Типы печатных плат

Содержание

Описание печатных плат

Печатная плата подразумевает под собой структуру электрических межсоединений, которые выполнены на изоляционном основании (диэлектрике – стеклотекстолите, гетинаксе, керамическом основании и др.). Печатная плата в совокупности с установленными и смонтированными на ней электронными компонентами (изделиями) образует печатный узел. Проводники печатной платы, лежащие в одной плоскости, называют печатным рисунком, слоем. По выполняемым ими функциям слои ПП делятся на: сигнальные (информационные), потенциальные (заземление, питание), экранирующие и технологические слои проводников; по конструктивному расположению на плате – внутренние и внешние слои. Помимо проводников (называемых дорожками) платы содержат:

  • установочные элементы монтажа: контактные площадки и монтажные отверстия;
  • фиксирующие (базовые) элементы для совмещения выводов корпусов электронных компонентов с контактными площадками или монтажными отверстиями на печатной плате;
  • печатные ламели для контакта с разъемами;
  • теплоотводящие и тепловыравнивающие участки;
  • маркированные слои;
  • технологические контактные площадки;
  • паяльные маски – термостойкое электроизоляционное пленочное покрытие;
  • элементы схем, выполняемые методами печати: индуктивности, емкости, сопротивления.

В зависимости от назначения и от возможностей производства печатные платы выполняют односторонними, двусторонними или многослойными, на жестком или гибком основании.

Плата —> SVG

Когда плата готова, нужно перегнать её в SVG для дальнейшей доработки. Лучше выгрузить плату из EDA без отзеркаливания, чтобы точно не запутаться и отзеркалить как надо.

А надо отзеркалить только передний слой F.Cu. Поскольку на задний слой B.Cu мы в редакторе смотрим со стороны переднего, он уже отзеркален. Для надёжности, лучше поместить хоть какой-нибудь текст на оба слоя и следить за тем чтобы этот текст не читался ))

(, dShaded) Из KiCad лучше выгружать через File | Plot, поскольку там есть возможность сделать сразу все отверстия 0.35 мм. Для ручного ЛУТа жирные дыры не нужны, лучше пусть побольше меди будет и она сверлом счистится.

Собственно:

  1. Загружаем оба слоя в Inkscape.
  2. Устанавливаем единицы измерения документа миллиметры, и формат листа А4.
  3. Добавляем еще больше надписей белым на областях металлизации. KiCad так не умеет, напишите в комментах если ваш EDA умеет.
  4. Группируем, чтобы было только два объекта.
  5. Выравниваем (Ctrl+Shift+A), расстояние между слоями (их габаритными отверстиями) должно быть не менее сантиметра.
  6. Отзеркаливаем передний слой кнопочкой на верхнем тулбаре.
  7. Сохраняем в SVG.

Сейчас нужно отправить SVG на принтер на обычной бумаге. И сделать с этой бумагой следующее:

  1. Поприкладывать к ней компоненты и проверить футпринты (которые по-любому уже пришли из магазина: если у вас на плате больше трех-пяти компонентов, протрассировать всё за один вечер сложновато)
  2. Приложить к текстолиту и накернить 4 габаритных отверстия по углам, которые мы добавляли
  3. Просверлить 4 отверстия самым тонким сверлом (0.6-0.8) ровно под 90 градусов. Это, пожалуй, самая сложная часть, но ошибки условно допустимы; способ их последующего исправления придуман.
    • Если есть станок, Вам повезло.
    • Если есть CNC, Вам крупно повезло, фигачьте всё отверстия по DRL-файлу прямо сейчас безо всяких кернов-*ернов.

Такс, это раздел про SVG, а мы уже к станкам перешли… Всё, последний штрих по SVG и больше комп не понадобится:

Залейте чёрным всё вокруг, чтобы части текстолита, которые не относятся к плате не травились и не насыщали персульфат аммония медью. Да, хлорное железо тоже можно, но аммоний синенький.

Теперь начинается настоящая работа

Формирование файла спецификации в САПР – лишь начало вашего пути к полной спецификации вашего проекта. Сейчас вам необходимо открыть полученную таблицу в предпочитаемом вами редакторе и приступить к работе. Мы рекомендуем вам сначала отформатировать вашу спецификацию, добавив колонки для необходимых сведений, которые вам нужно собрать вместе согласно приведенному в начале статьи перечню. Далее вам нужно перейти на сайт выбранного вами продавца электронных компонентов и начать выбор подходящих резисторов, конденсаторов, интегральных микросхем и прочих радиодеталей! Используя доступные наименования деталей, номиналы и устройства, добавленные в основу спецификации при помощи САПР, вам будет гораздо проще находить нужные вам детали.

Однако помните – речь идет не только о поиске деталей, соответствующих указанным в вашей спецификации. Вам также нужно узнать, будут ли доступны детали в тот момент, когда они вам понадобятся, а также понимать, укладывается ли их цена в ваш бюджет. Потратьте это время с умом, создавая отличную, безошибочную спецификацию. Такая спецификация будет являться фундаментом успешного процесса сборки и определит успех всего проекта.

Устройство

В отличие от навесного монтажа, на печатной плате электропроводящий рисунок выполнен из фольги, целиком расположенной на твёрдой изолирующей основе. Печатная плата содержит монтажные отверстия и контактные площадки для монтажа выводных или планарных компонентов. Кроме того, в печатных платах имеются переходные отверстия для электрического соединения участков фольги, расположенных на разных слоях платы. С внешних сторон на плату обычно нанесены защитное покрытие («паяльная маска») и маркировка (вспомогательный рисунок и текст согласно конструкторской документации).

Виды печатных плат

В зависимости от количества слоёв с электропроводящим рисунком печатные платы подразделяют на:

  • односторонние (ОПП): имеется только один слой фольги, наклеенной на одну сторону листа диэлектрика;
  • двухсторонние (ДПП): два слоя фольги;
  • многослойные (МПП): фольга не только на двух сторонах платы, но и во внутренних слоях диэлектрика. Многослойные печатные платы получаются склеиванием нескольких односторонних или двухсторонних плат.

По мере роста сложности проектируемых устройств и плотности монтажа увеличивается количество слоёв на платах.

По свойствам материала основы:

  • Жёсткие

    Теплопроводные

  • Гибкие

Печатные платы могут иметь свои особенности в связи с их назначением и требованиями к особым условиям эксплуатации (например, расширенный диапазон температур), или особенности применения (например, платы для приборов, работающих на высоких частотах).

Материалы

Основой печатной платы служит диэлектрик, наиболее часто используются такие материалы, как стеклотекстолит, гетинакс.

Также основой печатных плат может служить металлическое основание, покрытое диэлектриком (например, анодированный алюминий), поверх диэлектрика наносится медная фольга дорожек. Такие печатные платы применяются в силовой электронике для эффективного теплоотвода от электронных компонентов. Для дальнейшего улучшения тепловых характеристик металлическое основание платы может крепиться к радиатору.

В качестве материала для печатных плат, работающих в диапазоне СВЧ и при температурах до 260 °C, применяется фторопласт, армированный стеклотканью (например, ФАФ-4Д), и керамика. Такие платы имеют следующие ограничения:

  • в керамике обычно невозможно выполнение отверстий, а в ФАФ-4Д — металлизация отверстий;
  • сами по себе такие платы не могут быть несущей конструкцией, поэтому используются совместно с подложкой (основанием).

Существуют современные материалы и технологии, позволяющие преодолеть первое ограничение, но не второе.

Гибкие платы делают из полиимидных материалов, таких как каптон.

Что нужно хорошей материнской платой?

На этом этапе вы должны иметь достаточное понимание того, как создаются материнские платы и какие части их составляют. Но что нужно, чтобы материнская плата считалась «хорошей»?

VRM (модуль регулятора напряжения)

Прежде чем вы сможете определить материнскую плату с хорошими VRM, вам необходимо сначала ознакомиться с несколькими компонентами, составляющими весь VRM, а именно MOSFET и Chokes:

  • MOSFET или полевые транзисторы – металл-оксидные полупроводники, представляющие собой плоские прямоугольные компоненты, обычно расположенные вокруг разъема центрального процессора. Они отвечают за снабжение процессора точным объёмом напряжения, в котором он нуждается
  • Chokes обычно расположены рядом с МОП-транзисторами и отвечают за стабилизацию токов и конденсацию в случае внезапного скачка напряжения

Найти материнскую плату с хорошим VRM звучит сложно, но, на самом деле, это проще, чем вы думаете, потому что всё, что вам нужно сделать, это подсчитать количество Chokes. Каждый Chokes соответствует одной фазе, а большее количество фаз означает лучшую стабильность.

Материнская плата начального уровня, которая имеет, по крайней мере, четыре chokes, считается нормальной, в то время как материнские платы среднего и высокого качества имеют от шесть chokes.

Если вы планируете разгонять процессор, необходимость выбора высококачественного VRM становится более важной. Стоит отметить, что многие из материнских плат, которые позволяют разгон, по умолчанию имеют лучшие VRM; аналогично, материнские платы, которые не предназначены для разгона, часто имеют упрощенный VRM

Дизайн

Хорошая материнская плата должна иметь хорошо продуманный дизайн, так как плохо размещенные компоненты могут оказать негативное влияние на работоспособность вашей системы.

Расположение ОЗУ – это то, что мы все должны учитывать при покупке кулера для процессора. Иногда оперативная память и громоздкий процессорный кулер могут блокировать друг друга.

Дизайн в наши дни – это не только размещение компонентов. Современные материнские платы подсвечиваются яркой RGB-подсветкой, имеют ЖК-экраны и элементы ручного управления!

Набор микросхем

Вы должны обратить пристальное внимание на чипсет материнской платы, потому что, как многие согласятся, вам нужны совместимые компоненты!

Чипсеты определяют совместимость с различными компонентами, особенно с процессором. Фактически, чипсеты работают только в пределах определенного семейства процессоров. Например, новые чипы Ryzen 3000 будут совместимы только с материнскими платами x470 и x570.

Чипсеты обладают различными функциями, такими как лучшая разгонная способность и дополнительная фаза питания. Так что, если вы не собираетесь разгонять компьютер, вероятно, можете обойтись более дешевой материнской платой.

Если вам нужна материнская плата с поддержкой SLI и возможностями разгона, вам нужно найти подходящую материнскую плату для ваших нужд. Сосредоточьтесь на хорошем VRM и надежном чипсете, но помните – дорого не всегда значит лучше.

Конденсаторы

Никогда не приобретайте материнскую плату с нетвердыми алюминиевыми электролитическими конденсаторами, потому что они часто заправлены проводящей жидкостью. Даже если всё сделано правильно, материнские платы, которые используют дешевые конденсаторы, очень подвержены проблемам, таким как утечки или разрывы.

Вот почему всегда замечательно иметь материнскую плату, которая использует твердотельные конденсаторы, потому что, в отличие от конденсаторов, которые содержат проводящую жидкость, они содержат твердый органический полимер.

Твердотельные конденсаторы могут выдерживать более высокий пульсационный ток, что означает, что они делают материнскую плату более стабильной. Конденсаторы этих типов также могут справляться с большим количеством тепла, делая плату более надежной и продлевая срок её службы.

Теперь вы не только знаете, из чего состоит материнская плата, но и узнали о процессе производства и о том, что именно делает материнскую плату хорошей.

Планирование структуры слоев

При планировании структуры слоев, большинство конструкторов просто определяют необходимое количество слоев и что-нибудь еще. Тем не менее, необходимо найти куда большее число неизвестных при планировании полноценного набора слоев, в том числе:

  1. Сколько слоев требует ваша конструкция;

  2. Какое расстояние необходимо между слоями;

  3. Как слои должны быть структурированы и организованы;

  4. Какое количество слоев питания/заземления требует ваша конструкция.

Когда вы решаете, сколько слоев необходимо для вашей конструкции, вы все глубже погружаетесь в детали, появляются новые ограничения, которые нужно учитывать, например:

  • Количество сигнальных линий, которые необходимо проложить;

  • Частота ваших сигналов

  • Какому типу требований ECC к электромагнитному излучению должна удовлетворять ваша плата – по классу А или по классу В.

Найдя не одну, а все эти переменные, вы можете переходить к расчету требуемой конструкцией количества слоев. Также вы можете воспользоваться таблицей ниже для оценки количества слоев вашей платы на основании плотности расположения выводов компонентов:

Вы также можете использовать уравнение ниже для расчета необходимого количества слоев для токопроводящих дорожек:

Здесь M – общее необходимое количество слоев для токопроводящих дорожек, которое рассчитывается путем умножения количества связей N на средний шаг Pavg и деления на длину и ширину платы lh.

Создание спецификации с помощью функции Make

В новой версии современных САПР появилась функция Make (Создать), которая позволяет легко сосредоточить всю документацию, касающуюся производства, в одном месте. При использовании данной функции все проектные файлы загружаются в Circuits.io, что позволяет получить доступ к файлам Gerber, PDF и спецификаций с помощью интернет-браузера. Вот как можно загрузить ваши проектные файлы в Circuits.io и скачать спецификацию:

1. Откройте файл проекта печатной платы (.brd) на Control Panel (Панели управления) САПР;

2. Нажмите кнопку Make (Создать) в верхней части окна, чтобы открыть диалоговое окно Export to Manufacturing (Экспорт в производство);

Диалоговое окно экспорта позволяет вам загружать и файлы схемы, и файлы проекта печатной платы в Circuits.io для безопасного и надежного хранения

1. Назовите ваш проект, затем установите галочки Upload (Загрузить) для файлов .brd и .sch, а также I agree with Terms of Service (Я согласен с условиями предоставления услуг). Когда будете готовы к загрузке файлов, нажмите кнопку Upload Design (Загрузить проект);

2. В процессе загрузки должно открыться окно браузера, в котором в окне Circuits.io будут отображаться все файлы вашего проекта. В правом верхнем углу окна нажмите на значок Bill of Materials (Спецификация);

3. В окне браузера должна отобразиться ваша спецификация. Чтобы скачать ее, просто нажмите на кнопку Download CSV (Скачать CSV).

Для скачивания спецификации нажмите кнопку Download CSV (Скачать CSV)

в окне Circuits.io

На этом всё. Мы рассмотрели еще один способ скачать основу спецификации при помощи функции Make (Создать) САПР!

Двусторонние печатные платы

Двусторонняя печатная плата имеет одно основание, на обеих сторонах которого выполнены проводящие рисунки, и все требуемые электрические соединения двух сторон, соединяются преимущественно сквозными металлизированными отверстиями. Конфликт пересекающихся соединений здесь решается возможностью переноса конфликтующей трассы в обход на другую сторону печатной платы с использованием металлизированных отверстий. Такое отверстие для переноса трассы называют переходным, в отличие от монтажного. При этом конструкция переходного отверстия может быть произвольной, а монтажного – по нормам формирования паяного узла.

Тем не менее, полностью конфликтность трасс не разрешается: цепи питания и земли, монтажное поле для присоединения выводов многовыводных компонентов (микросхем) мешают свободному размещению сигнальных трасс. Эта конфликтность частично разрешается в четырех слоях межсоединений.

Материалы для производства печатных плат.

Характеристики   печатного   монтажа   в   значительной   степени   определяютсясвойствами базовых материалов.

Для изготовления печатных плат чаще всего используют фольгированный с одной или дух сторон стеклотекстолит марки FR-4. Толщина материала основания может быть 0,5 0,8, 1,0, 1,5, 2,0 мм. Толщина фольги: 18, 35 мкм. Чем толще фольга, тем шире должны быть проводники и тем больше должен быть зазор между ними (за счет явления бокового подтрава).

Фольгированный диэлектрик должен отличаться высоким значением адгезии фольги к подложке, в т.ч. под воздействием высокой температуры. Также он должен обладать высоким объемным и поверхностным электрическим сопротивлением, высокой температурой стеклования и стабильностью геометрических размеров.

К базовым материалам относится и фоторезист — жидкий или пленочный материал, обладающий чувствительностью к ультрафиолетовому излучению. Фоторезист под воздействием света должен либо испытывать фотополимеризацию, либо фотодеструкцию (в зависимости от типа). Чаще применяется сухой пленочный фоторезист. Он состоит из трех слоев: защитной полиэтиленовой пленки, среднего слоя, чувствительного к УФ-излучению и внешней оптически прозрачной лавсановой пленки, предназначенной для защиты фоторезиста от окисления на воздухе. 

4 Размер и конфигурация ПП

Размеры,
конфигурацию и места крепления ПП выбирают в зависимости от установочных
размеров, элементной базы, эксплуатационных характеристик, использования
автоматизированных методов установки навесных ИЭТ, пайки, контроля технико-экономических
показателей.

Рекомендуется
разрабатывать ПП прямоугольной формы с соотношением сторон менее 3:1, которое выбирается
из ряда 1:1, 1:2, 2:3, 2:5. Размеры каждой стороны ПП должны быть кратными 2,5
при длине до 100 мм, 5 при длине до 350 мм, 20 при длине более 350 мм.
Максимальный размер любой из сторон ПП не должен превышать 470 мм.

Толщину плат
определяют исходя из механических требований, предъявляемых к конструкции
печатного блока, с учетом метода изготовления. Рекомендуются платы толщиной
0,8; 1,0; 1,5; 2,0; 2,5; 3,0 мм.

KiCad —> Плата

Используем недавно вышедший KiCad 5, поскольку мне глубоко симпатична эта программа, её комьюнити (включающее CERN) и идея мультиплатформенного FOSS в целом.

Итак, алгоритм с лайфхаками:

  1. Находим компонент в каталоге вашего любимого магазина электроники.
  2. Находим соответствующий компонент в библиотеке KiCad.
    • Если это транзистор или другой компонент с тремя или более выводами, находим его корпус в библиотеке футпринтов в Pcbnew, смотрим нумерацию, сопоставляем с даташитом и выбираем в Eeschema компонент с правильной нумерацией выводов.
    • Если компонента нет в библиотеке KiCad, ищем в Интернетах. Если всё еще нет, находим в библиотеке похожий, экспортируем Symbol (в новую библиотеку), подключаем ее к проекту, открываем в Symbol library editor, дорабатываем, проделываем то же самое с футпринтом, если корпус тоже нестандартный.
    • Если есть ну совсем равнозначный выбор, отдаём предпочтение компонентам, у которых есть 3D-модель. KiCad умеет показывать как будет выглядеть девайс, это сильно помогает находить ошибки.
  3. Помещаем компонент на схему, в поле Datasheet компонента помещаем ссылку на этот компонент из магаза.
  4. Рисуем схему не забывая:
    • Использовать шины и метки, чтобы не перегружать схему кучей параллельных линий.
    • Давать имена цепям не входящим в шины и метки, чтобы на плате было проще ориентироваться.
    • Сохраняться.
    • Положить проект под git и комитить.
  5. Ассоциировать компоненты с футпринтами, пронумеровать компоненты, сгенерировать Netlist, сгенерировать Bill of Materials (в котором будет список ссылок и количество элементов возле каждой ссылки, чтобы прям сразу никуда больше не обращаясь наполнить корзину и заказать элементы).
  6. Открыть Pcbnew, загрузить Netlist.
  7. Настроить DRC:
    • Для сигнальных цепей минимальная ширина дорожек 0.3 мм, clearance 0.3 мм.
    • Для силовых побольше, пропорционально силе тока. Есть онлайн калькуляторы.
    • Дефолтные Via — 0.8 с отверстиями 0.6.
    • Разумеется, если будет место на плате, все эти размеры (кроме отверстий) надо делать максимальными из возможных, ведь если Via 1 мм, то вероятность попасть в неё сверлом с другого слоя крайне высока ))
    • Ну и Via 0.8 — это вовсе не жестко минимальный размер: если к отверстию подходит толстенная дорожка, то можно хоть 0.5 ставить, там все равно будет к чему удобно припаяться.
  8. Вручную нарисовать плату, следуя советам из статьи 7 правил проектирования печатных плат.
    • Мне тоже по началу казалось «фэ, это должна делать машина», но потом я однажды попробовал и мой мир больше не станет прежним. Ручная трассировка намного интереснее и увлекательнее, чем кажется. Всем советую, особенно любителям собирать паззлы.
    • К тому же, 7 правил проектирования печатных плат машина соблюдать не будет, а на исправление автотрассировки может уйти больше времени, чем на ручную трассировку.
    • Если не убедил, или у вас ОЧЕНЬ сложная плата, ну берите топор…
  9. Добавить надписей и логотипов.
  10. Добавить 4 габаритных отверстия 0.35/0.5 по углам платы на расстоянии ~5-10 мм от линий слоя Edge.Cuts

Какое отношение к этому имеют бутерброды?

Честно говоря, аналогия с бутербродами не совсем идеальна, но чем больше я пытался придумать идеальное физическое представление о том, как изготавливается печатная плата, тем больше подходил именно бутерброд. У вас есть верхние и нижние слои (это хлеб), ваши внутренние слои (это мясо, сыр и приправы), и все это в итоге объединяется в единое целое.

Типичный набор слоев печатной платы выглядит своего род как бутерброд (картинка слева)

Прежде чем мы начнем, важно знать, что печатные платы производятся на больших панелях, которые содержат

множество других печатных плат. Может быть, они все ваши, а иногда несколько разработок объединяют в одну панель, чтобы сэкономить деньги. Процесс, о котором мы поговорим ниже, заключается в создании полноценной многослойной платы, а если вы просто имеете дело с 1-2 слойными платами, тогда этапов будет меньше.

Подготовка чертежей печатной платы.

Вручную удобнее всего выполнять чертеж печатной платы в масштабе 1:1 на бумаге от самописцев ( имеет клетку со стороной 2.5 мм, в “шаге” микросхем), если таковой нет, то можно “отксерить” школьную бумагу “в клеточку” с уменьшением в 2 раза, в самом крайнем случае можно использовать обычную миллиметровку. Дорожки со стороны пайки нужно рисовать сплошными линиями, а дорожки со стороны деталей ( в случае двухстороннего монтажа) рисовать пунктирными линиями. Необходимо отметить, что располагаемые элементы должны быть в зеркальном отражении. Центры ножек элементов отмечаются точками, вокруг которых необходимо нарисовать паечную площадку

Для последующих действий, очень важно, какого размера Вы выбираете установочные площадки для элементов (обидно, когда при рисовании платы “в живую” или дорожка между площадками не проходит, или после пайки элементы выпадают вместе с площадками). Ширину дорожек следует выбирать исходя из того, чем вы будете рисовать плату, при использовании стеклянных рейсфедеров примерно 1.5 мм

После того как рисунок готов, нужно приложить чертеж к светящейся поверхости ( например стекло окна) обратной стороной к себе и обвести пунктирные линии. Так Вы получите рисунок со стороны установки деталей. Далее необходимо вырезать чертеж листа бумаги, но с учетом “крылышек” для крепежа с каждой стороны (около 15 мм).

№ 4 – Определиться с использованием слоев питания и заземления

Теперь, после того, как полностью определено расположение подсхем и конфигурация слоев, пора обратить внимание на мельчайшие подробности, которые необходимо уточнить во время конструирования платы. Во-первых, это слой заземления, который должен быть сплошным

Под этим мы подразумеваем, что слой заземления не должен быть разбит какими-либо сигнальными дорожками. Если вы разбиваете этот слой, сигналам придется искать обходные пути, что может привести к неприятным электромагнитным помехам и проблемам с задержками прохождения сигналов. Если вам все же необходимо разбить слой заземления, не забудьте установить резистор 0 Ом вдоль сигнальной дорожки, чтобы обратному сигналу было проще найти путь прохождения.

Превосходный пример того, как сигналам приходится

проделывать дополнительный путь по разделенному слою.

Печатные платы при помощи лазерного принтера.

Всё большую популярность у радиолюбителей приобретает способ изготовления единичных печатных плат с переносом рисунка с распечатки на лазерном принтере. Печатать лучше всего на тонкую мелованную бумагу – в ней меньше ворс, хороший результат получается на листах журнала “Стерео&Video”, а также подложках “самоклеек” и термобумаге для факсов (сторону подобрать экспериментально). В лазерных принтерах следует включить режим максимальной подачи тонера (отключить “экономичный” режим, если он был включен, контраст – на максимум и т.д.), а также использовать тракт с минимальным изгибом бумаги (такая опция есть в старых моделях HP LJ 2, LJ4 и др.). Рисунок платы должен быть “отзеркален”, такая опция имеется в меню печати многих графических программ, например Corel Draw, Corel Photo Paint, а при печати из программ, не умеющих “зеркалить”, необходимо применять вывод на Postscript принтеры, опция отзеркаливания у которых имеется в драйвере. Вместо вывода на лазерном принтере можно использовать ксерокопирование, но также в режиме с максимальной контрастностью и на термобумагу от факсов. При изготовлении двухслойных печатных плат для уменьшения термоусадки бумаги последнюю рекомендуется перед печатью изображения “прогнать” через принтер вхолостую (без печати рисунка). Кроме того, обе стороны должны быть на одном листе во избежание сильного рассогласования из-за разной термоусадки бумаги. Обезжиренная плата ложится медью вверх на ровную поверхность, сверху полученный отпечаток тонером вниз. Этот “бутерброд” со стороны бумаги прижимается утюгом (секунд на 20 – 30), разогретым до температуры глажения крепдешина (спросите у дам). Утюг должен расплавлять изображение, сделанное лазерным принтером, не сразу. То есть тонер при такой температуре должен стать из твердого вязким, но не жидким. Когда плата остынет, её нужно опустить в теплую воду, подержать там несколько минут. Как бумага раскиснет (будет видно), всё легко сдерется, остальное просто скатать пальцем. Вместо воды удалить бумагу можно серной кислотой. Если дорожки смазанные, вы неаккуратно снимали утюг или ставили холодный груз. Если дорожки где-то отсутствуют, утюг слишком холодный. Если дорожки стали широкими, утюг слишком горячий, или слишком долго грели плату. Если плата двухсторонняя, то сначала на просвет совмещаются бумажные распечатки обеих сторон, в любых свободных противоположных местах иголкой прокалываются два технологических отверстия, первая сторона платы “гладится” как обычно, потом сверлится по технологическим отверстиям тонким сверлом, а с другой стороны по ним же на просвет совмещается с бумажной распечаткой другой стороны. Травить можно и хлорным железом (для ускорения немного подогреть), и солянкой с гидропиритом. Всё это применялось даже на гетинаксе, никаких отслоений дорожек нет, нормально выполняются дорожки шириной до 0,8 мм, а при некотором опыте и до 0,5 мм. После травления тонер удаляется ацетоном, смывкой лака для ногтей или аэрозолем Flux Off. Сверлится, обрезается и так далее, как обычно…

  • https://zetsila.ru/%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F-%D0%BF%D0%B5%D1%87%D0%B0%D1%82%D0%BD%D0%B0%D1%8F-%D0%BF%D0%BB%D0%B0%D1%82%D0%B0/
  • https://www.radioingener.ru/pechaynye_platy/
  • https://tayga.info/147682
  • https://SdelaySam-SvoimiRukami.ru/3992-prostoy-sposob-izgotovleniya-pechatnyh-plat-ne-lut.html
  • https://cxem.net/master/11.php
  • http://www.pselectro.ru/p/bazovye-materialy-primenauseesa-pri-izgotovlenii-pecatnyh-plat-77367

Следующая
ИнформацияПринцип работы термостата: устройство назначение, основные функции и виды