле, который производит защитное отключение трехфазной нагрузки или всей сети здания.

Стабилизаторы напряжения

Стабилизатор (нормализатор) напряжения применяется для поддержания стабильного и качественного напряжения в сети. Его назначение — поддерживать выходной сигнал на уровне 220 вольт, независимо от его уровня на входе. Стабилизатор не улучшает форму сигнала, не исправляет синусоиду, а только корректирует величину напряжения. При этом стоит заметить, что к стабилизаторам, вносящим изменение в синусоиду входного сигнала из-за своей конструкции, подключать приборы содержащие электродвигатели нельзя, так как это приводит к их перегреву.

Виды и их параметры

Стабилизаторы выпускаются с точной регулировкой, но с медленным реагированием на изменение входного сигнала (электромеханические) или с высокой скоростью реакции, но с погрешностью при подстройке уровня сигнала. Перед тем как подобрать себе вид оптимального нормализатора, необходимо померить уровень сигнала в сети. Измерения проводятся в разное время суток на протяжении недели.

Таким образом, определяется требуемый диапазон работы, а при возможности нужно исследовать, насколько быстро изменяется величина напряжения, и вид стабилизатора. Если величина изменяется медленно, оптимальным будет электромеханический тип. Если существуют резкие провалы, то ступенчатый. По принципу работы различают:

  1. Релейные. Основными радиоэлементами, входящими в состав такого типа устройств, являются многообмоточный трансформатор и мощные реле. При отклонениях сети от номинального напряжения происходит автоматическое переключение обмотки с использованием силового реле. Такой нормализатор характеризуется низкой ценой, но главный его недостаток в ступенчатой подстройке величины напряжения. При этом на выходе получается уже не чистая синусоида.
  2. Сервомоторные. Другое название — электромеханические. В работе используется автотрансформатор и двигатель, последним управляет система контроля. Обладает: низкой ценой, плавной регулировкой, компактными размерами и чистой синусоидой на выходе. К недостаткам относят шум и низкую скорость срабатывания.
  3. Инверторные. Действуют на основе двойного преобразования, сначала переменный ток в постоянный, а затем снова в переменный. Всё управление происходит с применением микроконтроллера. Работают в большом диапазоне входного сигнала с высокой скоростью реагирования. Обеспечивают защиту и от импульсных помех, но при этом являются самыми дорогими устройствами.
  4. Симисторные. Принцип работы такой же, как у релейного типа, но вместо механических узлов используются полупроводники, работающие в режиме ключа. Отличаются быстротой срабатывания и высоким коэффициентом полезного действия. При этом они совершенно бесшумные, но сложны в своих схемотехнических решениях.
  5. Феррорезонансные. Для бытового применения не используются, так как имеют большой вес и высокий уровень шума. Работают на эффекте феррорезонанса.

При изготовлении стабилизаторов используются различные методы достижения стабильного сигнала на выходе устройства. Любой нормализатор обязан поддерживать напряжение в допустимом диапазоне при его отклонении. Если отклонение составит большее значение, стабилизатор отключится и прервёт подачу электричества к подключённой нему нагрузке. Нормализаторы характеризуются такими параметрами:

  1. Максимальное входное напряжение. Это максимальный уровень сигнала, понижающийся стабилизатором до 220 вольт.
  2. Минимальное входное напряжение. Это минимальный уровень сигнала, повышающийся стабилизатором до 220 вольт.
  3. Выходное напряжение. Величина максимального выходного напряжения, подающегося со стабилизатора на нагрузку.
  4. Полная мощность. Пиковая мощность, которую может выдержать устройство, измеряется в ВА.
  5. Вид индикации. Может использоваться цифровой экран или аналоговые приборы.
  6. Тип. Принцип работы.
  7. Количество фаз. В зависимости от типа электропроводки бывают двух видов: однофазные и трёхфазные.

Но какие параметры контролируют эти реле?

Практически все предприятия изготовители этих реле дают параметры приведенные в таблице 1.

Параметры ЕЛ-11 (РСН25М, РОФ-11) ЕЛ-12 (РСН26М, РОФ-12)
Номинальное напряжение питания переменного тока 50 Гц, В 100, 110, 220, 380, 400, 415 100, 220, 380
Допустимые колебания напряжения питания от номинального значения +10%, 15%
Срабатывание реле (переключение выходных контактов) при:
— однофазном снижении напряжения (при U фн в двух других фазах) U ср.фн 0,6±0,05) Uфн (0,7±0,05) Uфн
— симметричном снижении фазных напряжений U ср.сим не менее 0,7 Uфн не менее 0,5 Uфн
— обрыве одной, двух или трех фаз срабатывает срабатывает
— обратном порядке чередования фаз срабатывает срабатывает
Время срабатывания (пределы регулирования), с, не менее от 0,1 до 10 от 0,1 до 10

Причины скачков напряжения

Существует много причин природного, аварийного и техногенного характера для скачков напряжения в электросетях

Основными провоцирующими факторами для перепадов напряжения в сети являются:

  • Одномоментная нагрузка от нескольких мощных приборов. Чаще это происходит зимой, когда жильцы многоквартирного дома или поселка подключают электро-конвекторы.
  • Плохое качество электрического оборудования или монтаж проводки/разводки с ошибками.
  • Погодные условия — шквальный ветер, гром, гроза, молнии.
  • Неправильная эксплуатация электроприборов.
  • Проведение сварочных работ при условии подключения аппарата к сети дома.

Во всех приведенных случаях могут наблюдаться как скачки напряжения, так и его падение.

Назначение кнопок и выводов

На передней панели стандартного реле ограничения напряжения имеется 3 контакта. Они предназначены для подключения нулевого и фазных проводников. Если смотреть слева направо, то контакты имеют следующее назначение:

  1. Общий нулевой провод. Этот контакт бывает раздвоен на 2 точки.
  2. Вход питающего напряжения. К нему подключается фаза, идущая от счетчика.
  3. Выход на квартиру. Этот провод отключится при скачке или просадке напряжения.

Выводы 2 и 3 — это нормально разомкнутые силовые контакты. Если напряжение между 1 и 2 находится в пределах нормы, то 2 и 3 замкнуты, и фаза может свободно проходить в сеть квартиры.

Устройство реле напряжения

Задержка времени включения

Для РН свойственна задержка включения. Если вольтаж провалился ниже допустимой нормы, то устройство выключится и разорвет контакты 2 и 3. Когда напряжение снова входит в норму, реле не включается. Оно выжидает некоторое время. Например, 15 секунд. Это необходимо, чтобы избежать ложных включений РН. Регулятор для настройки этого параметра предусмотрен на передней панели устройства.

На корпусе реле имеются кнопки с дисплеем. Они позволяют настроить диапазон рабочего напряжения и время задержки срабатывания. Подробная информация о настройке прибора содержится в руководстве по эксплуатации.