10 наиболее часто задаваемых вопросов о преобразователях частоты переменного тока

Содержание

Настройка частотного преобразователя для электродвигателя

Для того чтобы преобразователь частоты для асинхронного двигателя в полном объеме выполнял свои функции, его необходимо правильно подключить и настроить. В самом начале подключения в сети перед прибором размещается автоматический выключатель. Его номинал должен совпадать с величиной тока, потребляемого двигателем. Если частотник предполагается эксплуатировать в трехфазной сети, то автомат также должен быть трехфазным, с общим рычагом. В этом случае при коротком замыкании на одной из фаз можно оперативно отключить и другие фазы.

Ток срабатывания должен обладать характеристиками, полностью соответствующими току отдельной фазы электродвигателя. Если частотный преобразователь планируется использовать в однофазной сети, в этом случае рекомендуется воспользоваться одинарным автоматом, номинал которого должен в три раза превышать ток одной фазы. Независимо от количества фаз, при установке частотника, автоматы не должны включаться в разрыв заземляющего или нулевого провода. Рекомендуется использовать только прямое подключение.

При правильной настройке и подключении частотного преобразователя, его фазные провода должны соединяться с соответствующими контактами электродвигателя. Предварительно обмотки в двигателе соединяются по схеме «звезда» или «треугольник», в зависимости от напряжения, выдаваемого преобразователем. Если оно совпадает с меньшим значением, указанным на корпусе двигателя, то применяется соединение треугольником. При более высоком значении используется схема «звезда».

Далее выполняется подключение частотного преобразователя к контроллеру и пульту управления, который входит в комплект поставки. Все соединения осуществляются в соответствии со схемой, приведенной в руководстве по эксплуатации. Рукоятка должна находиться в нейтральном положении, после чего включается автомат. Нормальное включение подтверждается световым индикатором, загорающимся на пульте. Для того чтобы преобразователь заработал, нажимается кнопка RUN, запрограммированная по умолчанию.

После незначительного поворота рукоятки, двигатель начинает постепенно вращаться. Для переключения вращения в обратную сторону, существует специальная кнопка реверса. Затем с помощью рукоятки настраивается нужная частота вращения. На некоторых пультах вместо частоты вращения электродвигателя, отображаются данные о частоте напряжения. Поэтому рекомендуется заранее внимательно изучить интерфейс установленной аппаратуры.

Частотный преобразователь для электродвигателя: назначение и функции

Инверторный преобразователь частоты — электронное устройство для изменения частоты электрического тока и напряжения. Пределы изменений солидные. Частота может меняться от 1 Гц до 500 Гц. И это не максимум, а предел регулировки нормального частотника. Современные частотные инверторы делают на основе электроники, что позволяет точно поддерживать частоту и напряжение. При желании можно создать условия для плавного старта. Все это позволяет применять относительно недорогие электромоторы постоянного тока там, где раньше это было невозможно.

Некоторые частотные преобразователи управляются микропроцессорами

Частотный инвертор с асинхронным электромотором

Асинхронные двигатели при включении потребляют в разы больше энергии чем при штатной работе. Пусковые токи могут быть в 6-8 раз выше рабочих. Такие мгновенные скачки просаживают сеть. Напряжение резко падает, потом также скачкообразно восстанавливается. При включении особо мощного движка, сетевые параметры изменяются настолько сильно, что воспринимаются чувствительной техникой как пропадание. В результате перезапускается компьютерная техника, моргают или совсем гаснут лампы, перегорают блоки питания у котлов отопления и т.д.

Раньше остроту проблемы снижали установкой конденсаторов, которые сглаживали скачки. Но конденсаторы требуются большой емкости — по 70 мкФ на каждый киловатт мощности, плюс такую же емкость необходимо подключать для нейтрализации пускового тока. Но даже в этом случае скачки были, как и перегрузки двигателя на старте. К тому же подключение через емкость «съедало» значительную часть мощности мотора. Для компенсации потери необходимо было покупать более мощные агрегаты, ставить более мощные пусковые конденсаторы. В общем, решение не лучшее, но другого по сути, не было.

Преобразователи частоты выбирают по мощности подключаемого оборудования (должен быть запас не менее 20%) и по току (тоже с запасом)

С появлением преобразователей частоты (ПЧ) проблема решается намного эффективнее. Основная функция этого оборудования — плавный и постепенный разгон двигателя с нуля до полной мощности. На протяжении определенного промежутка времени (может задаваться, а может быть фиксированной величиной), подаваемый на двигатель ток плавно изменяет свои параметры, выводя движок на рабочий режим. Никаких перегрузок, влияния на сети. И конденсаторы не нужны, значит мощность двигателя может быть примерно на 40% меньше чем раньше (именно настолько она снижалась с конденсаторами). Точно так же, постепенно, происходит отключение. Электромотор постепенно замедляется, затем останавливается. В общем, частотный преобразователь для электродвигателя продлевает срок его эксплуатации, убирает проблему пусковых токов, стабилизирует параметры сети.

Что дает применение частотного инвертора с синхронным двигателем

Синхронные электродвигатели постоянного тока имеют несложное устройство, после выхода на требуемую скорость работают стабильно. Недостатки — сложности с пуском и невозможность регулирования частоты вращения вала. Проблему пуска давно научились обходить — делают асинхронную пусковую обмотку, которой разгоняют до нужной частоты. А вот невозможность менять скорость очень сильно ограничивает область применения. Не так много устройств, в которых нет необходимости в разных скоростных режимах работы двигателя. Это вентсистемы, кулеры.

Таблица с несколькими моделями, их параметрами и ценами

Если с синхронным электродвигателем использовать частотный преобразователь, проблема изменения скоростей решается на раз. Причем эта связка  работает настолько удачно, что японцы уже выпустили новые электропоезда на такой тяге. Стало появляться и другое подобное оборудование. Причем не только тяговое — новые электроинструменты некоторые производители стали выпускать с такими моторами. Да, стоит такое оборудование дороже, но имеет хороший КПД, работает стабильно.

Классификация частотных преобразователей

По типу питающего напряжения преобразователи частоты делятся на следующие виды:

  • с однофазным питанием (однофазный);
  • с трехфазным питанием (трехфазный);
  • высоковольтные устройства.

По типу управляемого электрического двигателя подключенного к преобразователю, устройства разработаны для управления:

  • однофазными двигателями с расщепленными полюсами и однофазные конденсаторные электрические двигатели;
  • трехфазными асинхронными электрическими двигателями переменного тока;
  • электрическими двигателями с постоянными магнитами.

По области применения типы частотных преобразователей будут следующими:

  • общепромышленного назначения;
  • векторный преобразователь частоты;
  • для управления механизмами, имеющими насосно-вентиляторный тип нагрузки;
  • частотные преобразователи для кранов и прочих подъемных механизмов;
  • адаптированный для использования в тяжелых условиях (частотный преобразователь взрывозащищенный);
  • децентрализованный частотно регулируемый преобразователь, монтируемый непосредственно на электрический двигатель.

Все приведенные выше типы частотных преобразователей адаптированы для определенных условий эксплуатации, и чем сложнее эти условия, тем внимательнее следует подходить к подбору соответствующего оборудования. Так, современный высокочастотный преобразователь частоты позволяет не только организовывать наиболее энергоэффективные алгоритмы управления технологическими процессами, но и увеличивать срок службы двигателей и прочих включенных в технологический процесс элементов.

Если у Вас возникли сложности при выборе, мы поможем подобрать преобразователь частотно аналоговый, общепромышленный и другие типы преобразователей частоты, оптимально подходящие под конкретные условия использования.

Краткий обзор популярных моделей

ШУН Grundfos Control MP204

Шкафы управления Grundfos Control MP204 рассчитаны на автоматическое функционирование и защиту одного насоса.

Параметры в Grundfos Control MP204 могут настраиваться в ручном и автоматическом режиме, причем существует два пороговых значения: первое – предупреждение, второе – аварийное отключение. Журнал отключений с перечислением причин реагирования хранится в памяти

Технические характеристики:

  • Напряжение – 380 В, 50 Гц
  • Мощность двигателей подключаемого оборудования – от 1,1 до 110 кВт
  • Температурный диапазон – от -30°С до +40 °С
  • Степень защиты: IP54

Преимуществом является возможность передачи данных CIU и регулировка параметров через Grundfos GO.

СУН от НПО СТОИК

Станции управления насосными агрегатами (СУН) от компании НПО СТОИК. Предназначены для автоматического управления погружными водозаборными и дренажными насосами, способны обслуживать от 1 до 8 подключений.

Образец исполнения СУН 30 кВт в металлическом навесном корпусе с устройством плавного пуска Aucom и преобразователем частоты Delta

Технические характеристики:

  • Напряжение – 380 В, 50 Гц
  • Мощность двигателей подключаемого оборудования – от 0.75 до 220 кВт
  • Температурный диапазон – от -10°С до +35 °С
  • Степень защиты: IP54

Среди базовых функций – автоматическое включение вентиляции, если показатель температуры внутри шкафа поднимается выше нормы.

Шкафы от бренда Грантор

Многофункциональные шкафы марки Грантор предназначены для обслуживания циркуляционных и дренажных систем.

Возможные режимы работы: циркуляция и дренаж по аналоговому датчику или по реле давления. Два варианта алгоритма работы предполагают совместное или поочередное включение насосов

Технические характеристики:

  • Напряжение – 1х220 В или 3х380 В, 50 Гц
  • Мощность двигателей подключаемого оборудования – до 7,5 кВт на каждый двигатель
  • Температурный диапазон – от 0°С до +40 °С
  • Степень защиты: IP65

При возникновении аварийной ситуации и поломки электродвигателя насоса (по причине короткого замыкания, перегрузки, перегрева) происходит автоматическое отключение оборудования и подключение резервного варианта.

Шкафы Wilo SK

Линейки SK-712, SK-FC, SK-FFS марки Wilo предназначены для управления несколькими насосами – от 1 до 6 штук.

Несколько автоматических схем у шкафа Wilo SK-712 сильно упрощают работу насосных станций

Технические характеристики:

  • Напряжение –380 В, 50 Гц
  • Мощность двигателей подключаемого оборудования – от 0,37 до 450 кВт
  • Температурный диапазон – от +1°С до +40 °С
  • Степень защиты: IP54

В процессе эксплуатации все технологические параметры отображаются на дисплее. В случае возникновения аварийной ситуации высвечивается код ошибки.

Устройство частотного преобразователя

Работает частотный преобразователь для электродвигателя следующим образом:

  1. Сетевое напряжение подается на выпрямитель, где преобразуется в постоянное.
  2. На блоке инвертора из постоянного напряжения формируются полярные импульсы (положительные и отрицательные) требуемой частоты. Импульсы формируются по принципу широтно-импульсной модуляции (ШИМ).
  3. Импульсы преобразуются в синусоиду той же частоты.

Как видите, устройство не слишком сложное, но это базовый набор блоков. В более сложные модели встраиваются дополнительные, обеспечивающие контроль параметров и защиту.

Блок-схема частотного преобразователя

Основной узел частотного преобразователя для электродвигателей — инвертор. Его собирают не основе IGBT транзисторов. Включая и выключая их, из постоянного напряжения формируем импульсы. Задавая частоту включения и выключения, на выходе получаем импульс с заданной частотой.

Если изменять скважность импульсов — отношение длительности периода к длительности импульса — меняется площадь импульса, а значит, и напряжение на выходе. Вот и получаем возможность используя частотный преобразователь для электродвигателя менять не только частоту, но и напряжение

Последний блок — сглаживающий импульсы и превращающий их в синусоиду — присутствует далеко не всегда. Частота импульсов на выходе инверторного блока может достигать нескольких килогерц. А обмотки двигателя имеют высокую индуктивность, и сами работают как выходной фильтр.

ГОСТы и ТУ для частотных преобразователей

Собственно, как и любые технические средства, используемые на производственных предприятиях и в оборудовании, частотные преобразователи и требования к ним регламентируются определенной технической базой, а именно следующими документами:

  • Правила устройства электроустановок 7-е издание.
  • ГОСТ 24607-88 Преобразователи частоты.
  • ГОСТ 13109-97 Совместимость технических средств электромагнитная.
  • ГОСТ Р 51137-98 Электроприводы регулируемые асинхронные.
  • ФЗ 261 Федеральный закон об энергосбережении и энергоэффективности.
  • ТР ТС 00_2011 Электромагнитная совместимость технических средств.
  • ГОСТ26284-84 — Преобразователи электроэнергии полупроводниковые. Условные обозначения.
  • ГОСТ23414-84 — Преобразователи электроэнергии полупроводниковые. Термины и определения.
  • ГОСТ 4.139-85 Система показателей качества продукции. Преобразователи электроэнергии полупроводниковые. Номенклатура показателей.

В соответствии с описанными в этих документах требованиями должен осуществлять выбор конкретной модели устройства, а также ее установка и отладка.

Классификация и виды

Все частотные преобразователи для электромоторов условно можно разделить на несколько групп:

  • Индивидуальные. Разработаны под какой-то определенный тип и характеристики мотора.
  • Универсальные. Благодаря возможности изменять параметры могут работать с различными двигателями.
  • Специализированные. Разрабатываются для конкретных типов оборудования. Например, преобразователи для насосных станций (насосов) и вентиляторов (Mitsubishi FR-F740).
  • Интеллектуальные. Имеют встроенный персональный компьютер, имеют функции самодиагностики. ПЧ сам следит за состоянием изнашиваемых частей и сообщает о необходимости из замены, когда ресурс подходит к концу.

Самые дешевые — индивидуальные. Но они могут работать только исключительно с моторами одного типа/мощности. Специализированные тоже имеют довольно ограниченный диапазон подключаемого оборудования. Универсальные, с этой точки зрения, хороши, но стоит они значительно дороже (сложнее схема и больше компонентов).

Выбирать надо под конкретное устройство

Но, все-таки, самые дорогие — интеллектуальные. Многие из них управляться могут при помощи сенсорной панели, а не набора регуляторов. Кроме того, большинство моделей имеет пульт дистанционного управления. Это удобно, так как частотный регулятор может быть установлен далеко. Обычно их ставят в шкафах или где-то на вводе. При наличии пульта ДУ можно регулировать работу, находясь возле двигателя и не бегая к шкафу.

Как осуществляется подключение преобразователя частоты?

Если рассмотреть монтаж преобразователя частоты схематически, то вес процесс сводиться к соединению контактов самого устройства, электродвигателя и управляющего блока-предохранителя. Достаточно соединить провода всех элементом, подключить двигатель к сети и запустить его.

На первый взгляд, ничего сложного в этом нет, но, на самом деле, процедура монтажа имеет некоторые свои нюансы:

Очень важно, чтобы в цепи между самим частотником и источником питания был установлен предохранитель. Он позволит своевременно отключать устройства в случае перепадов напряжения, сохраняя их работоспособность

Примечательно, что при подключении к трехфазной сети, необходимо, чтобы сам предохранитель также был трехфазным, но имел общий рычаг для отключения. Это даст возможность отключать питание сразу на всех фазах даже, если только на одной случилось короткое замыкание или перегрузка. Если преобразователь подключается к однофазной сети, то и предохранитель должен быть однофазным. В данном случае при расчетах необходимо учитывать ток только одной фазы, но умноженный на 3. Всегда стоит помнить, что в инструкции практически к любому преобразователю указаны требования и нормы по его установке. С ними необходимо ознакомиться еще до начала работ.
Фазовые выходы частотного преобразователя подключаются к контактам самого электродвигателя. При этом в зависимости от напряжения частотника обмотки двигателя могут иметь формацию «звезда» или «треугольник».  Обычно на корпусе двигателя указано два значения напряжения. Если частотник соответствует меньшему, то обмотки соединяются «звездой», если большему – «треугольником». Вся эта информация обычно пропечатывается в инструкции.
В комплекте практически с каждым преобразователем частоты прилагается выносной пульт управления. Он не является обязательным элементов цепи, ведь на самом устройстве также есть свои элементы управления, но позволяют существенно упростить работу с оборудованием. Пульт можно монтировать на любом расстоянии от частотника. Обычно делается это следующим образом: преобразователи частоты, которые имеют низкую степень защиты располагаются подальше от двигателя, а сам пульт выносится непосредственно к рабочему месту около оборудования.

Не менее важным этапом установки частотного преобразователя является его тестовый запуск. Он осуществляет по следующей схеме:

  • После подключения всех элементов системы (предохранитель, панель управления, частотник, двигатель) необходимо перевести рукоять на пульте управления в активное положение на несколько градусов.
  • Тумблеры предохранителя переключить в положение «ВКЛ». После этого на частотном преобразователи должны загореться световые индикаторы, которые будут сигнализировать, что оборудование подключено правильно, а двигатель должен начать медленно вращаться.
  • Если вал двигателя начал вращаться в другу от нужной сторону, необходимо перепрограммировать сам частотный преобразователь на реверсное движение. Практически все современные устройства поддерживают такую функцию.
  • Постепенно передвигайте рукоять управления и следите за работой двигателя – частота вращения вала должна расти по мере того, как вы передвигаете рукоять.

Если при тестовом запуске никаких проблем обнаружено не было, значит, вы сделали все правильно и система может включаться в рабочий процесс.

Плюсы и минусы частотного преобразователя

В виду своих эксплуатационных качеств частотники все чаще применяются в различных технологических процессах. Каждый из них имеет свои особенности, которые зависят от их строения и принципа работы. Из достоинств этих устройств можно выделить:

  1. Невысокая стоимость. Относительно несложная конструкция делает их более доступными.
  2. КПД. Он является сравнительно высоким.
  3. Рекуперация. Частотный асинхронный преобразователь осуществляет как двигательную работу привода, и тормозную.
  4. Экономия. Например, частотный преобразователь для насоса может на 50% повысить экономичность его работы.
  5. Мощность. При добавлении преобразовательных комплектов, можно достичь любой мощности.
  6. Низкие частоты могут достигаться в широком диапазоне, при этом сохраняются стабильные двигательные вращения.
  7. Удобство. Конструкция в виде блоков и модулей делает возможным эксплуатацию устройства с небольшими затратами времени и труда.

Однако, есть и минусы:

  1. Выходной диапазон частот. ЧП работают только на понижение.
  2. Помехи. В напряжение, которое преобразуется появляются субгармоники, перекрывающие двигатель и создающие помехи.
  3. Структурная многоэлементность, по большей части результативна только для больших мощностей.

Виды преобразователей частоты

Существует несколько типов частотников, которые на данный момент являются самыми распространенными для производства и использования:

Электромашинные (электроиндукционные) преобразователи: используются в тех случаях, когда невозможно или нецелесообразно применение электронных ПЧ. Конструктивно такие устройства являются асинхронными двигателями с фазным ротором, которые работают в режиме генератора-преобразователя.

Данные устройства являются преобразователями со скалярным управлением. На выходе из данного аппарата создается напряжение заданной амплитуды и частоты для поддержания определенного магнитного потока в обмотках статора. Они применяются в тех случаях, когда не требуется поддерживать скорость вращения ротора в зависимости от нагрузки (насосы, вентиляторы и прочее оборудование).

Электронные преобразователи: широко применяется в любых условиях работы для различного оборудования. Такие устройства являются векторными, они автоматически вычисляют взаимодействие магнитных полей статора и ротора и обеспечивают постоянное значение частоты вращения ротора вне зависимости от нагрузки.

  1. Циклоконверторы;
  2. Циклоинверторы;
  3. ПЧ с промежуточным звеном постоянного тока:
  • Частотный преобразователь источника тока;
  • Частотный преобразователь источника напряжения (с амплитудно- или широтно- импульсной модуляцией).

По сфере применения оборудование может быть:

  • для оборудования мощностью до 315 кВт;
  • векторные преобразователи для мощности до 500 кВт;
  • взрывозащищённые устройства для применения во взрывоопасных и запыленных условиях;
  • частотные преобразователи, монтируемые на электродвигатели;

Каждый тип частотного преобразователя имеет определенные преимущества и недостатки и применим для различного оборудования и нагрузок, а также условий работы.

Управление частотным преобразователем может быть ручным или внешним. Ручное управление осуществляется с пульта управления ПЧ, которым можно отрегулировать частоту вращения или остановить работу. Внешнее управление выполняется при помощи автоматических систем управления (АСУТП), которые могут контролировать все параметры устройства и позволяют переключать схему или режим работы (через ПЧ или байпас). Также внешнее управление позволяет программировать работу преобразователя в зависимости от условий работы, нагрузки, времени, что позволяет работать в автоматическом режиме.

Схемы подключения

Схема подключения частотного преобразователя к электродвигателю может производиться от одно- или 3-х фазных сетей. При этом к однофазной сети можно подключить однофазный преобразователь или трехфазный с установкой конденсаторного блока. Но необходимо учитывать тот факт, что при подключении трехфазного преобразователя к однофазной сети произойдет падение мощности. Подключение производится по схеме треугольник. В трехфазном подключении используется только схема звезда.

Обратите внимание, что при использовании электродвигателя мощность больше 5 кВт для снижения пускового момента, можно применять переход звезда-треугольник. То есть, при пуске, чтобы он был плавным, статор подключается по схеме звезда

Как только мотор наберет номинальное вращение статора, схема переключится на треугольник. Единственный момент, на который необходимо обратить внимание, это возможность работы трехфазного двигателя и по схеме звезда, и по схеме треугольник.

Как настраивать преобразователь частоты Vacon

Кроме частотных преобразователей серии VLT, выпускает также аппараты серии Vacon. Эта серия преобразователей частоты способствует эффективному управлению технологическими процессами.

СОЛНЕЧНЫЙ


Внешний вид частотного преобразователя фирмы Danfoss, выпускаемого под серийной маркой Vacon. В частности, демонстрируется аппарат из серии конструкций NXL

Установка Vacon позволяет экономить энергию при эксплуатации электродвигателей, а также защищает моторы. Аппараты серии Vacon представлены обширной линейкой на мощности 0,25 кВт — 5,3 МВт. Поддерживается исполнение с воздушным / жидкостным охлаждением.

Несмотря на полную автоматизацию преобразователей частоты Vacon, эти устройства требуется настраивать при первом подключении электродвигателя. Также настройка может потребоваться в других случаях. Например, при ремонте мотора или замене двигателя другим экземпляром. Как настроить ПЧ Vacon? Рассмотрим этот процесс ниже на примере модели ПЧ Vacon NXL.

Пошаговая настройка частотного преобразователя Vacon NXL

Первоначальную настройку проще всего выполнить с помощью «Мастера». Эта функция позволяет настроить аппарат (синхронизировать с электродвигателем) всего за четыре последовательных шага. Предполагается, что перед запуском «Мастера» преобразователь частоты подключен к электросети, а эксплуатируемый мотор соединён с преобразователем. Схема соединений демонстрируется ниже:

МОСТОВОЙ


Схема силовых подключений на Vacon: 1 – цепь трёхфазного электропитания; 2 – цепь однофазного электропитания; 3,4 – обжатие экранов питающих кабелей; 5 – заземление; 6 контактная группа подключения электродвигателя

После выполнения всех силовых подключений и проверки надёжности контакта, на ПЧ подаётся электрическое питание, после чего автоматически запускается «Мастер» настройки.

Мастер настройки стандартного режима

Режим «Мастера» позволяет настраивать подключение под четыре возможных конфигурации:

  • стандартная (St-d),
  • вентилятор (Fan),
  • насос (PU),
  • высокие характеристики (HP).

Следует отметить – во всех иных случаях эксплуатации двигателя (кроме первоначального) запуск «Мастера» настройки приводит к сбросу любых предустановленных параметров на заводской сценарий, а двигатель адаптируется всего двумя параметрами. Запускают «Мастер» и настраивают так:

  1. При условии остановленного мотора, нажать и удерживать кнопку «Stop» в течение 5 секунд.
  2. Кнопками «Стрелка вверх» и / или «Стрелка вниз» установить на дисплее режим «St-d» (стандартный). Подтвердить кнопкой «Enter».
  3. На следующем экране настроить число оборотов двигателя кнопками «Стрелка вверх» и / или «Стрелка вниз». Подтвердить настройку «Enter».
  4. На следующем экране настроить параметр силы тока, используя те же клавиши «Стрелка вверх» и / или «Стрелка вниз». Установленное значение подтвердить «Enter».

На этом процесс настройки завершается. Можно запускать систему в работу.

Коды неисправностей преобразователя частоты Vacon

Эксплуатация моторов и самого ПЧ может сопровождаться появлением разного рода неисправностей. Электроника аппарата способна обнаруживать некоторые дефекты и предупреждать пользователя выводом на экран дисплея соответствующих кодов неисправности:

Таблица кодов неисправностей для ПЧ Vacon NXL:

Код сбоя Диагноз неисправности
1 Перегруз системы по току
2 Напряжение питания завышено
3 Пробой на землю
8 Непредвиденный отказ системы
9 Зафиксировано понижение напряжения
11 Контроль выходной фазы
13 Слишком низкая температура ПЧ
14 Слишком высокая температура ПЧ
15 «Опрокидование» электродвигателя
16 Перегрев мотора
17 Недогруз мотора
22 Контрольная сумма ЭСППЗУ нарушена
24 Отказ функции счётчика
25 Сбой схемы контроля процессора
29 Дефект термистора
34 Нарушена связь внутренней шины
35 Неправильное применение
39 Удаление устройства
40 Неизвестное устройство
41 Высокая Т элемента IGBT
44 Замена устройства
45 Добавление устройства
50 Ошибка аналогового входа
51 Внешняя неисправность
52 Нет связи с клавиатурой
53 Неисправность полевой шины
54 Неисправность гнезда