Как сделать простой регулятор оборотов, скорости вращения для компьютерного вентилятора, кулера, маломощного электродвигателя постоянного тока

Содержание

Схема подключения регулятора скорости вентилятора

Нередко в домашнем хозяйстве требуется установка регулятора скорости вращения вентилятора. Сразу следует отметить, что обычный диммер для регулировки яркости освещения не подойдет для вентилятора

Современному электродвигателю, особенно асинхронному, важно иметь на входе правильной формы синусоиду, но обычные диммеры для освещения искажают ее довольно сильно. Для  эффективной и правильной организации регулировки скорости вентиляторов необходимо:

  1. Использовать специальные регуляторы, предназначенные для вентиляторов.
  2. Учитывайте, что эффективно и безопасно регулировке поддаются только специальные модели асинхронных электромоторов, поэтому перед покупкой узнавайте из технических характеристик о возможности регулировки числа оборотов методом понижения напряжения.

Способы регулировки скорости вращения бытовых вентиляторов

Существует достаточно много различных способов регулировки частоты вращения вентилятора, но практически применяются в домашних условиях только два из них. В любом случае Вы сможете только понизить число оборотов вращения двигателя только ниже максимально возможной по паспорту к устройству.

Разогнать электродвигатель возможно только с использованием частотного регулятора, но он не применяется в быту, потому что у него высокая как собственная  стоимость, так и цена на услугу по его установке и наладке. Все это  делают использование частотного регулятора не рациональным в домашних условиях.

К одному регулятору допускается подключение нескольких вентиляторов, если только их суммарная мощность не будет превышать величину номинального тока регулятора. Учитывайте при выборе регулятора, что пусковой ток электродвигателя в несколько раз выше рабочего.

Способы регулировки вентиляторов в быту:

  1. С использованием симисторного регулятора скорости вентилятора- это самый распространенный способ, позволяющий постепенно увеличивать или уменьшать скорость вращения в пределах от 0 до 100 %.
  2. Если электродвигатель вентилятора на 220 Вольт оборудован термозащитой (защитой от перегрева), тогда для управления оборотами применяется тиристорный регулятор.
  3. Наиболее эффективным методом регулировки скорости вращения электродвигателя является применение моторов с несколькими выводами обмоток. Но многоскоростные электродвигатели в бытовых вентиляторах Я пока не встречал. Но В интернете можно найти схемы подключения для них.

Очень часто электродвигатель гудит на низких оборотах при использовании первых двух методов регулировки- старайтесь не эксплуатировать долго вентилятор в таком режиме. Если снять крышку, то при помощи находящегося под ней специального регулятора, Вы сможете, его вращая, установить нижний предел частоты вращения мотора.

Схема подключения симисторного или тиристорного регулятора скорости вентилятора

Практически во всех регуляторах стоят внутри плавкие ставки, защищающие их от токов перегрузки или короткого замыкания, при возникновении которых она перегорает. Для восстановления работоспособности необходимо будет заменить или отремонтировать плавкую ставку.

Подключается регулятор довольно просто, как обычный выключатель. На первый контакт (с изображением стрелки) подключается фаза от электропроводки квартиры. На второй (с изображением стрелки в обратном направлении) при необходимости подключается прямой вывод фазы без регулировки. Он используется для включения, например дополнительно освещения при включении вентилятора. На пятый контакт (с изображением наклонной стрелки и синусоиды) подключается фаза, отходящая на вентилятор. При использовании такой схемы необходимо использовать для подключения распределительную коробку, с которой Ноль и при необходимости Земля заводятся напрямую на вентилятор, минуя сам регулятор, для подключения которого понадобится всего-то 2 провода.

Но если распределительная коробка электропроводки находится далеко, а сам регулятор стоит рядом с вентилятором, тогда рекомендую использовать вторую схему. На регулятор приходит кабель электропитания, а затем с него уходит сразу на вентилятор. Фазные провода подключаются аналогично. А 2 нуля садятся на контакты № 3 и № 4 в любой последовательности.

Подключение регулятора скорости вращения вентилятора довольно просто сделать и своими руками, не вызывая специалистов. Обязательно изучите и всегда соблюдайте правила электробезопасности- работайте только на обесточенном участке электропроводки.

Сборка прибора своими руками

Регулятор оборотов вентилятора можно собрать своими силами. Для этого понадобятся простейшие составляющие, паяльник и немного свободного времени.


Чтобы изготовить своими руками контроллер, можно использовать различные комплектующие, выбрав наиболее приемлемый для себя вариант

Так, для изготовления простого контроллера предстоит взять:

  • резистор;
  • переменный резистор;
  • транзистор.

Базу транзистора предстоит припаять к центральному контакту переменного резистора, а коллектор – к его крайнему выводу. К другому краю переменного резистора нужно припаять резистор сопротивлением 1 кОм. Второй вывод резистора следует припаять к эмиттеру транзистора.


Схема изготовления регулятора, состоящего из 3-х элементов, наиболее простая и безопасная

Теперь остается припаять провод входного напряжения к коллектору транзистора, который уже скреплен с крайним выводом переменного резистора, а «плюсовой» выход – к его эмиттеру.

Для проверки самоделки в действии понадобится любой рабочий вентилятор. Чтобы оценить самодельный реобас, предстоит подсоединить провод, идущий от эмиттера, к проводу вентилятора со знаком «+». Провод выходного напряжения самоделки, идущий от коллектора, присоединяется к блоку питания.

Провод со знаком «–» подсоединяется напрямую, минуя самодельный регулятор. Теперь остается проверить в действии спаянный прибор.

Для уменьшения/увеличения скорости вращения лопастей кулера нужно крутить колесо переменного резистора и наблюдать изменение количества оборотов.


При желании можно своими руками создать контроллер, управляющий сразу 2-мя вентиляторами

Это самодельное устройство безопасно для использования, ведь провод со знаком «–» идет напрямую. Поэтому вентилятору не страшно, если в спаянном регуляторе вдруг что-то замкнет.

Такой контролер можно использовать для регулировки оборотов кулера, вытяжного вентилятора и других.

Принцип работы вентилятора

Согласно техническому определению, вентилятор — это прибор, служащий для перемещения газа путём создания избыточного давления или разрежения. По своему конструктивному исполнению он разделяется на осевой и радиальный. Практически все вентиляторы, применяемые в быту, представляют собой осевой тип конструкции. Использование этого вида характеризуется удобством получения направленного воздуха различной силы и давления. Вентиляторы разделяют по месту использования, они могут быть:

  • многозональные;
  • канальные;
  • напольные;
  • потолочные;
  • оконные.

Осевые, иное название аксиальные, вентиляторы в качестве основного узла используют рабочее колесо. Это колесо располагается на оси электродвигателя, содержит внешний ротор и имеет в своей конструкции лопатки, расположенные под углом с учётом аэродинамических свойств. Благодаря такому расположению и происходит создание и формирование воздушного потока.

В качестве электродвигателя применяют однофазный асинхронный двигатель, ось которого повторяет движения нагнетаемого или разряжаемого им потока воздуха. Такой электромотор состоит из ротора, размещённого внутри статора. Промежуток между ними составляет не более двух миллиметров. Статор имеет вид сердечника с пазами, через которые намотана обмотка. Ротор выглядит как подвижная часть с валом, содержащая в своём составе сердечник с короткозамкнутой обмоткой. Такая конструкция напоминает беличье колесо.

При подаче переменного тока на обмотку статора, согласно законам физики, появляется переменный магнитный поток. На помещённом внутрь этого потока замкнутом проводнике возникает электромагнитная индукция (ЭДС), а значит, появляется и ток. Благодаря чему в переменном магнитном поле оказывается проводник с током. Это приводит к вращению проводника, то есть ротора.

Таким образом, чтоб создать регулятор оборотов вентилятора на 220 В, понадобится изменять величину воздействующего на ротор магнитного поля. В свою очередь, значение магнитного поля зависит от величины тока, а значит при снижении его величины уменьшается и скорость вращения.

Ещё один параметр, от которого зависит число оборотов электродвигателя, является частота переменного напряжения. Частотные преобразователи, изменяющие частоту, характеризуются сложностью изготовления и дороговизной, по сравнению с изменяющими уровень напряжения. В бытовых условиях применяются редко, хоть позволяют достигать лучших результатов в точности настройки.

По виду используемой схемотехники приборы, управляющие скоростью вращения, разделяются на:

  • тиристорные;
  • трансформаторные.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.

Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

ЗАГРУЗКА ПРОШИВКИ

Загружать прошивку желательно до подключения компонентов, чтобы убедиться в том, что плата рабочая. После сборки можно прошить ещё раз, плата должна спокойно прошиться. В проектах с мощными потребителями в цепи питания платы 5V (адресная светодиодная лента, сервоприводы, моторы и проч.) необходимо подать на схему внешнее питание 5V перед подключением Arduino к компьютеру, потому что USB не обеспечит нужный ток, если например лента его потребует. Это может привести к выгоранию защитного диода на плате Arduino. Гайд по скачиванию и загрузке прошивки можно найти под спойлером на следующей строчке.

ИНСТРУКЦИЯ ПО ЗАГРУЗКЕ ПРОШИВКИ

1. Если это ваше первое знакомство с Arduino, внимательно изучите гайд для новичков и установите необходимые для загрузки прошивки программы.

2. Скачайте архив со страницы проекта. Если вы зашли с GitHub – кликните справа вверху Clone or download, затем Download ZIP. Это тот же самый архив!

3. Извлеките архив. Содержимое папки libraries перетащите в пустое место папки с библиотеками Arduino C:/Program Files (x86)/Arduino/libraries/

4. Папку с прошивкой из firmware положите по пути без русских букв . Если в папке с прошивкой несколько файлов – это вкладки, они откроются автоматически.

5. Настройте прошивку (если нужно), выберите свою плату, процессор. Подключите Arduino к компьютеру, выберите её COM порт и нажмите загрузить.

6. При возникновении ошибок или красного текста в логе обратитесь к 5-ому пункту гайда для новичков – “Разбор ошибок загрузки и компиляции“.

Схема подключения регулятора скорости вентилятора

Нередко в домашнем хозяйстве требуется установка регулятора скорости вращения вентилятора. Сразу следует отметить, что обычный диммер для регулировки яркости освещения не подойдет для вентилятора

Современному электродвигателю, особенно асинхронному, важно иметь на входе правильной формы синусоиду, но обычные диммеры для освещения искажают ее довольно сильно. Для эффективной и правильной организации регулировки скорости вентиляторов необходимо:

  1. Использовать специальные регуляторы, предназначенные для вентиляторов.
  2. Учитывайте, что эффективно и безопасно регулировке поддаются только специальные модели асинхронных электромоторов, поэтому перед покупкой узнавайте из технических характеристик о возможности регулировки числа оборотов методом понижения напряжения.

Способы регулировки скорости вращения бытовых вентиляторов

Существует достаточно много различных способов регулировки частоты вращения вентилятора, но практически применяются в домашних условиях только два из них. В любом случае Вы сможете только понизить число оборотов вращения двигателя только ниже максимально возможной по паспорту к устройству.

Разогнать электродвигатель возможно только с использованием частотного регулятора, но он не применяется в быту, потому что у него высокая как собственная стоимость, так и цена на услугу по его установке и наладке. Все это делают использование частотного регулятора не рациональным в домашних условиях.

К одному регулятору допускается подключение нескольких вентиляторов, если только их суммарная мощность не будет превышать величину номинального тока регулятора. Учитывайте при выборе регулятора, что пусковой ток электродвигателя в несколько раз выше рабочего.

Способы регулировки вентиляторов в быту:

  1. С использованием симисторного регулятора скорости вентилятора- это самый распространенный способ, позволяющий постепенно увеличивать или уменьшать скорость вращения в пределах от 0 до 100 %.
  2. Если электродвигатель вентилятора на 220 Вольт оборудован термозащитой (защитой от перегрева), тогда для управления оборотами применяется тиристорный регулятор.
  3. Наиболее эффективным методом регулировки скорости вращения электродвигателя является применение моторов с несколькими выводами обмоток. Но многоскоростные электродвигатели в бытовых вентиляторах Я пока не встречал. Но В интернете можно найти схемы подключения для них.

Очень часто электродвигатель гудит на низких оборотах при использовании первых двух методов регулировки- старайтесь не эксплуатировать долго вентилятор в таком режиме. Если снять крышку, то при помощи находящегося под ней специального регулятора, Вы сможете, его вращая, установить нижний предел частоты вращения мотора.

Схема подключения симисторного или тиристорного регулятора скорости вентилятора

Практически во всех регуляторах стоят внутри плавкие ставки, защищающие их от токов перегрузки или короткого замыкания, при возникновении которых она перегорает. Для восстановления работоспособности необходимо будет заменить или отремонтировать плавкую ставку.

Подключается регулятор довольно просто, как обычный выключатель. На первый контакт (с изображением стрелки) подключается фаза от электропроводки квартиры. На второй (с изображением стрелки в обратном направлении) при необходимости подключается прямой вывод фазы без регулировки. Он используется для включения, например дополнительно освещения при включении вентилятора. На пятый контакт (с изображением наклонной стрелки и синусоиды) подключается фаза, отходящая на вентилятор. При использовании такой схемы необходимо использовать для подключения распределительную коробку, с которой Ноль и при необходимости Земля заводятся напрямую на вентилятор, минуя сам регулятор, для подключения которого понадобится всего-то 2 провода.

Но если распределительная коробка электропроводки находится далеко, а сам регулятор стоит рядом с вентилятором, тогда рекомендую использовать вторую схему. На регулятор приходит кабель электропитания, а затем с него уходит сразу на вентилятор. Фазные провода подключаются аналогично. А 2 нуля садятся на контакты № 3 и № 4 в любой последовательности.

Подключение регулятора скорости вращения вентилятора довольно просто сделать и своими руками, не вызывая специалистов. Обязательно изучите и всегда соблюдайте правила электробезопасности- работайте только на обесточенном участке электропроводки.

Регулятор скорости вентилятора — простая схема

Предлагаемая ниже схема обеспечивает простую регулировку оборотов вентилятора без контроля оборотов. В устройстве использованы отечественные транзисторы КТ361 и КТ814. Конструктивно плата размещается непосредственно в блоке питания, на одном из радиаторов. Она имеет дополнительные посадочные места для подключения второго датчика (внешнего) и возможность добавить стабилитрон, ограничивающий минимальное напряжение, подаваемое на вентилятор.

Список необходимых радиоэлементов:

  • 2 биполярных транзистора — КТ361А и КТ814А.
  • Стабилитрон — 1N4736A (6.8В).
  • Диод.
  • Электролитический конденсатор — 10 мкФ.
  • 8 резисторов — 1х300 Ом, 1х1 кОм, 1х560 Ом, 2х68 кОм, 1х2 кОм, 1х1 кОм, 1х1 МОм.
  • Терморезистор — 10 кОм
  • Вентилятор.

Самостоятельное подключение регулятора скорости вентилятора

Все бытовые регуляторы рассчитаны на монтаж без обязательного приглашения электрика. Если вы в состоянии заменить выключатель или розетку – монтаж вам по силам.

Регуляторы скорости производятся в трех вариантах исполнения:

Настенный для установки без углубления.

Настенный для установки в углубление.

Устанавливаемый на DIN рейку

Установка настенного регулятора с углублением производится так же, как установка обычной розетки.

Схема подключения проста: контакты имеют маркировку, дополнительной проводки не требуется. Если на этом месте стоял обычный выключатель вентилятора – производится лишь замена его на регулятор.

В случае когда блок управления и регулятор выполнены в разных корпусах – требуется дополнительная проводка. Силовой кабель подключается к регулятору непосредственно от электрощита, а контроллер соединяется с ним слаботочным сигнальным проводом.

Видео:

  • Как правильно установить варочную панель в столешницу
  • Как установить инфракрасный обогреватель самостоятельно
  • Как подключить кондиционер к электросети самому
  • Подключение телефонной розетки rj11, схема

Как осуществлять управление вентиляторами компьютера

Охлаждение играет важную роль в производительности компьютера и зачастую слишком большие нагрузки на процессор и видеокарту могут вызывать падение мощности. При перегревах производительность компьютера значительно падает, например, за счет снижения частоты работы процессора, видеокарты или даже оперативной памяти.

Высокая температура просто вынуждает систему снижать “скорости работы”, чтобы избежать перегрева, который может вообще вывести из строя не только комплектующие (центральный процессор, видеоадаптеры, материнскую плату), но и весь компьютер. Такое явление, когда система вынуждена сбросить частоту процессора и начинает работать “не на пике своих возможностей” в силу высокого нагрева, называется троттлингом.

Данный процесс используется в основном для защиты от термического повреждения, но также имеет место и для использования с целью синхронизации работы нескольких компонентов устройства

Поэтому для обеспечения лучшей работы компьютера очень важно заботиться о системе охлаждения и не допускать перегрева

Вентиляторы в большинстве компьютеров используются в качестве основных средств для охлаждения. Обычно скоростью работы винтов каждого вентилятора управляет система. Это удается ей благодаря тому, что на процессоре, материнской плате и других комплектующих установлены специальные температурные датчики, которые отслеживают термическое состояние того или иного компонента в режиме реального времени.

В зависимости от вентилятора может отличаться уровень его шума, скорость работы и, как следствие, эффективность охлаждения. Чем выше скорость, на которой могут работать винты, тем больше будет эффект. Вместе с тем и уровень шума может (именно может, так как количество шума также зависит и от модели вентилятора) отличаться.

Чем быстрее крутятся винты, тем больше может быть шумов. Именно в этом главная причина вручную настраивать скорость работы вентилятора. Хотя, опытные пользователи регулируют работу вентиляторов и по другой причине. Банально система может ошибаться и не всегда правильно управлять работой такой системы охлаждения. И все же, если вы не очень разбираетесь в том, что пытаетесь делать, вручную менять параметры и настройки вентиляторов категорически не рекомендуется.

Существует несколько способов управления вентиляторами компьютера:

  1. Использование стороннего программного обеспечения;
  2. Снижение напряжения питания кулеров;
  3. Регулировка работы кулеров с помощью BIOS;
  4. Использовать специальное устройство для работы с вентиляторами “Реобас”.

Исходный код программы (скетча)

Arduino

int TRIAC = 6;
int speed_val=0;
void setup()
{
pinMode(TRIAC, OUTPUT);
attachInterrupt(digitalPinToInterrupt(3), zero_crossing, CHANGE);
}
void zero_crossing()
{
int chop_time = (200*speed_val);
delayMicroseconds(chop_time);
digitalWrite(TRIAC, HIGH);
delayMicroseconds(10);
digitalWrite(TRIAC, LOW);
}
void loop()
{
int pot=analogRead(A0);
int data1 = map(pot, 0, 1023,10,40);
speed_val=data1;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

intTRIAC=6;

intspeed_val=;

voidsetup()

{

pinMode(TRIAC,OUTPUT);

attachInterrupt(digitalPinToInterrupt(3),zero_crossing,CHANGE);

}

voidzero_crossing()

{

intchop_time=(200*speed_val);

delayMicroseconds(chop_time);

digitalWrite(TRIAC,HIGH);

delayMicroseconds(10);

digitalWrite(TRIAC,LOW);

}

voidloop()

{

intpot=analogRead(A0);

intdata1=map(pot,,1023,10,40);

speed_val=data1;

}

Настройка параметров

Терморегулятор имеет возможность точной регулировки параметров включения и выключения обогревателя или охладителя, а дисплей отображает текущее значение температуры.

  • Для отображения температуры включения: однократно нажмите кнопку “ВКЛ”.
  • Для регулировки температуры включения терморегулятора: удерживайте кнопку “ВКЛ” до тех пор, пока значения на дисплее не начнут меняться и кнопками “ВКЛ/ВЫКЛ” установите необходимую температуру для включения обогревателя или вентилятора. После этого установленное значение мигнет два раза и на дисплее отобразится текущая температура. Это означает, что заданное значение применилось.
  • Для отображения температуры выключения терморегулятора: однократно нажмите кнопку “ВЫКЛ” .
  • Для регулировки температуры выключения : удерживайте кнопку “ВЫКЛ” до тех пор, пока значения на дисплее не начнут меняться и кнопками “ВКЛ/ВЫКЛ” установите необходимую температуру для вsключения обогревателя или вентилятора. После этого установленное значение мигнет два раза и на дисплее отобразится текущая температура. Это означает, что заданное значение применилось.

Регулятор вентилятора с датчиком температуры

Как известно, вентилятор в блоках питания компьютеров формата AT вращается с неизменной частотой независимо от температуры корпусов высоковольтных транзисторов. Однако блок питания не всегда отдает в нагрузку максимальную мощность. Пик потребляемой мощности приходится на момент включения компьютера, а следующие максимумы — на время интенсивного дискового обмена.

Как сделать управляемую плату регулятора на 1,2–35 В

Если же учесть ещё и тот факт, что мощность блока питания обычно выбирается с запасом даже для максимума энергопотребления, нетрудно прийти к выводу, что большую часть времени он недогружен и принудительное охлаждение теплоотвода высоковольтных транзисторов чрезмерно. Иными словами, вентилятор впустую перекачивает кубометры воздуха, создавая при этом довольно сильный шум и засасывая пыль внутрь корпуса.

Уменьшить износ вентилятора и снизить общий уровень шума, создаваемого компьютером можно, применив автоматический регулятор частоты вращения вентилятора, схема которого показана на рисунке. Датчиком температуры служат германиевые диоды VD1–VD4, включенные в обратном направлении в цепь базы составного транзистора VT1VT2. Выбор в качестве датчика диодов обусловлен тем, что зависимость обратного тока от температуры имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания.

  • 2 биполярных транзистора (VT1, VT2) — КТ315Б и КТ815А соответственно.
  • 4 диода (VD1-VD4) — Д9Б.
  • 2 резистора (R1, R2) — 2 кОм и 75 кОм (подбор) соответственно.
  • Вентилятор (M1).

Резистор R1 исключает возможность выхода из строя транзисторов VT1, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.

Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1, VT2. Если при указанном на схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить.

Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой. Естественно, если при четырех диодах датчика частота вращения окажется значительно больше требуемой, число диодов следует уменьшить.

Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу. Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 с припаянными к его выводам резисторами R1, R2 и транзистором VT1 устанавливают выводом эмиттера в отверстие «-cooler» платы блока питания.

Налаживание устройства сводится к подбору резистора R2. Временно заменив его переменным (100–150 кОм), подбирают такое сопротивление введенной части, чтобы при номинальной нагрузке (теплоотводы транзисторов блока питания теплые наощупь) вентилятор вращался с небольшой частотой. Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) «измерять» температуру наощупь можно, только выключив компьютер. При правильно отлаженном устройстве вентилятор должен запускаться не сразу после включения компьютера, а спустя 2–3 мин после прогрева транзисторов блока питания.

Схема подключения регулятора скорости вентилятора

Вытяжные вентсистемы широко применяются для организации комфорта в жилых и подсобных помещениях. Чаще всего, вытяжки устанавливаются в туалетных и ванных комнатах, а также на кухне. Простейший способ подключения вентилятора подразумевает два положения – включено и выключено. В туалете иногда применяется выключатель с датчиком присутствия — это сэкономит электроэнергию в случае, если вы постоянно забываете его выключить.

Для повышения акустического комфорта (вентилятор не обязательно должен постоянно работать на полную мощность), применяются регуляторы скорости вращения.

ВАЖНО! Перед покупкой вентилятора уточните у продавца, рассчитан ли его двигатель на работу с контроллером оборотов. Техническая реализация управления скоростью вращения вентилятора:

Техническая реализация управления скоростью вращения вентилятора:

  • изменение частоты переменного тока двигателя;
  • изменение величины питающего напряжения.

Контроллер частоты имеет ряд важных преимуществ. При снижении скорости вращения вентилятора уменьшается потребление энергии, то есть этот способ наиболее экономичен. Также при использовании такого метода, нет паразитного нагрева обмоток двигателя.

К сожалению, эти преимущества сводятся на нет высокой стоимостью устройства. Поэтому применение частотных контроллеров в быту нецелесообразно.

Схемы вращения


паразитные вихревые токи

Регулятор скорости на симисторе


служит симистор

В таком регуляторе используется принцип фазового управления, изменение момента включения и выключения симистора относительно фазового перехода в нулевой точке.


переменного резистора

При управлении частотой вращения электродвигателя контроль работы тиристора происходит длительными импульсами.

Благодаря чему, кратковременные отключения активной нагрузки не изменяют режим работы схемы. Схема подразумевает разделение включения электродвигателя с тиристором VS2 и питающего напряжения 220 вольт, через диодный мост.

Управление тиристором осуществляется с помощью генератора, собранного на транзисторе VT1. Питание генератора реализуется сигналом трапециевидной формы, полученным после прохождения через стабилитрон VD1 с частотой 100 кГц. В то время как на конденсаторе C1 появится напряжение, величины которого станет достаточно для открытия транзистора, на управляющий электрод тиристора поступит положительный сигнал. Тиристор VS2 откроется и с него поступит напряжение на электродвигатель, приводящее к его запуску.

Резисторы R1, R2, R3, образуют цепочку разряда конденсатора C1. Управляя значением сопротивления R1, в качестве которого используется переменный резистор, изменяется скорость разряда конденсатора, а значит и частота оборотов вентилятора. Диод VD2, подключённый параллельно к обмотке L1, предотвращает ложное срабатывание тиристора, возникающее из-за использования нагрузки индуктивного рода.

https://youtube.com/watch?v=UNSZHboSPBQ

https://youtube.com/watch?v=K_9VLwvZvgk

Управление с использованием автотрансформатора

В качестве основного элемента схемы используется автотрансформатор. Он представляет собой трансформатор, в котором соединение первичной и вторичной обмотки выполнено напрямую. В результате чего одновременно осуществляется магнитная и электрическая связь. Обмотка автотрансформатора имеет несколько ответвлений с разными на них значениями величины напряжения. Преимущество такого использования заключается в достижении более высокого коэффициента полезного действия из-за преобразования лишь части мощности.

Принцип работы регулятора, скорости вращения вентилятора состоит в следующем. На первичную обмотку автотрансформатора T1 поступает питающее напряжение сети. Обмотка имеет как минимум три ответвления от части витков. При подсоединении нагрузки к разным ответвлениям получается уменьшенное напряжение питания. Используя переключатель SW1, двигатель вентилятора M коммутируется к одной из части обмотки, при этом его скорость вращения меняется. При такой работе выходной сигнал не изменяет своей формы, оставаясь синусоидальным, что положительно влияет на обмотки двигателя.

Переключатель представляет собой ступенчатую шкалу, не позволяя плавно управлять скоростью вращения. Устройства такого типа имеют большие габариты и массу, по сравнению с другими видами.

Усовершенствованной моделью является использование электронного управления.

В основе работы лежит принцип широтно-импульсной модуляции. Изменяя состояние режима работы ключевых транзисторов, образовываются импульсы, позволяющие совершать плавную регулировку выходного сигнала. Чем меньше длительность импульса и длиннее период, тем меньше мощности передаётся вентилятору, а значит и обороты вращения его снижаются. В качестве ключей применяются малошумящие полевые транзисторы, имеющие значительно большие входные сопротивления по сравнению с биполярными.

Из-за плохой помехозащищенности узел автотрансформатора выполняется непосредственно в близости от вентилятора, но обладает компактными размерами и невысокой стоимостью.

https://youtube.com/watch?v=KwUhoYITKtI

https://youtube.com/watch?v=AmkDwl9ll08