Как настроить преобразователь частоты danfoss

Принцип работы простейшей схемы регулирования с обратной связью по давлению

Частотные преобразователи применяются также для небольших систем водоснабжения, отопления и ГВС. Плавное регулирование напора и производительности насоса обеспечивает постоянное давление в сети, отсутствие перепадов температуры горячей воды при открытии и закрытии дополнительных кранов, поддержание микроклимата в помещении.

При пуске насоса через частотный преобразователь, на электродвигатель подается напряжение небольшой частоты, которая увеличивается согласно запрограммированным значениям. Это обеспечивает плавное нарастание давления в системе и снижает вероятность гидравлических ударов.

При увеличении водопотребления, давление в системе падает. Сигнал с датчика давления подается на частотный преобразователь, который увеличивает частоту питающего напряжения электрического двигателя. Производительность насоса плавно увеличивается, пока давление в системе не достигнет заданного значения. При снижении потребления воды, частота напряжения в питающей цепи снижается, обороты насосного агрегата падают.

При помощи частотных преобразователей также можно реализовать систему каскадного автоматического управления двумя и более насосами. Такие схемы используются в сетях с высокими пиковыми нагрузками, где максимальная производительность одного насоса не обеспечивает компенсацию потерь давления. В этих случаях частотный преобразователь обеспечивает плавный ввод дополнительных агрегатов и равномерное распределение нагрузки между работающими насосами.

Предупреждение, как настроить частотник и не спалить шпиндель.

Настройка частотника xsy-at1. Для станка с ЧПУ я приобрёл инвертор чпу в комплекте с шпинделем. Потому что частотный преобразователь  AT1-2200S рассчитанный на нагрузку 2,2 кВт. Поэтому я купил с запасом по мощности. Так как шпиндель станка будет мощностью 1,5 кВт. Как настроить частотник, читай ниже.

Частотный преобразователь AT1-2200S
Шпиндель 1,5 кВт.

После получения посылки, я решил сразу проверить исправность купленного оборудования.

Я конечно сразу подсоединил двигатель к частотнику. Но инструкцию конечно не читал. Так как инструкцию написали на английском языке, а я его не знаю. Но и как настроить частотник я тоже не знал.

Частотный преобразователь и шпиндель.

Потому что не читал инструкцию, всё соединил и включил сразу в розетку. Но не тут то- было. Потому что движок стоит. Но потом, когда я стал медленно крутить ручку по часовой стрелке, двигатель стал начинать вращение. И из него стал исходить скрипящий звук. Но звук похож на звук развалившегося подшипника, а не вращения двигателя. Так как всё это продолжалось в течении двух-трёх секунд, сработала защита частотника. Хвала за это Китайцу от чистого сердца. Когда пощупал я движок, то обомлел. Потому что за такое короткое время движок очень сильно нагрелся. Ну, думаю всё, конец шпинделю. Для того чтобы охладить двигатель я вынес его на улицу (зима). После чего пошёл в интернет разбираться как настроить частотник. Но когда я нашёл (долго искал) инструкцию на русском языке, тогда я всё понял.

После чего я сделал необходимые настройки. Но теперь у меня всё заработало. Потому что всё правильно я сделал. Так как ниже я привожу необходимые настройки для первого пуска и настройки инвертора шпинделя . Поэтому не сомневайтесь.

Настройка частотного преобразователя Danfoss Micro Drive

В данной статье рассмотрим режим поддержания постоянного давления. Задание от внешнего потенциометра, старт от кнопки.

Для ввода преобразователя частоты в эксплуатацию необходимо выполнить следующие действия:

  1. Выполнить монтаж с соблюдением норм безопасности!
  2. Проверить параметры оборудования (параметры сети, входа питание ПЧ, двигателя)
  3. Проверить условия установки и эксплуатации преобразователя частоты (отсутствие пыли и влаги, температурный режим и установочные зазоры).
  4. Электрический монтаж осуществить в соответствии с схемой подключения указанной на рисунке 1

    Рисунок 1. Принципиальная электрическая схема подключения преобразователя частоты VLT Micro Drive

  5. Проверить правильность и надежность подключений
  6. Для реализации режима поддержания постоянного давления необходимо установить следующие параметры в преобразователе частоты VLT Micro Drive:
№ пар. Параметр Требуется установить значение
14-22 Режим работы (сброс параметров на заводские) Initialisation — инициализация, после установки значения выключить и затем включить ПЧ (сбросится в 0)
1-20* Номинальная мощность ## кВт — с шильдика (паспортной таблички двигателя)
1-22* Номинальное напряжение ## В — с шильдика (паспортной таблички двигателя)
1-23* Номинальная частота ## Гц — с шильдика (паспортной таблички двигателя)
1-24* Номинальный ток ## А — с шильдика (паспортной таблички двигателя)
1-25* Номинальный скорость ## Об/мин — с шильдика (паспортной таблички двигателя)
1-29 Автоматическая адаптация двигателя Enable AMT — Для запуска адаптации установите на пульте «Hand on» по завершении — «Ok» Знач. сбросится
4-12* Мин. скорость вращения Гц — в зависимости от применения (реком. для вентиляторов)
4-14* Макс. скорость вращения Гц — рекомендуется установить номинальную скорость
3-41 Время разгона с — зависит от применения
3-42 Время замедления с — зависит от применения
Проверьте правильность направления вращения механизма, в ручном режиме нажав на панели «Hand on» (далее потенциометром панели или стрелками), по окончании нажмите «Auto on»*
1-00* Режим конфигурирования Process с — режим ПИ регулятора
3-02 Мин. задание мин. рабочий уровень или мин. уровень сигнала с датчика
3-03* Макс. задание макс. рабочий уровень или макс. уровень сигнала с датчика
3-15 Источник задания 1 Analog in 53 — задание уровня поддерживаемого праметра
3-16* Источник задания 2 No function — нет
5-10 Функция цифр. вх. 18 Start — Пуск
5-12* Функция цифр. вх. 27 Coast and reset inverse — выбег и сброс инверсный
6-10 Кл. 53 низкое напряжение В — нижний диапазон аналогового входа 1
6-11 Кл. 53 высокое напряжение В — высокий диапазон аналогового входа 1
6-14 Кл. 53 низкое задание — низкое задание аналогового входа 1
6-15* Кл. 53 высокое задание — высокое задание аналогового входа 1
6-22 Кл. 60 низкое напряжение мА — нижний диапазон аналогового входа 2
6-23 Кл. 60 высокое напряжение мА — высокий диапазон аналогового входа 2
6-24 Кл. 60 низкое задание — низкое задание аналогового входа 2
6-25* Кл. 60 высокое задание — высокое задание аналогового входа 2
7-20* Источник ОС для ПИ рег. Analog input 60 — аналоговый вход 2 клемма 60
7-30 Норм/инв. реж. работы рег. нормальный (скорость больше при + ошибке) (давление)

инверсный (скорость меньше при + ошибке) (температура)

7-33* Пропорц. коэф ПИ рег. — настраивается для применения
7-34* Интеграл. коэф. ПИ регул. — настраивается для применения

*Обязательно введите/проверьте значения этих параметров

Настройка коэффициентов ПИ регулятора

1. Установите 7-34 = 9999, 7-33 = 0,3 Плавно

увеличивайте знач. 7-33 до появления автоколеб.

2. Снизьте знач. 7-33 на 40% и зафиксируйте

3. При найденном значении 7-33 установите 7-34 = 20 и снижайте до появления колебаний или очень большого перерегулирования

4. Увеличьте знач. 7-34 на 25% и зафиксируйте

При возникновении сложностей в программировании преобразователя частоты VLT Micro Drive — обратитесь к специалистам Европейской Электротехнической Компании для получения консультации.

Cмотрите так же:

Реализация функции «Спящий режим» на встроенном контроллере SLC частотного преобразователя

Инструкция по настройке ModBus RTU

Danfoss VLT HVAC

Этот тип частотного преобразователя имеет “мастер” (утилиту настройки) который облегчает подготовку двигателя к эксплуатации. При первом подключении включении двигателя, до подачи на него напряжения, на дисплее отображается ряд вопросов, на которые потребитель должен дать ответ при помощи выбора вариантов, прокручивая их кнопками направления. Необходимо подтвердить рабочую частоту сети; вид подключения двигателя: треугольник (delta), или звезда (grid); тип двигателя: асинхронный, синхронный.

Дальнейшие вопросы мастер предлагает в зависимости от типа выбранного двигателя. Для асинхронного двигателя надо указать его мощность, рабочее напряжение, частоту, ток, номинальную скорость – это все его паспортные, а не рабочие данные. Затем устанавливаются параметры скорости (лимиты) и разгона преобразователя частоты. После этого мастер спрашивает, нужна ли функция подхвата: “Active Flying start?” (для асинхронного двигателя), и т.д.

Убедившись, что включение преобразователя частоты в работу происходит нормально, то можно настраивать обратную связь, если это предусмотрено технологией оборудования, на которой двигатель будет эксплуатироваться.

Когда настройка преобразователя частоты производится для замкнутого контура регулирования, нужно выбрать другой мастер, тогда в меню Configuration Mode должен быть выбран параметр Closed Loop. (Дальше можно выбрать среди прочего источник сигнала обратной связи Feedback 1 Source и источник опорного сигнала Reference 2 Source. Это токовые входы 4-20 мА.)

При настройке контура обратной связи заданием является опорный сигнал (Reference) относительно которого работает компаратор контура. В зависимости от того, какую природу имеет управляющий сигнал (ток или напряжение) выбираются единицы измерения и устанавливаются пределы регулирования

Очень важно не ошибиться со знаком обратной связи – от этого будет зависеть реакция привода на сигнал ошибки. При “нормальном” регулировании сигнал обратной связи отрицательный и привод стабилизируется (в подавляющем большинстве применений требуется именно это), а при “инверсном” он ведет себя противоположным образом – либо идет “вразнос”, либо “сваливается”

Для управления скоростью этих процессов предназначены временные фильтры.

Также можно использовать ПИ регулятор преобразователя частоты и настроить привод под имеющуюся в механизме динамику. Пропорциональный коэффициент увеличивает быстродействие регулятора, однако, может привести к появлению колебаний скорости (рывков), которые даже могут оказаться незатухающими. То же самое происходит при уменьшении времени интегрирования. Оба параметра, по той причине, что динамика системы крайне редко поддается расчету, приходится подбирать опытным путем. (Лучше делать это методом половинного деления, так можно быстрее всего найти оптимальную точку на плоскости координат. Между прочим, оптимальные значения параметров ПИ-регулятора сами могут быть функцией какого-то состояния механизма).

настройка ПИД регулирование частотного преобразователя

Как настроить PID регулятор для преобразователей частоты Danfoss

Этот регулятор пользователь применяет для удержания частотником определенного параметра. Подключим механизм установки вентилятора.

Задающим сигналом работает потенциометр.

Обратную связь осуществит датчик давления.

Соблюдение полярности – важное условие при подсоединении пользователем датчика. Основную настройку регулятора сделаем программой МСТ-10, которая обеспечивает контролирование данных на графике

К частотнику присоединяемся через USB. Вводим данные нормы для мотора по паспорту в группу данных 1-2 и 1-22, 1-23 – частота, 1-24 – ток мотора, 1-25, скорость мотора.

Проводим параметры входов преобразователя частоты в группе 6. В группе 6-1 задаем данные для задающего сигнала. В группе 6-2 определяем значения датчика. Настраиваем частотник для работы регулировки процесса в контуре. Эти значения сочетаются не со всеми применениями. Они задаются пользователем конкретно во всех случаях.

Настраивание регулятора преобразователей частоты Danfoss происходит по определению пропорционального коэффициента и составляющих интегральных регулятора. Автоматические колебания различаются, заметны на осциллографе и постоянны по характеру. Если будет оставаться ошибка регулировки, то уменьшаем составляющую. Значение 20-94 уменьшим до уменьшения разницы и исчезновения колебаний. При сравнивании значения с заданием, настройка закончена.

Danfoss VLT HVAC

Этот тип частотного преобразователя имеет “мастер” (утилиту настройки) который облегчает подготовку двигателя к эксплуатации. При первом подключении включении двигателя, до подачи на него напряжения, на дисплее отображается ряд вопросов, на которые потребитель должен дать ответ при помощи выбора вариантов, прокручивая их кнопками направления. Необходимо подтвердить рабочую частоту сети; вид подключения двигателя: треугольник (delta), или звезда (grid); тип двигателя: асинхронный, синхронный.

Дальнейшие вопросы мастер предлагает в зависимости от типа выбранного двигателя. Для асинхронного двигателя надо указать его мощность, рабочее напряжение, частоту, ток, номинальную скорость – это все его паспортные, а не рабочие данные. Затем устанавливаются параметры скорости (лимиты) и разгона преобразователя частоты. После этого мастер спрашивает, нужна ли функция подхвата: “Active Flying start?” (для асинхронного двигателя), и т.д.

Убедившись, что включение преобразователя частоты в работу происходит нормально, то можно настраивать обратную связь, если это предусмотрено технологией оборудования, на которой двигатель будет эксплуатироваться.

Когда настройка преобразователя частоты производится для замкнутого контура регулирования, нужно выбрать другой мастер, тогда в меню Configuration Mode должен быть выбран параметр Closed Loop. (Дальше можно выбрать среди прочего источник сигнала обратной связи Feedback 1 Source и источник опорного сигнала Reference 2 Source. Это токовые входы 4-20 мА.)

При настройке контура обратной связи заданием является опорный сигнал (Reference) относительно которого работает компаратор контура. В зависимости от того, какую природу имеет управляющий сигнал (ток или напряжение) выбираются единицы измерения и устанавливаются пределы регулирования

Очень важно не ошибиться со знаком обратной связи – от этого будет зависеть реакция привода на сигнал ошибки. При “нормальном” регулировании сигнал обратной связи отрицательный и привод стабилизируется (в подавляющем большинстве применений требуется именно это), а при “инверсном” он ведет себя противоположным образом – либо идет “вразнос”, либо “сваливается”

Для управления скоростью этих процессов предназначены временные фильтры.

Также можно использовать ПИ регулятор преобразователя частоты и настроить привод под имеющуюся в механизме динамику. Пропорциональный коэффициент увеличивает быстродействие регулятора, однако, может привести к появлению колебаний скорости (рывков), которые даже могут оказаться незатухающими. То же самое происходит при уменьшении времени интегрирования. Оба параметра, по той причине, что динамика системы крайне редко поддается расчету, приходится подбирать опытным путем. (Лучше делать это методом половинного деления, так можно быстрее всего найти оптимальную точку на плоскости координат. Между прочим, оптимальные значения параметров ПИ-регулятора сами могут быть функцией какого-то состояния механизма).

Подключение силовых цепей

Все провода, подключаемые к частотному преобразователю, можно разделить на 2 группы: силовые и контрольные. Рассмотрим подключение силовых.

Три провода сетевого питания 380 В, 50 Гц — клеммы R, S, T + провод заземления PE. Нейтраль частотному преобразователю не нужна. Даже если она у вас есть, подключать не нужно. А вот провода питания можно подключать в любом порядке. При необходимости чередование фаз можно изменить в программе частотника.

Три провода питания двигателя — клеммы U, V, W + провод заземления PE. На выходе напряжение может меняться от 0 до 380 В, а частота от 0 до 500 Гц. В этом и кроется смысл работы частотного преобразователя — он позволяет изменять скорость двигателя от нуля до номинального значения и даже выше, если это позволяет механика.

Рис.2 Подключение силовых цепей

Hyundai N700

В этом примере пусть требуется управлять мотором с пульта преобразователя: включение, выключение и регулировка оборотов (частоты вращения, зависящей от рабочей частоты). Информацию про частотник этой модели, найдете здесь.

После подачи питания выбираем режим программирования, нажатием клавиши FUNC. Дисплей переходит в режим выбора функций. Клавишами со стрелками прокручиваем список функций (параметров), до тех пор, пока не появится та, значение которой мы хотим изменить. Повторное нажатие FUNC переключает редактор в режим установки значения параметров. Теперь стрелки работают на выбор требуемого значения. Прокрутив дисплей до требуемого значения, нажимаем кнопку STR. Автоматически попадаем на уровень выше и можем выбирать другую функцию. Повторное нажатие FUNC приведет к выходу в рабочий режим.

Сделаем настройки:

  • A01 = 0 – частота вращения управляется с пульта клавишами
  • A02 = 0 – двигатель запускается с пульта
  • A03 = 50 – основная частота
  • A04 = 50 – максимальная частота

Преобразователь будет работать от кнопок Run (запуск) и Stop (остановка). Во время работы на дисплее будет отображаться частота выходного напряжения. Частоту можно настраивать клавишами со стрелками, если выбрана функция F01.

Если двигатель работает и обороты регулируются, то можно настраивать контур обратной связи, если такой имеется и требуется его использование. В этом случае к клеммам аналогового входа подключается датчик сигнала обратной связи (например, давления), параметр A01 = 1. Все остальное зависит от конкретной конфигурации оборудования и требований к его работе.

Преимущества применения частотных преобразователей в схемах автоматизации насосов

  • Системы водоснабжения не требуют компенсационных емкостей для гашения гидравлических ударов. Запуск и отключение насосных агрегатов осуществляется плавно, что исключает резкие скачки давления. В системах отопления и автономного водоснабжения все же рекомендуется установить расширительные баки мембранного типа. Это оборудование позволит избежать последствий гидроударов и увеличения давления при авариях и температурном расширении теплоносителя.
  • Комфортная температура горячей воды и теплоносителя в отопительной системе. В отличие от релейных схем управления, частотное регулирования позволяет избежать скачков температуры воды независимо от ее расхода.
  • Защита арматуры, трубопровода, котла от гидроударов. При прямом пуске электродвигателя, резко меняется скорость потока в трубопроводе. Возникает гидравлический удар, который может повредить гидроавтоматику, котел и другие элементы системы. Ликвидация последствий гидроудара может обойтись в сотни тысяч рублей.
  • Защита электродвигателя насоса от аварий и аномальных режимов работы. При несимметричной нагрузке, изменении напряжения в сети, коротких замыканиях, перегреве обмоток, частотный преобразователь осуществляет аварийную остановку электродвигателя.
  • Возможность удаленного управления. Danfoss выпускает преобразователи частоты, поддерживающие все распространенные протоколы обмена данными. Управление можно осуществлять с удаленного ПК, при помощи приложений, установленных на смартфоны или планшеты. Преобразователи для промышленных систем водоподачи можно встраивать в многоуровневые системы АСТП.
  • Возможность регулирование напора и производительности насосных агрегатов по одному или нескольким характеристикам. Частотные преобразователи можно запрограммировать на регулировку по расходу, давлению, температуре, уровню, напору, а также по двум и более параметрам.

Виды преобразователей частоты

Существует несколько типов частотников, которые на данный момент являются самыми распространенными для производства и использования:

Электромашинные (электроиндукционные) преобразователи: используются в тех случаях, когда невозможно или нецелесообразно применение электронных ПЧ. Конструктивно такие устройства являются асинхронными двигателями с фазным ротором, которые работают в режиме генератора-преобразователя.

Данные устройства являются преобразователями со скалярным управлением. На выходе из данного аппарата создается напряжение заданной амплитуды и частоты для поддержания определенного магнитного потока в обмотках статора. Они применяются в тех случаях, когда не требуется поддерживать скорость вращения ротора в зависимости от нагрузки (насосы, вентиляторы и прочее оборудование).

Электронные преобразователи: широко применяется в любых условиях работы для различного оборудования. Такие устройства являются векторными, они автоматически вычисляют взаимодействие магнитных полей статора и ротора и обеспечивают постоянное значение частоты вращения ротора вне зависимости от нагрузки.

  1. Циклоконверторы;
  2. Циклоинверторы;
  3. ПЧ с промежуточным звеном постоянного тока:
  • Частотный преобразователь источника тока;
  • Частотный преобразователь источника напряжения (с амплитудно- или широтно- импульсной модуляцией).

По сфере применения оборудование может быть:

  • для оборудования мощностью до 315 кВт;
  • векторные преобразователи для мощности до 500 кВт;
  • взрывозащищённые устройства для применения во взрывоопасных и запыленных условиях;
  • частотные преобразователи, монтируемые на электродвигатели;

Каждый тип частотного преобразователя имеет определенные преимущества и недостатки и применим для различного оборудования и нагрузок, а также условий работы.

Управление частотным преобразователем может быть ручным или внешним. Ручное управление осуществляется с пульта управления ПЧ, которым можно отрегулировать частоту вращения или остановить работу. Внешнее управление выполняется при помощи автоматических систем управления (АСУТП), которые могут контролировать все параметры устройства и позволяют переключать схему или режим работы (через ПЧ или байпас). Также внешнее управление позволяет программировать работу преобразователя в зависимости от условий работы, нагрузки, времени, что позволяет работать в автоматическом режиме.

Для чего нужен преобразователь частоты?

ПЧ – самое совершенное электронное устройство, через которое можно крутить асинхронный двигатель. Вот основные функции преобразователя частоты:

  • Пуск/Стоп двигателя,
  • Плавный разгон/замедление (торможение),
  • Изменение рабочей скорости от 0 до 100% и выше номинала,
  • Защита двигателя (их несколько – по току, температуре и др.),
  • Реверс,
  • Несколько вариантов управления (дискретное, аналоговое, по программе – от кнопок, реле, потенциометров, датчиков, контроллера, и т.д.).

Преобразователь частоты имеет несколько названий, которые используются на равных условиях:

  • преобразователь частоты (ПЧ) – официальное название, его использует большинство производителей в своей документации,
  • частотный преобразователь (ЧП),
  • частотник – можно считать жаргоном, но в разговоре употребляется наиболее часто,
  • инвертор,
  • Inverter, Frequency Converter (FC), Variable Frequency Drive (VFD) – на английском.

Все эти названия могут использоваться в других сферах, поэтому иногда нужно уточнять. Что касается темы статьи, наша сфера – подключение преобразователя частоты для трехфазных асинхронных двигателей.

Конечно, асинхронный двигатель можно не только через ПЧ, для этого есть несколько различных устройств. По подключению двигателей у меня много статей, вот основные:

Как подключить частотник к асинхронному двигателю?

Используемый для управления частотой напряжения преобразователь зачастую используется для энергоснабжения трёхфазных двигателей.  С помощью преобразователя частоты также возможно обеспечить присоединение такого устройства к однофазной сети, предотвратив снижение его рабочей мощности. Этим они значимо выигрывают у конденсаторов, которые при подключении не могут сохранить исходный уровень мощности. Подробней про применение частотника для трехфазника- смотрите здесь.

При подключении частотного преобразователя следует предварительно разместить автоматический выключатель, функционирующий от тока сети по значению равного номинальному (или наиболее близкого к таковому) уровню потребления тока в двигателе. Если используется частотник трёхфазного типа, то соответственно следует воспользоваться трёхфазным автоматом с общим рычагом. Такой вариант обеспечивает быстрое обесточивание всех фаз сразу при замыкании на одной из них.

В случае же, если для частотного преобразователя свойственно однофазное питание, то следует применить одинарный автомат, который подходит для работы с утроенным однофазным током.

Однако, при любых обстоятельствах установку частотного преобразователя нельзя осуществлять через включение автомата в месте разрыва нулевых или заземляющих проводов. В таких условиях подразумевается только прямое включение автомата.

Дальнейшую настройку преобразователя частоты осуществляют через соединение с контактами электрического двигателя. Используются при этом фазные провода. Но предварительно производится соединение обмоток электрического двигателя по схеме «звезда» или «треугольник».

Работа по той или иной схеме базируется на том, каков тип преобразователя частоты и характер производимого им напряжения.

По стандарту корпус каждого двигателя имеет отметку с двумя значениями, которым может равняться напряжение. Если частотник продуцирует напряжение соответствующее нижней границы, то соединение осуществляется по типу «треугольник». В остальных случаях для использования принцип «звезды».

Месторасположение управляющего пульта, обязательно прилагающегося при покупке частотного преобразователя, следует подбирать тщательно, чтобы обеспечить наибольшее удобство пользования.

Подключения пульта управления осуществляется по схеме обозначенной в прилагаемой к преобразователю инструкции. После рукоятка фиксируется на нулевом уровне, и автомат включается. В этот момент должно наблюдаться свечение светового индикатора.

Для использования частотного преобразователя, следует надавить кнопку «RUN» (она уже запрограммирована надлежащим образом). Далее делается лёгкий поворот рукоятки, провоцирующий старт постепенного вращения электрического двигателя. Если вращение осуществляется в направлении, противоположном необходимому, то следует нажать реверс. После при помощи рукоятки настраивается требуемая частота вращения устройства. При этом следует учитывать, что на корпусе пульта управления зачастую прописаны не уровни частоты вращения двигателя, выражаемые в оборотах в минуту, а частоты, которую имеет питающее напряжение, выражаемое в герцах.

Чтобы ограничить пусковой ток и снизить пусковой момент в момент пуска асинхронного двигателя с уровнем мощности больше 5000Вт, используется подключение типа «звезда-треугольник». До достижения номинала скорости задействуется схема подключения частотного преобразователя «звезда», а после питание осуществляется по схеме «треугольник». В момент переключения уровень пускового тока уменьшается в три раза относительно прямого пуска. При начале работы по второй схеме до момента разгона двигателей ток возрастёт до уровня прямого пуска. Такой варианты наиболее актуален для, имеющих большую маховую массу, позволяя после разгона сбросить нагрузку.

Логично, что использование такой схемы возможно только с двигателями, рассчитанными на подключения обоих типов.

Проведение работы по схеме «звезда-треугольник» всегда чревато резкими скачками уровня тока в противовес плавному нарастанию в условиях прямого пуска. В момент смены соединения скорость резко снижается и увеличить её можно только увеличив силу тока.

Частотный преобразователь.Как подключить трёхфазный электродвигатель от 220В.

Watch this video on YouTube