История оптоволоконной связи
Оптоволоконная связь произвела революцию в телекоммуникационной отрасли. Он получил широкое признание у организаторов сетей связи и коммуникаций. Оптическая связь, используя оптоволоконный кабель, позволила установить телекоммуникационные линии на гораздо большие расстояния, с гораздо меньшими уровнями потерь. Это позволило обеспечить гораздо более высокие скорости передачи данных.
В результате этих преимуществ ВОЛС широко используются в основной инфраструктуре магистральной связи, в широкополосных системах Ethernet и общих сетей передачи данных.
С первых дней развития телекоммуникаций постоянно возрастала потребность в передаче большего количества данных. Первоначально использовались однолинейные провода. На смену им пришли коаксиальные кабели, которые позволили нескольким каналам передавать по одному и тому же кабелю. Однако эти системы были ограничены в полосе пропускания.
В 60-70-х годах прошлого века, после ряда открытий (в частности создания лазера), стала возможной оптическая связь — передача электрического сигнала светом.
Сегодня это открытие позволяет передавать данные на большие расстояния со скоростью передачи до 10Тбит/сек.
Волоконные световоды
Независимо от разнообразия конструкций кабелей их основной элемент — оптическое волокно — существует лишь в двух основных модификациях: многомодовое (для передачи на расстояния примерно до 10 км) и одномодовое (для больших расстояний). Применяемое в телекоммуникациях оптоволокно обычно выпускается в двух типоразмерах, отличающихся диаметром сердцевины: 50 и 62,5 мкм. Внешний диаметр в обоих случаях составляет 125 мкм, для обоих типоразмеров используются одни и те же разъемы. Одномодовое оптоволокно выпускается только одного типоразмера: диаметр сердцевины 8-10 мкм, внешний диаметр 125 мкм. Разъемы для многомодовых и одномодовых световодов, несмотря на внешнее сходство, не взаимозаменяемы.
Рис. 3. Прохождение света через оптоволокно со ступенчатым и плавным профилем показателя преломления
На рис. 3 показано устройство двух типов оптоволокна — со ступенчатой и с плавной зависимостью показателя преломления от радиуса (профилем).
Волокно со ступенчатым профилем состоит из сердцевины из сверхчистого стекла, окруженной обычным стеклом с более высоким показателем преломления. При таком сочетании свет, распространяясь по волокну, непрерывно отражается от границы двух стекол, примерно как теннисный шарик, запущенный в трубу. В световоде с плавным профилем показателя преломления, который целиком изготовлен из сверхчистого стекла, свет распространяется не с резким, а с постепенным изменением направления, как в толстой линзе. В оптоволокне обоих типов свет надежно заперт и выходит из него только на дальнем конце.
Потери в оптоволокне возникают из-за поглощения и рассеяния на неоднородностях стекла, а также из-за механических воздействий на кабель, при котором световод изгибается так сильно, что свет начинает выходить через оболочку наружу. Величина поглощения в стекле зависит от длины волны света. На 850 нм (свет с такой длиной волны в основном применяется в системах передачи на небольшие расстояния) потери в обычном оптоволокне составляют 4-5 дБ на километр кабеля. На 1300 нм потери снижаются до 3 дБ/км, а на 1550 нм — до величины порядка 1 дБ. Свет с двумя последними длинами волн используется для передачи данных на большие расстояния.
Потери, о которых только что было сказано, не зависят от частоты передаваемого сигнала (скорости передачи данных). Однако существует еще одна причина потерь, которая зависит от частоты сигнала и связана с существованием множества путей распространения света в световоде. Рис. 4 поясняет механизм возникновения таких потерь в оптоволокне со ступенчатым профилем показателя преломления.
Рис. 4. Различные пути распространения света в оптоволокне
Потери в оптоволокне возникают из-за поглощения и рассеяния на неоднородностях стекла, а также из-за механических воздействий на кабель, при котором световод изгибается так сильно, что свет начинает выходить через оболочку наружу. Величина поглощения в стекле зависит от длины волны света.
Луч, вошедший в оптоволокно почти параллельно его оси, проходит меньший путь, чем тот, который испытывает многократные отражения, поэтому свету для достижения дальнего конца световода требуется разное время. Из-за этого световые импульсы с малой длительностью нарастания и спада, обычно используемые для передачи данных, на выходе из оптоволокна размываются, что ограничивает максимальную частоту их следования. Влияние этого эффекта выражается в мегагерцах полосы пропускания кабеля на километр его длины. Стандартное волокно с диаметром сердцевины 62,5 мкм (многократно превышающим длину волны света) имеет максимальную частоту 160 МГц на 1 км на длине волны 850 нм и 500 МГц на 1 км при 1300 нм. Одномодовое волокно с более тонкой сердцевиной (8 мкм) обеспечивает максимальную частоту в тысячи мегагерц на 1 км. Однако для большинства низкочастотных систем максимальное расстояние передачи в основном ограничивается все же поглощением света, а не эффектом размывания импульсов.
Области применения
Первое, что приходит на ум при упоминании волоконно-оптического кабеля, — Интернет. Все известные провайдеры заменили свои медные коммуникации на высокоскоростную оптику. Это позволило увеличить пропускную способность канала, необходимую для передачи интернет-трафика, организации IP-телефонии, телевидения и выделенных сервисов.
В целом, при помощи ВОК построена вся Мировая Паутина. Ее сети тянутся от берегов США по всему земному шару в виде подводных коммуникаций. Хрупкий кабель защищен толстостенной изоляцией, а укладывается он при помощи специальных кораблей под грунтом на самом дне океана.
Данная технология обретает все большую популярность и в построении локальных сетей. Особенно это касается загородных домов, где нет доступа к сети крупных провайдеров. Существует практика возведения вышек с пушками Wi-Fi, от которых тянется оптика до частных владений, позволяя таким образом подключиться к Интернету вдали от города.
Помимо этого, оптоволокно применяется в следующих сферах:
- промышленные системы управления;
- авиационные системы;
- военные системы командования, управления и связи;
- датчики – оптика может использоваться для доставки света от удаленного источника к датчику для получения информации о давлении, температуре или другой информации;
- подача энергии – оптические волокна могут обеспечивать исключительно высокий уровень мощности для таких задач, как лазерная резка, сварка, маркировка и сверление;
- освещение – пучок волокон, собранных вместе с источником света на одном конце, может освещать труднодоступные области – например, внутри человеческого тела, в сочетании с эндоскопом. Также их можно использовать как выставочную вывеску или декоративную подсветку.
Вступление
В данной статье мы устройство кабельных линий связи используемых в вычислительных сетях.
Наиболее часто в компьютерных сетях применяются кабельные соединения, выступающее в качестве среды электрических или оптических сигналов между компьютерами и другими сетевыми устройствами. При этом используются следующие типы кабеля:
- коаксиальный кабель (coaxial cable);
- витая пара (twisted pair);
- волоконно-оптический или оптоволоконный кабель (fiber optic).
Кабель — это изделие, состоящее из проводников, слоев экрана и изоляции. В некоторых случаях в состав кабеля входят разъемы, с помощью которых кабели присоединяются к оборудованию.
Описание технологии Gpon
Gpon или же Гигабитная пассивная оптоволоконная сеть – это специальный кабель, разработанный для того, чтобы входящая и исходящая скорость передачи информации была увеличена. Технология от Ростелеком позволяет максимум скорости, в квартиру или частный дом прокладывается специальный провод, который состоит из разъединенных специальных жил, без связывающих их узлов, закрепленных в одну плотную полиуретановую оболочку.
Подобный кабель надежно защищен от внешнего влияния, его трудно повредить механическим способом, также оптоволокно не поддается влиянию электромагнитных импульсов.
Подключить оптоволоконный интернет Ростелекома можно по простой схеме:
- Со специального терминала, который находится у провайдера, тянутся подключенные кабельные линии.
- Каждая линия разветвляется на 4 отдельные жилы, которые в дальнейшем будут разводиться для подключения к домам.
- При подключении жилы на нее вешается сплитер, от которого провод разделяется и каждый отдельный кабель ведет в нужную квартиру.
- Последний пункт – это квартира абонента, где кабель в специальное гнездо.
От провайдера Ростелеком оптиковолоконный интернет подключается также, как и обычная сеть интернета, с меньшей скоростью.
Виды
Существует множество видов оптоволоконных кабелей в зависимости от характера их применения. Они представлены в двух «режимах»: многомодовом и одномодовом.
Многомодовое волокно (MMF) имеет сердечники двух размеров: 50 мкм и 62,5 мкм. Широкое ядро позволяет передавать несколько потоков данных одновременно. В многомодовом волокне в качестве источника света используется светоизлучающий диод (LED) или лазер с вертикальной полостью, излучающий поверхность (VCSEL). Из-за высокой скорости рассеивания и затухания он обычно используется для передачи большого объема данных на относительно короткие расстояния .
Одномодовое волокно (SMF) имеет гораздо меньший диаметр сердцевины – 8,3 мкм или 9 мкм и единственный световой путь, который может проходить на большие расстояния. Одномодовые волокна обычно используются для более длинных участков, таких как сети передачи данных университетского городка, передачи кабельного телевидения и телекоммуникационные сети.
То, как будет прокладываться кабель, определяет его конструкцию. Наиболее распространенными типами оптических кабелей по их применению являются:
- для внутреннего монтажа;
- для установки в кабельные каналы, с броней или без нее;
- для укладки в грунт;
- подвесной, с тросом или без него;
Тип волокна определяет параметры брони, наличие подвесного троса и других характеристик оптического кабеля. Условия среды могут быть агрессивными, будь то грунт или вода. Наиболее частые поломки линии вызваны механическими повреждениями. Например, во время ремонтных работ кабель может быть поврежден крупногабаритными машинами, или подводные сети оборваны субмаринами или кораблями. Под каждый сценарий применения подбирается соответствующий вид кабеля.
Важнейшие характеристики:
- Коэффициент затухания, дБ/км — зависит от свойств материалов проводников и изоляционного материала. Наилучшими свойствами (малым сопротивлением) обладают медь и серебро. Коэффициент затухания зависит также от геометрических размеров проводников.
- Скорость распространения, км/мс — с ростом частоты скорость распространения увеличивается, приближаясь к скорости света в вакууме 300 км/мс. Данный параметр зависит также от свойств диэлектрика, применяемого в кабеле.
- Перекрестные наводки на ближнем конце (Near End Cross Talk, NEXT);
- Волновое сопротивление (импеданс) (Ом) — сопротивление, которое встречает электромагнитная волна при распространении вдоль однородной линии без отражения, т.е. при условии, что на процесс передачи не влияют несогласованности на концах линии. Волновое сопротивление симметричного кабеля зависит от удельных значений емкости и индуктивности кабеля.
- Активное сопротивление — это сопротивление постоянному току в электрической цепи. В отличие от импеданса активное сопротивление не зависит от частоты и возрастает с увеличением длины кабеля.
- Емкость — это свойство металлических проводников накапливать энергию. Два электрических проводника в кабеле, разделенные диэлектриком, представляют собой конденсатор, способный накапливать заряд. Емкость является нежелательной величиной, поэтому следует стремиться к тому, чтобы она была как можно меньше (иногда применяют термин «паразитная емкость»).Высокое значение емкости в кабеле приводит к искажению сигнала и ограничивает полосу пропускания линии.
- Электрический шум -это нежелательное переменное напряжение в проводнике. Электрический шум бывает двух типов: фоновый и импульсный. Электрический шум можно также разделить на низко-, средне- и высокочастотный. Источниками фонового электрического шума в диапазоне до 150 кГц являются линии электропередачи, телефоны и лампы дневного света; в диапазоне от 150 кГц до 20 МГц -компьютеры, принтеры, ксероксы; в диапазоне от 20 МГц до 1 ГГц — телевизионные и радиопередатчики, микроволновые печи. Основными источниками импульсного электрического шума являются моторы, переключатели и сварочные агрегаты. Электрический шум измеряется в милливольтах.
- Диаметр или площадь сечения проводника.
Ограничения оптоволокна
Есть и некоторые минусы технологии. Одной из причин, по которой такой вид проводов не является общедоступным, становятся затраты на его прокладку. Это не выгодно, когда уже есть готовые телефонные линии. Большинство людей, получающих интернет в 20-100 Мбит/с вполне довольны скоростью. Волокно работает оптимальнее, чем медь или алюминий, но из-за нагрузок на сервера пользователь часто просто не увидит разницы между ними. Например, приложение, загружающее большой файл на компьютер, может доставить его за считанные секунды при быстром соединении, но из-за ограничения на самих серверах софта эта цифра будет ограничена.
Что было до волокна: DSL и кабель
Цифровая абонентская линия (DSL) использовала существующие телефонные линии для передачи данных, которые обычно делались из меди. DSL медленный, старый, и, по большей части, был вытеснен кабелем, но он всё ещё сохраняется в некоторых сельских районах. Средняя скорость для DSL составляет около 2 Мбит/с.
Кабельный интернет использует коаксиальный кабель, также изготовленный из меди, и, как правило, поставляется с в формате таких же кабелей, которые используются для управления телевизионной сетью. Вот почему многие интернет-провайдеры предлагают в комплекте планы с подпиской на телевидение и доступом в интернет. Средняя скорость для кабеля варьируется, но колеблется от 20 Мбит/с до 100 Мбит/с.
Сварка оптоволокна и уровень затухания сигнала
Подготовленная и зачищенная жила аккуратно вкладывается в посадочное место для сварки, чуть-чуть не доставая своим кончиком середины электрода.
Все те же операции проделываются со вторым концом кабеля.
Ошибка №12
Не забудьте перед этим одеть на второй конец муфточку КДЗС (комплект динамической защиты сварочного соединения), иначе потом будет поздно.
КДЗС — это две термоусадочные трубочки, между которыми располагается стальной штифт.
Волокна должны попасть именно в центральную трубочку, а не между ними.
В противном случае после пайки стальной штифт может его поломать.
Подготовленный второй конец закладывается в сварочник с обратной стороны от первого.
В итоге идеально чистые и ровно срезанные два конца волокна, должны оказаться между двух электродов, которые и будут выполнять сварку.
Если один из концов оказался слишком далеко от электродов и заданного положения, прибор известит вас об этом.
Также высветится ошибка, если волокна будут пересекать друг дружку.
Как только вы закрываете крышку происходит процесс самодиагностики, калибровки и выравнивания двух концов. Все это выводится на экран.
Если все нормально, нажимаете кнопку сварки и она запускается автоматически. Если вдруг один из кончиков оказался срезан недостаточно ровно, система известит вас об этом, не только просигналив об ошибке, но и известив какой конец кабеля виноват.
В данной ситуации процесс зачистки и скалывания повторяется. Со вторым, нормально зачищенным концом ничего делать не нужно.
При успешном завершении сварочного процесса (длится пару секунд), на экран выводятся потери или затухание сигнала в децибелах. Очень хорошим результатом считается 0,01-0,02дб.
Идеал – это соединение вообще без потерь. Бывает и такое.
Хотя даже на заводских пигтейлах (от английского pig tail – поросячий хвостик) встречаются не такие уж идеальные пайки.
При неудовлетворительных результатах сварки, монитор качественных аппаратов проинформирует вас об этом.
Допустимыми значениями затухания считаются следующие параметры:
Ошибка №13
Однако никогда не полагайтесь только на результат показаний сварочного аппарата.
Для конечной проверки результата обязательно требуется рефлектометр. Иначе после окончания всех работ будете задаваться вот такими вот вопросами:
Объясняется это тем, что камера микроскопа сварочника не способна увидеть всю картинку в 360 градусов вокруг волокна. Отсюда и погрешность.
После сварки и открытия крышки аппарат с расчётным усилием пытается развести жилки, как бы растягивая их. Тем самым проводится тест на прочность контакта.
Если сварка выдержала и не порвалась – все ОК. Однако некоторые кабельщики отключают программно такой тест, предполагая, что такое «растягивание» может повредить еще не до конца остывший контакт.
Броня
Это может быть либо кевларовая броня (сплетенные нити), либо кольцо стальных проволок, либо лист гофрированной стали:
- Кевлар применяется в тех видах оптоволоконного кабеля, где содержание металла недопустимо или если нужно снизить его вес.
- Кабель с броней из стальных проволочек предназначен для подземной укладки непосредственно в грунт – прочная броня защищает от многих повреждений, в т.ч. от лопаты.
- Кабель с гофроброней прокладывают в трубах или кабельной канализации, защитить такая броня может лишь от грызунов.
При разделке кевлар рекомендуется не резать, а откусывать, т.к. режущий инструмент практически моментально тупится.
Особенности проектирования и монтажа волоконно-оптической связи
Проектирование волоконно-оптических линий связи является сложным и трудоемким процессом, который должен учитывать целый ряд особенностей, начиная от технической возможности проведения трассы и заканчивая количеством основного и вспомогательного оборудования, которое будет соединено в рамках сети.
Процесс проектирования и разработки линии связи можно разделить на несколько стадий:
- определение технической возможности установки;
- выбор типа кабеля и его длины;
- проведение технических расчетов на предмет выявления величины коэффициента затухания сигнала, и других важных показателей;
- выбор необходимой аппаратуры и вспомогательных средств для обеспечения бесперебойной работы сети и соответствия стандартам передачи информации;
- проектирование и прокладка трассы. Монтаж волоконно-оптических линий связи может производиться двумя способами – навесным (кабель прокладывается по воздуху на уже существующих либо новых технических опорах) или подземным (для этого необходимо проделать специальные земельные работы). Выбор способа прокладки трассы зависит от климатического пояса, атмосферных условий (степень промерзания почвы, солнечная или ветровая активность), рельефа местности и других факторов;
- подготовка необходимой технической документации с указанием количества точек подключения, различные разветвления и общая трассировка (так называемая скелетная схема);
- перечень конкретных технических и аппаратных средств, задействованных в создании работоспособной линии связи (стационарные терминалы, усилители, трансиверы, муфты ответвления и другое оборудование);
- согласование проекта с заказчиком и проведение монтажных работ.
Одна из главных особенностей установки заключается в том, что волоконно-оптический канал связи в рамках проекта может достигать нескольких десятков километров, тогда как стандартная длина провода существенно меньше. Это предусматривает наличие соединений в рамках одной линии связи между сегментами кабеля.
Соединить два сегмента провода можно несколькими способами:
- разъемное соединение (при помощи оптических коннекторов). У этого способа есть одно преимущество – работы происходят достаточно быстро и не требуют специального оборудования. Главный недостаток заключается в том, что это существенно удорожает стоимость линии связи и способствует увеличению потерь сигнала при использовании большого количества соединительных элементов;
- неразъемный способ. Здесь существует несколько вариантов, среди которых склеивание и сварка волоконно-оптических линий связи. Эти процессы довольно трудоемкие и требуют специального оборудования и практических навыков, но итогом является практически полное отсутствие потерь скорости передачи и монолитное соединение кабелей.
Волоконно-оптические линии связи, используемое оборудование для которых соответствует мировым стандартам, способны служить на протяжении полувека без видимой потери качества сигнала.
Оптоволоконный передатчик
В первоначальных ВОЛС использовались большие лазеры, сегодня можно использовать различные полупроводниковые устройства. Чаще всего используются светоизлучающие диоды, светодиоды и полупроводниковые лазерные диоды.
Самым простым передающим устройством является светодиод. Его главное преимущество заключается в дешевизне. Однако у них есть ряд недостатков. Во-первых, они имеют очень низкий уровень эффективности. Только около 1% мощности поступает в оптическое волокно, а это означает, что потребуются драйверы высокой мощности для обеспечения достаточного количества света для передачи на большие расстояния.
Второй недостаток светодиода в излучении некогерентного света широкого спектра 30–60 нм. Из-за этого дисперсия в волокне ограничивает предел пропускной способности волоконного световода.
Волоконные светодиоды используются для локальных сетей, где скорость передачи данных в диапазоне 10–100 Мбит/с, а расстояние передачи несколько километров.
Оптоволоконная связь на большие расстояния с более высокими скоростями передачи данных, потребует большей производительности источника света. В этих системах используют лазеры. Хотя они более дорогие, они обладают существенными преимуществами.
Во-первых, они могут обеспечить более высокий выходной уровень;
Во-вторых, световой поток является направленным, что обеспечивает гораздо более высокую эффективность передачи света в оптоволоконный кабель. Эффективность связи с одномодовым волокном может достигать 50%.
В-третьих, лазеры имеют очень узкую спектральную полосу пропускания, то есть они производят когерентный свет. Эта узкая спектральная ширина позволяет лазерам передавать данные с гораздо большей скоростью, поскольку модальная дисперсия менее заметна.
Для очень высоких скоростей передачи данных или очень больших расстояний более эффективно использовать лазер с постоянным уровнем выходной мощности (непрерывной волной). Затем свет модулируется с помощью внешнего устройства. Использования внешних средств модуляции увеличивает максимальное расстояние между линиями связи, поскольку устраняется эффект, известный как лазерный «чирп». Этот эффект расширяет спектр светового сигнала и увеличивает хроматическую дисперсию в оптоволоконном кабеле.
Оптоволоконная связь и оптический кабель
По сути, оптоволоконный кабель состоит из сердечника, вокруг которого находится еще один слой, называемый оболочкой. Снаружи есть защитное внешнее покрытие.
Оптические кабели работают, потому что их оболочка имеет намного меньший показатель преломления, чем у сердечника. Это означает, что свет, проходящий по сердцевине, подвергается полному внутреннему отражению, когда достигает границы сердцевина-оболочка. То есть отражаясь свет движется внутри сердцевины оптического волокна.
Усилители (репитеры)
Есть ограничения в расстояние передачи сигналов по оптоволоконным кабелям. Это ограничивается связаны с затуханием сигнала и искажением светового сигнала вдоль кабеля. Чтобы преодолеть эти эффекты и передавать сигналы на большие расстояния (например, между городами), используются повторители и усилители сигналов.
Часто используют фотоэлектрические повторители. Эти устройства преобразуют оптический сигнал в электрический формат, где его можно обработать, чтобы сигнал не искажался, а затем преобразовать обратно в оптический формат.
Альтернативный подход — использовать оптический усилитель (эрбиевые 1,55мкм, иттербиевые 1 мкм, тулиевые 2 и 1,47 мкм). Эти усилители напрямую усиливают оптический сигнал без необходимости преобразовывать сигнал обратно в электрический формат.
Ввиду гораздо более низкой стоимости ВОУ по сравнению с повторителями, они используются гораздо чаще.
Оптоволоконная связь и приемники
Свет, распространяющийся по оптоволоконному кабелю, необходимо преобразовать в электрический сигнал, чтобы его можно было обработать и извлечь передаваемые данные. Компонент, который лежит в основе приемника, — это детектор (фотодетектор).
Обычно это полупроводниковое устройство с pn-переходом, штыревым фотодиодом или лавинным фотодиодом. Фототранзисторы не используются, потому что они не имеют достаточного быстродействия.
После того как оптический сигнал от оптоволоконного кабеля был подан на детектор и преобразован в электрический формат, он может быть обработан для восстановления данных, которые затем могут быть переданы в конечный пункт назначения.