Как сделать плавное включение лампы накаливания

Содержание

Известные производители светорегуляторов

В числе знаменитых брендов стоит выделить:

  • Schneider Electric (Франция). Устройства этой компании выгодно соединяют в себе эксклюзивный дизайн и отличное качество сборки.
  • Teco (Чехия). Диммеры этого бренда предлагают оценить надежность, продолжительную и безотказную службу по приемлемой цене.
  • Jung (Германия). Светорегуляторы отличаются оригинальным дизайном, функциональностью и выдающимися рабочими параметрами.
  • Legrand (Франция). Компания делает акцент на выпуске высокотехнологичных моделей нового поколения, широко применяемых в системах «умный дом».
  • Gira (Германия). Диммеры этого бренда отличаются длительным сроком службы, сдержанным дизайном и надежностью.

Плавное включение фар и габаритных огней автомобиля. Устройство для увеличения срока эксплуатации автомобильных ламп

Недавно один из наших форумчан, Rus_lan, выложил на форум интересную штуку — устройство для плавного включения фар автомобиля. Штука эта многих сразу же заинтересовала (и меня в том числе), поэтому тему было решено более подробно раскрыть и описать в отдельной статье.

Итак, если вы автолюбитель, то вам наверняка приходится менять в своём автомобиле различные лампы накаливания: дальний и ближний свет, габаритные огни, поворотники…

Поскольку наиболее активно в автомобиле используются лампы ближнего света и габаритных огней, то и менять их приходится чаще всего.

Хорошо известно, что перегорают лампы обычно в момент включения, причём зимой гораздо чаще, чем летом. Почему так происходит?

Дело в том, что рабочая температура нити лампы накаливания составляет более двух с половиной тысяч градусов цельсия. Именно при такой температуре нить и начинает светиться. До рабочей температуры нить нагревается протекающим по ней током. Если нагрев происходит слишком быстро и неравномерно, то температуры соседних участков нити не успевают выравниваться за счёт теплопроводности, между соседними участками создаётся большой перепад температур, расширяются эти участки сильно неравномерно, в результате чего в нити возникают большие механические нагрузки и она рвётся. Похожий эффект можно наблюдать, если плеснуть холодной водой на раскалённый камень. Внешние слои камня при этом резко охлаждаются и сжимаются, в то время, как внутренние ещё остаются горячими и расширенными. В результате, как мы знаем, камень трескается.

Кроме эффекта, описанного выше, механические нагрузки возникают также из-за магнитного взаимодействия витков спирали, сила которого опять же пропорциональна силе тока.

Хорошо, ну а при чём же здесь всё-таки момент включения? Всё очень просто. В момент включения, когда нить холодная, её сопротивление значительно ниже, чем сопротивление в нагретом состоянии, соответственно и протекающий в это время ток значительно больше рабочего тока. Следовательно, в момент включения мы имеем максимальную скорость нагрева нити, а также максимальное магнитное взаимодействие витков. Зимой начальная температура, а значит и начальное сопротивление нити, ниже, чем летом, следовательно начальный ток ещё больше.

Как с этим бороться? Давайте подумаем. Избавиться от неравномерного нагрева нити мы не можем, поскольку он возникает вследствии дефектов самой нити (например, если нить неравномерна по толщине, то более тонкие участки имеют большее сопротивление и нагреваются быстрее и сильнее). Однако, мы вполне можем уменьшить скорость нагрева и магнитное взаимодействие между витками спирали. Для этого нужно всего лишь ограничить протекающий через нашу лампочку ток, чтобы он, в то время, пока спираль нагревается, не превышал рабочего значения (или хотя бы превышал его незначительно). Именно такое устройство, позволяющее при включении плавно увеличивать ток через лампочку, и предложил Rus_lan.

  1. C1 — конденсатор 47мкФ x 16В
  2. R1 — резистор 68кОм
  3. R2 — резистор 6,8кОм
  4. R3 — резистор 24кОм
  5. T1 — полевой транзистор FDB6670AL
  6. D1 — диод (любой)

Работает это устройство следующим образом: за счёт резисторов и конденсатора, установленного параллельно затвору полевика, напряжение на затворе транзистора растёт очень медленно, соответственно также медленно этот транзистор и открывается, что, в свою очередь, обеспечивает плавное увеличение напряжения на лампе и тока через неё. Делитель R1R3 задаёт максимальное напряжение на затворе. Резистор R2 дополнительно увеличивает время включения и защищает затвор транзистора, предотвращая любые возможности возникновения резких бросков тока через него.

Схема выложена в том варианте, в котором Rus_lan выложил её на форум, но лично я бы в ней кое-что изменил. Дело в том, что электролитические конденсаторы крайне плохо переносят низкие температуры (а у нас, например, зимой морозы -30 0 С и ниже совсем не редкость), поэтому я считаю, что лучше взять какой-нибудь керамический кондёр. Понятно, что найти керамику с такой ёмкостью нереально, но в таком случае можно взять конденсатор с ёмкостью поменьше, а уменьшение ёмкости скомпенсировать пропорциональным увеличением резисторов R1, R3.

Собранное устройство выглядит вот так:

А вот так оно выглядит в работе (в автомобильной фаре):

На этом всё, как говорится «ни гвоздя, ни жезла», удачи!

Подключение с использованием блока защиты

Обычно для решения этой проблемы используется блок защиты, который и выполняет функцию УПВЛ. При использовании с лампами накаливания данного устройства напряжение при включении возрастает не так резко, а постепенно повышается. Таким образом, нить накаливания не испытывает излишних перегрузок, и срок эксплуатации лампочки возрастает.

Рассмотрим подробнее схему работы этого устройства на примере блока Uniel Upb-200W-BL, последовательно подключенного к лампе накаливания в 75 Вт. В этой схеме ток сначала проходит через блок и уже потом идет на лампу. В результате этого происходит дополнительное падение напряжения, и на лампу поступает не стандартные 220, а 171 В. Причем за счет прохождения тока через блок защиты рост напряжения до 171 В происходит плавно за 2-3 секунды.


Uniel Upb-200W-BL для плавного запуска

Снижение поступающего напряжения также способствует увеличению сроку эксплуатации лампочки. Но, с другой стороны, пониженное напряжение значительно снижает световой поток, примерно, на 70 процентов, а это существенный показатель. Поэтому при использовании блока защиты необходимо учитывать потери по освещенности и использовать более мощные, по сравнению с обычными, лампы.

Рассматриваемый в нашей схеме блок может выдерживать мощность до 200 Вт, значит, к нему можно подключать лампы примерно такой же мощности. Но лучше задать небольшой запас в 20-25 процентов и использовать в схеме лампы с суммарной мощностью не более 160 Вт. За счет запаса мощности лампы и сам блок прослужат дольше. Естественно, что и на сам блок не стоит подавать напряжение больше, чем 200 ВТ.

Обратите внимание! При понижении мощности лампы накаливания цветовая температура изменяется, и свет становится более красным. Изменения цвета освещения может сказаться на самочувствии человека

Схема плавного включения ламп накаливания довольно простая. Блок устанавливается последовательно от выключателя к лампе, то есть в разрыв фазного провода.

Сам блок зашиты можно разместить в двух местах:

  1. рядом с осветительным прибором;
  2. у выключателя – в этом случае блок располагается в распределительной или установочной коробке.


Размещение блока защиты

Выбор места зависит от размеров блока защиты, для слишком большого прибора придется выделять отдельное место. Недостаток размещения в подрозетнике состоит в том, что блок зашиты не будет иметь достаточного доступа воздуха для охлаждения.

Предыстория

Светодиодные лампы, которые сейчас появляются почти в каждом доме и учреждении, обещают нам экологичность и очень долгий срок службы, как бы большую экономию. То есть, если старые добрые лампы накаливания служили нам, или должны были служить 1000 часов, то светодиодные должны работать не менее 20 тысяч часов – в 20 раз больше (отсюда и вытекает их высокая стоимость).

Но человечество напрасно разочаровалось в лампах накаливания. В их недолгом сроке службы виновата не технология, а заговор их же производителей. Как известно из истории, первый сговор между производителями ламп накаливания состоялся в 1924 году. Они решили, что слишком хорошие лампы – это плохо. Лампа будет долго гореть, и новые будут реже покупать. Поэтому было решено искусственно занизить срок их службы ещё в процессе изготовления. Уменьшили длину спирали, уменьшили диаметр подводящих медных проводников внутри колбы лампы, которые идут от держателей спирали до контактов патрона. Всё, лампы стали работать с перекалом, часто перегорать от небольшого перепада напряжения, особенно в момент их включения. Очень часто даже перегорал тоненький медный проводник внутри лампы, а сама спираль умудрялась оставаться целой. Этот заговор, в свою очередь, не только позволил бизнесменам продавать худший продукт, чтобы больше заработать, но и стал основой всей современной экономики потребления. Поэтому я очень сильно сомневаюсь в том, что светодиодные лампы, как им положено, отработают свои 20 000 часов. Они так же «летят» ничуть не реже своих накальных собратьев, и если с экологией ещё понятно, то какой либо экономией тут и не пахнет. Но вернёмся к лампам накаливания и к галогенным лампам.

Хорошо известно, что галогенные лампы и лампы накаливания в основном перегорают в момент их включения, когда нихромовая спираль находится в холодном состоянии и имеет наименьшее активное сопротивление. В этот момент через неё будет протекать максимальный ток, особенно тогда, когда включение лампы происходит на пике синусоидальной волны переменного напряжения. Но можно намного продлить срок службы такой лампы, если нить накаливания разогревать постепенно, в течении нескольких секунд.

Простая схема продления ресурса ламп накаливания

Это простое устройство плавного пуска ламп позволяющее многократно снизить риск перегорания ламп и продлить их ресурс.

Лампы накаливания в большинстве случаев перегорают в момент включения. Это происходит потому что холодная нить накаливания имеет меньшее сопротивление, чем горячая нить. Поэтому в момент включения ток проходящий через лампу в десятки раз превышает номинальный. Это длится короткий момент, но этого бывает достаточно, чтобы вывести лампу из строя.

Для продления ресурса ламп в промышленных условиях применяют системы плавного пуска. Представленная схема является самой простой. Здесь в разрыв существующей цепи питания ламп ставятся реле и резистор. Обмотка реле питается параллельно лампе. Как это работает: после включения фар, они зажигаются тускло, как габариты и примерно через полсекунды включаются на полную мощность. В таком режиме зажигания лампы будут жить гораздо больше, особенно перекалки (+50, +90 и т.п.).

Потребуется:

  1. Реле (на каждую лампу) — Реле можно использовать любые 12-ти вольтовое на ток более 5А, можно и автомобильные.
  2. Резистор (номиналом 0,1-0,5 Ом) — подбирается индивидуально под характеристики реле, так чтобы реле срабатывало при максимально возможном значении сопротивления. Резистор нужно использовать мощный керамический около 5 Ватт.

Размещение: две релюшки можно установить где угодно (например, под капотом возле фар или в блоке предохранителей).

Это интересно: Обозначение розеток и выключателей на строительных чертежах и электрических схемах по ГОСТ — рассматриваем все нюансы

Подключение с использованием блока защиты

Обычно для решения этой проблемы используется блок защиты, который и выполняет функцию УПВЛ. При использовании с лампами накаливания данного устройства напряжение при включении возрастает не так резко, а постепенно повышается. Таким образом, нить накаливания не испытывает излишних перегрузок, и срок эксплуатации лампочки возрастает. Рассмотрим подробнее схему работы этого устройства на примере блока Uniel Upb-200W-BL, последовательно подключенного к лампе накаливания в 75 Вт. В этой схеме ток сначала проходит через блок и уже потом идет на лампу. В результате этого происходит дополнительное падение напряжения, и на лампу поступает не стандартные 220, а 171 В. Причем за счет прохождения тока через блок защиты рост напряжения до 171 В происходит плавно за 2-3 секунды.

Uniel Upb-200W-BL для плавного запуска

Снижение поступающего напряжения также способствует увеличению сроку эксплуатации лампочки. Но, с другой стороны, пониженное напряжение значительно снижает световой поток, примерно, на 70 процентов, а это существенный показатель. Поэтому при использовании блока защиты необходимо учитывать потери по освещенности и использовать более мощные, по сравнению с обычными, лампы.

Рассматриваемый в нашей схеме блок может выдерживать мощность до 200 Вт, значит, к нему можно подключать лампы примерно такой же мощности. Но лучше задать небольшой запас в 20-25 процентов и использовать в схеме лампы с суммарной мощностью не более 160 Вт. За счет запаса мощности лампы и сам блок прослужат дольше. Естественно, что и на сам блок не стоит подавать напряжение больше, чем 200 ВТ.

Обратите внимание! При понижении мощности лампы накаливания цветовая температура изменяется, и свет становится более красным. Изменения цвета освещения может сказаться на самочувствии человека

Схема плавного включения ламп накаливания довольно простая. Блок устанавливается последовательно от выключателя к лампе, то есть в разрыв фазного провода.

Сам блок зашиты можно разместить в двух местах:

  1. рядом с осветительным прибором;
  2. у выключателя – в этом случае блок располагается в распределительной или установочной коробке.

Размещение блока защиты

Выбор места зависит от размеров блока защиты, для слишком большого прибора придется выделять отдельное место. Недостаток размещения в подрозетнике состоит в том, что блок зашиты не будет иметь достаточного доступа воздуха для охлаждения.

Внимание! Блок защиты нельзя устанавливать в помещениях с повышенной влажностью

Виды

Итак, перейдем к видам. Всего их принято различать 3, в зависимости от мощности, а также от типа источника света. Сразу нужно заметить, что недостатком диммера является его узкая принадлежность в той или иной ситуации.

Но давайте все же детально рассмотрим основные виды:

  1. Устройства для ламп накаливания, а также галогенных ламп, мощностью 220в. В этой группе, самым главным является мощность подачи электроэнергии.
  2. Устройства для низковольтных галогенных ламп.
  3. Устройства для светодиодных ламп. Здесь главное отличие заключается в строении самого диммера.

Таким образом, можно утверждать, что не стоит спешить с покупкой, ведь изначально нужно узнать все тонкости относительно использования тех или иных источников света, их мощности, яркости и других характеристик.

Только после определения всех параметров, стоит переходить к выбору. Для этого лучше всего проконсультироваться у специалистов, которые смогут подсказать самый лучший вариант в той или иной ситуации.

Теперь перейдем к другой классификации, в зависимости от способа управления. Видов, как и в предыдущей классификации 3:

  • сенсорные;
  • нажимные;
  • поворотные;

Немаловажную роль играет и компания-производитель. На зарубежные модели цены зачастую выше, но и качество здесь на высоком уровне. Но вот если необходим простой регулятор, то не стоит переплачивать больше, ведь устройство по факту элементарное, а значит и прослужит хорошо и долго.

https://youtube.com/watch?v=n2Tie1IBKNk

Замена лампы

Если отсутствует свет и причина проблемы лишь в том, чтобы заменить перегоревшую лампочку, действовать нужно следующим образом:

Разбираем светильник

Делаем это осторожно, чтобы не повредить прибор. Поворачиваем трубку по оси. Направление движения указано на держателях в виде стрелочек

Когда трубка повернута на 90 градусов, опускаем ее вниз. Контакты должны выйти через отверстия в держателях. Контакты новой лампочки должны находиться в вертикальной плоскости и попадать в отверстие. Когда лампа установлена, поворачиваем трубку в обратную сторону. Остается лишь включить электропитание и проверить систему на работоспособность. Завершающее действие — монтаж рассеивающего плафона

Направление движения указано на держателях в виде стрелочек. Когда трубка повернута на 90 градусов, опускаем ее вниз. Контакты должны выйти через отверстия в держателях. Контакты новой лампочки должны находиться в вертикальной плоскости и попадать в отверстие. Когда лампа установлена, поворачиваем трубку в обратную сторону. Остается лишь включить электропитание и проверить систему на работоспособность. Завершающее действие — монтаж рассеивающего плафона.

https://youtube.com/watch?v=tAWxBFV7fzI

Перспективы использования ламп

Традиционные лампочки, которые запрещены сегодня к использованию во многих странах, могут вернуться на рынок благодаря технологическому прорыву. Лампы накаливания, разработанные Томасом Эдисоном, дают освещение путем нагревания тонкой вольфрамовой нити до температуры 2700 градусов по Цельсию. Эта раскаленная проволока излучает энергию, известную как излучение черного тела, которая представляет очень широкий спектр света, обеспечивает не просто теплый свет, но и максимально точное воспроизведение всех известных цветов мироздания. Однако они всегда страдали от одной серьезной проблемы: более 95 % энергии, которая поступает в них, тратится впустую в виде тепловой энергии.

Теперь исследователи из Массачусетского технологического института и Университета Пердью, нашли способ вернуть их былую популярность и обещают создать новые лампы MIT с эффективностью светодиода. Она будет работать путем размещения нано-зеркал вокруг обычного элемента, которые будут возвращать потраченное впустую тепло обратно для получения света в диапазоне эффективности светодиодных и флуоресцентных светильников.

Элемент лампы окружен системой нано-фотонных зеркал с холодной стороны, которые пропускают видимый свет. Но отражают тепло от инфракрасного излучения. Это тепло затем поглощается ее элементом, заставляя излучать больше света. Этот оригинальный трюк очень простой и жизнеспособный. Вольфрамовый элемент тоже был изменен – MIT использует ленту вместо нити, что лучше для поглощения отраженного тепла. Эксперимент, который выполнили физики Огнин Илик, Марин Сольячич и Джон Джоаннопулос, уже сумел утроить ее эффективность до 6,6 %.

Ученые уверены, что могут достичь 40 % эффективности, которая находится на верхнем пределе возможности для любого источника света. Современные светодиоды пока достигают уровня 15 %.

И если ученые выполнят свои амбициозные обещания – традиционные лампы заслуженно воспрянут из забытья. Тогда плавное включение и выключение света будет обеспечено их конструкцией.

Выключатель плавного включения света своими руками

УПВЛ различных модификаций и заводов-изготовителей в достаточном количестве и ассортименте представлены на радиорынках и в магазинах электротоваров в разделах электроосветительной аппаратуры. Но, конечно, дешевле и интереснее изготовить такой прибор из составляющих самостоятельно. В продаже есть недорогой конструктор K134, который позволяет собрать надежно конструкцию и обеспечить плавное включение осветительных приборов (накаливания и галогенных) в сети ~280 В до 100 Вт с отсрочкой включения 0,3 секунды.

Когда он включен, транзисторы Q1 и Q2 закрыты, резистор R3 снижает токовую нагрузку D1. R1, диоды полевых транзисторов заряжают C1. Q1 и Q2 включаются при 5 В, шунтируя R3, лампа накаливания включается в сеть.

Место установки защитного блока

Плавное включение света в квартире достигается при правильном выборе места установки. Защиту для каждого светильника устанавливают в зависимости от его места расположения. Если имеется техническая возможность, то лучше поместить его в полость под люстрой. Достоинство устройства – его компактность. Поэтому оно устанавливается в любом доступном месте рядом с осветительным прибором.

С блоком поставляется подробная инструкция. Поэтому его можно установить самостоятельно, не прибегая к услугам электрика. Если позволяет мощность УПВЛ – возможен монтаж для группы из нескольких ламп. В этом случае лучшее место размещения — распределительная коробка. Если в защитной схеме присутствует осветительный трансформатор для понижения мощности, то блок должен находиться первым по ходу тока. Напряжение 220 В должно первым поступать на него, а далее по цепи на всю сеть освещения.

При монтаже устройства плавного включения света необходимо придерживаться строгих правил:

  1. Доступность для ремонта.
  2. Запрещено заклеивать УПВЛ обоями, закрывать гипсокартоном и заделывать штукатуркой.

Готовые решения

Приборы, предназначенные для освещения помещений и контроля за подачей напряжения, можно приобрести в специализированном магазине. Стоимость устройств варьируется в зависимости от марки и точек реализации. Популярные модели:

  1. NP-EI-200 (94437). Защитный блок, позволяющий контролировать силу тока. Возможна совместная эксплуатация прибора с галогеновыми лампочками или лампами накаливания. При правильном подключении блок предохраняет осветительное приспособление от перегорания. Процесс износа нитей из вольфрама притормаживается.
  2. KIT BM1043. Прибор необходимо соединить с проводом, идущим от лампы. Со светодиодными лампами не работает. Габариты устройства стандартные, поэтому его можно вмонтировать в подрозетник выключателя.
  3. ARLT_018052. Компактный диммер обеспечивает плавный запуск галогеновых ламп. Светорегулятор помогает контролировать подачу электричества, при необходимости регулируя мощность светового потока.

При покупке важно обратить внимание на технические характеристики прибора. Устройства могут разниться по способу управления и комплектующим деталям. В продаже имеются сенсорные модели

Они просты в эксплуатации, но стоят дороже

В продаже имеются сенсорные модели. Они просты в эксплуатации, но стоят дороже.

https://youtube.com/watch?v=yypmbRlpzIs

https://youtube.com/watch?v=DCQGcFy9G3Q

https://youtube.com/watch?v=22UqGJZ3s9w

https://youtube.com/watch?v=XF4eOLAarNs

Расчет подключения светодиодов в схемах на 12 и 220 вольт

Отдельный светодиод невозможно напрямую подключить к источнику питания на 12 В поскольку он сразу же сгорит. Необходимо использование ограничительного резистора, параметры которого рассчитываются по формуле: R= (Uпит-Uпад)/0,75I, в которой R является сопротивлением резистора, Uпит и Uпад – питающее и падающее напряжения, I – ток, проходящий по цепи, 0,75 – коэффициент надежности светодиода, являющийся постоянной величиной.

В качестве примера можно взять схему, используемую при подключение светодиодов на 12 вольт в авто к аккумулятору. Исходные данные будут выглядеть следующим образом:

  • Uпит = 12В – напряжение в автомобильном аккумуляторе;
  • Uпад = 2,2В – питающее напряжение светодиода;
  • I = 10 мА или 0,01А – ток отдельного светодиода.

В соответствии с формулой, приведенной выше, значение сопротивления будет следующим: R = (12 – 2,2)/0,75 х 0,01 = 1306 Ом или 1,306 кОм. Таким образом, ближе всего будет стандартная величина резистора в 1,3 кОм. Кроме того, потребуется расчет минимальной мощности резистора. Данные расчеты используются и при решении вопроса, как подключить мощный светодиод к 12 вольтам. Предварительно определяется величина фактического тока, которая может не совпадать со значением, указанным выше. Для этого используется еще одна формула: I = U / (Rрез.+ Rсвет), в которой Rсвет является сопротивлением светодиода и определяется как Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом. Следовательно, ток в цепи составит: I = 12 / (1300 + 220) = 0,007 А.

В результате, фактическое падение напряжения светодиода будет равно: Uпад.свет = Rсвет х I = 220 х 0,007 = 1,54 В. Окончательно значение мощности будет выглядеть так: P = (Uпит. — Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт). Для практического подключения значение мощности рекомендуется немного увеличить, например, до 0,125 Вт. Благодаря этим расчетам, удается легко подключить светодиод к аккумулятору 12 вольт. Таким образом, для правильного подключения одного светодиода к автомобильному аккумулятору на 12В, в цепи дополнительно понадобится резистор на 1,3 кОм, мощность которого составляет 0,125Вт, соединяющийся с любым контактом светодиода.

Схемы

Для того чтобы правильно использовать блоки плавного включения ЛК необходимо использовать специальные электросхемы. Благодаря таким схемам можно легко понять, как работает данный прибор и устроен изнутри, а также как его необходимо эксплуатировать.

Схема плавного включения лампы накаливания

Обычно при подключении такого устройства специалисты пользуются наиболее простым и лёгким вариантом схемы. Иногда используют специальную схему с внедрением симистеров. Также, кроме блоков данного вида можно брать полевые транзисторы, которые работают аналогично приборам плавного включения.

Вторая схема плавного включения ламп накаливания

Также того чтобы можно было контролировать напряжение в приборе плавного включения можно использовать автоматические приборы.

Что собой представляет тиристорная схема

Тиристорную схему специалисты рекомендуют использовать для повторения. Состоит она из обычных элементов, которые можно найти в каждом доме. Такую схему можно легко сделать в домашних условиях своими руками.

Тиристорная схема плавного включения лампы

Цепь моста выпрямления (рис.VD1, VD2, VD3, VD4) использует лампочку (рис. EL1) как нагрузку и токоограничитель. Плечи выпрямителя оснащены тиристором (рис. VS1) и сдвигающейся цепью (рис. R1, R2 и C1). Также диодный мост устанавливается за счёт спецификации работы прибора тиристора.

После того как напряжение подаётся на схему, электроток начинает идти через спираль накала и поступает на мост, а затем посредством резистора осуществляется зарядка электролита. Когда достигается предел напряжения открытия тиристора, он начинает открываться и тогда через него проходит ток от лампочки. В результате этого вольфрамовая нить разогревается постепенно и плавно. Период ее разогрева будет зависеть от ёмкости находящегося в схеме устройства конденсатора и резистора.

Чем примечательна симисторная

Такая схема имеет меньшее количество деталей за счёт применения симистора (рис. VS1), который служит силовым ключом.

Симисторная схема плавного включенияламп

Такой элемент, как дроссель (рис. L1), который предназначен для удаления различных помех, появляющихся во время открытия силового ключа, разрешено убрать из общей цепи. (рис. R1)Резистор является ограничителем тока, который поступает на главный электрод (рис. VS1). Цепь, которая задаёт время, исполнена на резисторе (рис. R2) и ёмкости (рис. С1), питающимися посредством диода (рис. VD1). Данная схема работает также как и предыдущая. Когда конденсатор заряжается до уровня напряжения открытия симистора, он начинает открываться, а затем через него и лампочку поступает электрический ток.

Схема плавного включения ламп накаливания

На фотографии внизу мы можем увидеть симисторный регулятор. Такое устройство кроме регулировки мощности в нагрузке, также осуществляет плавное поступление электротока на лампочку, когда её включают.

Устройство плавного включения ламп накаливания

Схема работы блока на специализированной микросхеме

Микросхема типа кр1182пм1 была специально создана специалистами для построения различных фазовых регуляторов.

Схема плавного включения на специализированной микросхеме

В этом случае происходит так, что с помощью самой микросхемы происходит регулирование напряжения на источнике, который обладает мощностью до 150 ватт. А если понадобится управлять более сильной системой нагрузки и десятками осветительных приборов одновременно, то в управленческую цепь просто включается дополнительно силовой симистр. На рисунке внизу мы можем увидеть, как это происходит.

Схема плавного включения с силовым симистром

Применение блоков плавного включения не заканчивается только на обычных лампах, так как специалисты рекомендуют использовать их вместе с галогеновыми лампами, мощностью в 220 В.

Важно знать! С люминесцентными и LED лампами (светодиодными) такие блоки устанавливать нельзя. Это связано с тем, что здесь присутствует различная техника разработки схем, а также принцип действия и присутствие у каждого осветительного прибора своего источника размеренного нагрева для люминесцентных ламп или нет потребности в таком регулировании ламп LED