Конденсаторы в промышленности
Применение конденсаторов в промышленности
Конденсатор представляет собой пассивный радиоэлектронный компонент, двухполюсный, имеющий определенное или переменное значение емкости, малую проводимость, способен накапливать заряд и энергию электро поля, или же проще – в нужный момент заряжаться или разряжаться. Переводится с латыни, как уплотнитель, загуститель (не в смысле пищевой промышленности, конечно). Самый конструкционно простой вариант конденсаторов – это два электрода в виде пластин (обкладки), которые разделены диэлектрическим компонентом очень малой толщины по сравнению с обкладками. Конденсаторы, используемые на практике, в промышленности состоят из многих диэлектрических слоев и многослойных электродов, могут быть в виде ленты, цилиндра, параллелепипеда.
Прототипом современных конденсаторов считается «лейденская банка». Такое название данный «прибор» получил по названию города, где и было создано первое устройство, похожее на конденсатор, каноником Эвальдом Юргеном фон Клейстом. А почему банка – элементарно, приборчик и был обычной банкой, обернутой фольгой, закрытой деревянной крышкой, с воткнутыми металлическими стержнями. Но известно, что еще немногим раньше Эпинус создал свой конденсатор с двумя проводниками, разделенными диэлектриком.
Промышленное использование конденсаторов в радиотехнике, электронике и прочих областях достаточно обширно. Любая электрическая, электронная схема содержит этот важный радиоэлектронный компонент. Конденсатор можно смело именовать основой радиоэлектронной промышленности.
Применение конденсаторов в различных областях промышленного производства
Современная электронная, радиотехническая промышленность, как и в прошлые года прошлого века остро нуждается в конденсаторах. Применение их широко и разнообразно. Вот малая толика сфер, где применяются приборы, содержащие конденсаторы:
Телевизионная и радиотехническая аппаратура и оборудование. Здесь данный радиоэлектронный компонент необходим, чтобы реализовывать колебательные контуры, блокировать их, а также для настройки оборудования, его правильной работы. Применяют также, чтобы разделять разно частотные цепи. Выпрямительные фильтры также не работают без конденсаторов.
В радиолокации. Без использования конденсаторов практически невозможно сформировать импульсы значительной мощности.
Телеграф, телефон, телефония, в том числе и мобильная. В этом случае кондеры нужны, чтобы разделить цепи, по которым идет постоянный/переменный токи, разно частотные электро токи, при симметрировании различных кабелей, для гашения искры в контактах.
Телемеханика, автоматика – реализация некоторых датчиков, работающих по емкостному принципу. Конденсаторы в этой сфере разделяют цепи, по которым идет пульсирующий/постоянный токи, также для гашения искры. Тиатронные импульсные генераторы содержат конденсаторы.
Электронно-вычислительные машины современного образца, прочие счетные устройства, специальные запоминающие устройства.
Электронная, измерительная аппаратура и оборудование. Здесь, конденсаторы применяют, чтобы получать образцы емкости, создавать переменные емкости, например, лабораторные приборы переменной емкости, создание измерительного оборудования, имеющего емкостную основу.
Особую важность имеет использование конденсаторов в лазерных приборах. В этом случае этот РЭК помогает формировать мощные импульсы
Конденсаторы чрезвычайно необходимы в электроэнергетической сфере. Их применяют, когда необходимо:
- Повысить коэффициент мощности в промышленных установках.
- Создать продольную компенсационную емкость линий высоковольтных электрических передач.
- Регулировать напряжение в распределительной сети.
- Защищать сеть от перенапряжения.
- Гасить возможные радиопомехи, которые могут создавать электрооборудование и электротранспорт.
Кроме того, конденсаторы применяют и в не электротехнических сферах народного хозяйства и технического производства. В металлопромышленности РЭК позволяет обеспечивать стабильную работу в высокочастотных установках, используемых при плавке и термообработке различных металлов.
Угольная промышленность, добыча руд и металлов – в этом случае, конденсаторы применяются в оборудовании и транспорте, помогающем добывать эти полезные ископаемые, ну и электровзрывные устройства тоже имеют в своем составе столь «волшебные» кондеры.
Вообще-то, можно сделать простой вывод – практически любое устройство, оборудование, транспорт, приборы – везде, во всех сферах применяются конденсаторы.
Номинальное напряжение
Второй по значимости характеристикой после емкости является максимальное номинальное напряжение конденсатора. Данный параметр обозначает максимальное напряжение, которое может выдержать конденсатор. Превышение этого значения приводит к «пробиванию» изолятора между пластинами и короткому замыканию. Номинальное напряжение зависит от материала изолятора и его толщины (расстояния между обкладками).
Следует отметить, что при работе с переменным напряжением нужно учитывать именно пиковое значение (наибольшее мгновенное значение напряжения за период). Например, если эффективное напряжение источника питания будет 50В, то его пиковое значение будет свыше 70В. Соответственно необходимо использовать конденсатор с номинальным напряжением более 70В. Однако на практике, рекомендуется использовать конденсатор с номинальным напряжением не менее в два раза превышающим максимально возможное напряжение, которое будет к нему приложено.
Общие сведения
Слово «конденсатор» переводится с латинского как «сгущение». Поэтому устройство, позволяющее получить однородное электрическое поле, и было названо эти термином. В физике существует чёткое определение такого прибора. Согласно ему, конденсатором называется система из двух плоских проводников расстояние между которыми гораздо меньше их размеров. Первым таким устройством стала «Лейденская банка».
В 1745 году голландец Питерван Мушенбрук и его ученик Кюнеус в городе Лейдене собрали прибор в форме банки предназначенный для хранения и накапливания зарядов. Устройство содержало следующие компоненты:
- стеклянный цилиндр;
- внешнюю и внутреннюю оболочки;
- деревянную пробку;
- проволочный проводник.
Оболочки покрывали сосуд примерно на две трети и были выполнены из листового олова. Через пробку обеспечивающую герметичность банки проходил металлический стержень. Касаясь подводника заряженным телом, учёный передавал заряды в ёмкость. При соприкосновении электроны перемещались на проводник и накапливались на электроде. В итоге одна обкладка конденсатора заряжалась положительно, а другая — отрицательно.
Как оказалось, такая конструкция была способна накапливать запас электричества. Изобретение первого конденсатора привело к более глубокому изучению природы электричества. С его помощью стало возможным разобраться в поведении диэлектриков и проводников, понять механизм разделения зарядов.
С физической точки зрения, в устройстве проходят следующие процессы. Две разделённые пластины заряжаются частицами с разным знаком. Вектор напряжённости положительно заряженного проводника направлен от него во все стороны. При этом силовые линии, которые создаются между обкладками не зависят от расстояния, одинаковые по модулю и направлению. Поэтому с внешней стороны отрицательной пластины создаётся такое же поле, но с линиями входящими в неё.
Так как заряды на электродах одинаковые, то напряжённость поля внутри обкладок равняется E = E1 * E2 = 2E1 = 2E2. Снаружи силовые линии направлены друг на друга, поэтому суммарное значение энергии за пластинами равняется нулю.
https://youtube.com/watch?v=XTg7TgSfRt4
https://youtube.com/watch?v=M5Ho20fe0jQ
Загальні відомості
Слово “конденсатор” перекладається з латинської мови як “згущення”. Тому пристрій, що дозволяє отримати однорідне електричне поле, і було названо даним терміном. У фізиці існує чітке визначення такого приладу.
Згідно з ним, конденсатором називається система з двох плоских провідників відстань між якими набагато менше їх розмірів. Першим таким пристроєм стала “лейденська банка”.
У 1745 році голландець Пітерван Мушенбрук і його учень Кюнеус в місті Лейдені зібрали прилад у формі банки, який призначений для зберігання і накопичення зарядів. Пристрій містив наступні компоненти:
- скляний циліндр;
- зовнішню і внутрішню оболонки;
- дерев’яну пробку;
- дротяний провідник.
Оболонки покривали посудину приблизно на дві третини і були виконані з листового олова. Через пробку, яка забезпечує герметичність банки, проходив металевий стрижень. Торкаючись підводника зарядженим тілом, вчений передавав заряди в ємність. При зіткненні електрони переміщалися на провідник і накопичувалися на електроді. В результаті одна обкладка конденсатора заряджалася позитивно, а інша — негативно.
Як виявилося, така конструкція була здатна накопичувати запас електрики. Винахід першого конденсатора призвів до більш глибокого вивчення природи електрики. З його допомогою стало можливим розібратися в поведінці діелектриків і провідників, зрозуміти механізм поділу зарядів.
З фізичної точки зору, в пристрої проходять наступні процеси. Дві розділені пластини заряджаються частинками з різним знаком. Вектор напруженості позитивно зарядженого провідника спрямований від нього на всі боки. При цьому силові лінії, які створюються між обкладинками не залежать від відстані, але вони однакові по модулю і напрямку. Тому з зовнішньої сторони негативної пластини створюється таке ж поле, але з лініями, що входять в неї.
Читайте також: Доповідь на тему “Траєкторія, шлях, переміщення”
Оскільки заряди на електродах однакові, то напруженість поля всередині обкладок дорівнює:
E = E1 * E2 = 2E1 = 2E2
Зовні силові лінії спрямовані один на одного, тому сумарне значення енергії за пластинами дорівнює нулю.
Таким чином, конденсатор не тільки дозволяє створювати всередині нього однорідне поле, але і блокувати його зовні. Отже, такий пристрій може набрати досить високе значення заряду.
Принцип работы и характеристики конденсаторов
Устройство конденсатора представляет собой две металлические пластинки-обкладки, разделенные тонким слоем диэлектрика. Соотношение размеров и расположения обкладок и характеристика материала диэлектрика определяет показатель емкости.
Разработка конструкции любого типа конденсатора преследует целью получение максимальной емкости в расчете на минимальные размеры для экономии пространства на печатной плате устройства. Одна из наиболее популярных по внешнему виду форм — в виде бочонка, внутри которого скручены металлические обкладки с диэлектриком между ними. Первый конденсатор, изобретенный в городе Лейдене (Нидерланды) в 1745 году, получил название «Лейденской банки».
Принципом работы компонента является способность заряжаться и разряжаться. Зарядка возможна благодаря нахождению обкладок на малом расстоянии друг от друга. Близкорасположенные заряды, разделенные диэлектриком, притягиваются друг к другу и задерживаются на обкладках, а сам конденсатор таким образом хранит энергию. После отключения источника питания компонент готов к отдаче энергии в цепи, разряду.
Параметры и свойства, определяющие рабочие характеристики, качество и долговечность работы:
- электрическая емкость;
- удельная емкость;
- допускаемое отклонение;
- электрическая прочность;
- собственная индуктивность;
- диэлектрическая абсорбция;
- потери;
- стабильность;
- надежность.
Способность накапливать заряд определяет электрическую емкость конденсатора. При расчете емкости нужно знать:
- площадь обкладок;
- расстояние между обкладками;
- диэлектрическую проницаемость материала диэлектрика.
Для повышения емкости нужно увеличить площадь обкладок, уменьшить расстояние между ними и использовать диэлектрик, материал которого обладает высокой диэлектрической проницаемостью.
Для обозначения емкости используется Фарад (Ф) — единица измерения, получившая свое название в честь английского физика Майкла Фарадея. Однако 1 Фарад — слишком большая величина. Например, емкость нашей планеты составляет менее 1 Фарада. В радиоэлектронике используются меньшие значения: микрофарад (мкФ, миллионная доля Фарада) и пикофарад (пФ, миллионная доля микрофарада).
Watch this video on YouTube
Удельная емкость рассчитывается из отношения емкости к массе (объему) диэлектрика. На этот показатель влияют геометрические размеры, и повышение удельной емкости достигается за счет снижения объема диэлектрика, но при этом повышается опасность пробоя.
Допускаемое отклонение паспортной величины емкости от фактической определяет класс точности. Согласно ГОСТу, существует 5 классов точности, определяющих будущее использование. Компоненты высшего класса точности применяются в цепях высокой ответственности.
Электрическая прочность определяет способность удерживать заряд и сохранять рабочие свойства. Заряды, сохраняющиеся на обкладках, стремятся друг к другу, воздействуя на диэлектрик
Электрическая прочность — важное свойство конденсатора, определяющее длительность его использования. В случае неправильной эксплуатации произойдет пробой диэлектрика и выход компонента из строя
Собственная индуктивность учитывается в цепях переменного тока с катушками индуктивности. Для цепей постоянного тока не берется в расчет.
Диэлектрическая абсорбция — появление напряжения на обкладках при быстром разряде. Явление абсорбции учитывается для безопасной эксплуатации высоковольтных электрических устройств, т.к. при коротком замыкании существует опасность для жизни.
Потери обусловлены малым пропусканием тока диэлектриком. При эксплуатации компонентов электронных устройств в разных температурных условиях и разной влажности свое влияние оказывает показатель добротности потерь. На него также влияет рабочая частота. На низких частотах сказываются потери в диэлектрике, на высоких — в металле.
Стабильность — параметр конденсатора, на который также оказывает влияние температура окружающей среды. Ее воздействия делятся на обратимые, характеризуемые температурным коэффициентом, и необратимые, характеризуемые коэффициентом температурной нестабильности.
Надежность работы конденсатора в первую очередь зависит от условий эксплуатации. Анализ поломок говорит о том, что в 80% случаев причиной выхода из строя является пробой.
В зависимости от назначения, типа и области применения различаются и размеры конденсаторов. Самые маленькие и миниатюрные, размерами от нескольких миллиметров до нескольких сантиметров, используются в электронике, а самые крупные — в промышленности.
Где и для чего используются
Как уже говорили, сложно найти схему без конденсаторов. Их применяют для решения самых разных задач:
- Для сглаживания скачков сетевого напряжения. В таком случае их ставят на входе устройств, перед микросхемами, которые требовательны к параметрам питания.
- Для стабилизации выходного напряжения блоков питания. В таком случае надо искать их перед выходом.Часто можно увидеть электролитические цилиндрические конденсаторы
- Датчик прикосновения (тач-пады). В таких устройствах оной из «пластин» конденсаторов является человек. Вернее, его палец. Наше тело обладает определённой проводимостью. Это и используется в датчиках прикосновения.
- Для задания необходимого ритма работы. Время заряда конденсаторов разной ёмкости отличается. При этом цикл заряд/разряд конденсатора остаётся величиной постоянной. Это и используется в цепях, где надо задавать определённый ритм работы.
- Ячейки памяти. Память компьютеров, телефонов и других устройств — это огромное количество маленьких конденсаторов. Если он заряжен — это единица, разряжен — ноль.
- Есть стартовые конденсаторы, которые помогают «разогнать» двигатель. Они накапливают заряд, потом резко его отдают, создавая требуемый «толчок» для разгона мотора.
- В фотовспышках. Принцип тот же. Сначала накапливается заряд, затем выдаётся, но преобразуется в свет.
Конденсаторы встречаются часто и область их применения широка. Но надо знать как правильно их подключить.
Параметры выносливости
К этим характеристикам относятся такие данные, как:
- электропрочность;
- надёжность;
- срок работы.
Каждая из них имеет свои особенности.
Электрическая прочность
Эта характеристика зависит от времени приложенного напряжения пробоя. Формула имеет вид:
T = A/Uпр*n,
где:
- А – const, зависящая от диэлектрических свойств;
- n – коэффициент, лежащий в интервале от 3 до 8.
Чем больше время, которое выдерживает элемент, тем выше показатель.
Надежность конденсатора
При применении по назначению конденсаторов надёжность элемента измеряется в количестве отказов в работе за час. Ориентируются на среднюю временную величину, предшествующую первому отказу.
Срок службы конденсатора
Длительность непрерывной и безотказной работы зависит от температурного режима и превышения величин допустимых параметров.
Правильно подобранный конденсатор прослужит долгое время. Единственными условиями выхода его из строя могут стать высыхание диэлектрика и как следствие перегревание.
Использование конденсаторов
Подученное соотношение величин характерно для всех типов конденсаторов. Его используют для того, чтобы определить накопленную энергию при подключении к источнику питания. Измерить напряжение на выводах можно с помощью мультиметра. Кроме емкости, на корпусе конденсатора указывают другие важные параметры:
- рабочий ток;
- номинальное напряжение;
- диэлектрический материал;
- тип элемента.
К сведению. На миниатюрных деталях места для размещения всех данных недостаточно. Применяют систему сокращенных кодировок. Необходимые сведения уточняют в сопроводительной документации либо на официальном сайте производителя.
В следующем перечне приведены примеры электротехнических схем и устройств, которые создают с применением конденсаторов:
- частотный (сглаживающий) фильтр;
- колебательный контур;
- накопитель энергии для формирования мощного импульса (лазер, фотовспышка);
- ограничитель силы тока (компенсатор подключаемой реактивной нагрузки);
- измерение перемещений (изменение емкости при сближении/ отдалении обкладок).
Для автоматизированного расчета типовой схемы можно использовать специализированный калькулятор онлайн. Следующий пример демонстрирует расчет корректного подключения электродвигателя:
- соединение обмоток – треугольник;
- мощность потребления – 1 200 Вт;
- напряжения сети – 220 В;
- cos ϕ – 0,9;
- КПД – 85%;
- емкость рабочего (пускового) конденсатора – 52 (130) мкФ.
Разряд конденсатора
После того как конденсатор зарядился, отключим источник питания и подключим нагрузку R. Так как конденсатор уже заряжен, он сам превратился в источник питания. Нагрузка R образовала проход между пластинами. Отрицательно заряженные электроны, накопленные на одной пластине, согласно силе притяжения между разноименными зарядами, двинутся в сторону положительно заряженных ионов на другой пластине.
В момент подключения R, напряжение на конденсаторе то же, что и после окончания переходного периода зарядки. Начальный ток по закону Ома будет равняться напряжению на обкладках, разделенном на сопротивление нагрузки.
Как только в цепи пойдет ток, конденсатор начнет разряжаться. По мере потери заряда, напряжение начнет падать. Следовательно, ток тоже упадет. По мере понижения значений напряжения и тока, будет снижаться их скорость падения.
Время зарядки и разрядки конденсатора зависит от двух параметров – емкости конденсатора C и общего сопротивления в цепи R. Чем больше емкость конденсатора, тем большее количество заряда должно пройти по цепи, и тем больше времени потребует процесс зарядки/разрядки ( ток определяется как количество заряда, прошедшего по проводнику за единицу времени). Чем больше сопротивление R, тем меньше ток. Соответственно, больше времени потребуется на зарядку.
Продукт RC (сопротивление, умноженное на емкость) формирует временную константу ?
(тау). За один? конденсатор заряжается или разряжается на 63%. За пять? конденсатор заряжается или разряжается полностью.
Советуем изучить — Мощность трехфазной цепи при несимметричной нагрузке
Энергия заряженного конденсатора
Теперь подумаем, как посчитать энергию при заряде конденсатора. Потребуется вспомнить формулу потенциала, создаваемого точечным зарядом. Видно, что он убывает линейно расстоянием. Но в рассматриваемом случае первый заряд положительный и находится на одной обкладке, а второй отрицательный и расположился напротив. Следовательно, по мере движения в направлении силовой линии отмечается такая картина:
- Потенциал положительного заряда падает.
- Потенциала отрицательного заряда растёт.
Причём скорость изменения их одинакова. Следовательно, между обкладками плоского конденсатора потенциал поля не меняется. Теперь вспомним, от чего он зависит. В изучаемом случае величины постоянны, кроме заряда, накопленного на обкладках после подачи напряжения. Значит, потенциал постепенно растёт и линейно зависит от заряда, причём уже не важен график собственно процесса. Получается прямая линия.
Это значит, что в начальный момент времени потенциал равен нулю, потом растёт до определённого предела. Графиком зависимости потенциала от количества зарядов станет прямая линия (по времени выходит экспонента). Теперь поясним, зачем производились умозаключения:
- Известно, что энергия выражается затраченной работой.
- Значит, допустимо записать формулу W = U q. Выглядит просто, ведь заряд связан с ёмкостью, но чему равно напряжение? Следует напомнить, что на конденсаторе оно растёт по экспоненте в процессе заряда. Брать интеграл по времени? Физики уже решили задачу.
- Потенциал (напряжение) линейно зависит от заряда, заключаем, что общая работа находится усреднением, что при прямой линии сводится к операции деления на 2.
В итоге: W = U q / 2. Теперь подставим сюда выражение, полученное Алессандро Вольта, и выйдет: W = C U2 / 2. Полученным выражением и пользуются при расчётах.
https://youtube.com/watch?v=4HPhCLOwAAs
Энергия заряженного конденсатора
Как и любая система заряженных тел, конденсатор обладает энергией. Вычислить энергию заряженного плоского конденсатора с однородным полем внутри него несложно.
Энергия заряженного конденсатора.Для того чтобы зарядить конденсатор, нужно совершить работу по разделению положительных и отрицательных зарядов. Согласно закону сохранения энергии эта работа равна энергии конденсатора.
В том, что заряженный конденсатор обладает энергией, можно убедиться, если разрядить его через цепь, содержащую лампу накаливания, рассчитанную на напряжение в несколько вольт (рис.4). При разрядке конденсатора лампа вспыхивает.
Энергия конденсатора превращается в другие формы: тепловую, световую.
Выведем формулу для энергии плоского конденсатора.
Напряженность поля, созданного зарядом одной из пластин, равна Е/2, где Е — напряженность поля в конденсаторе. В однородном поле одной пластины находится заряд q, распределенный по поверхности другой пластины (рис.5). Согласно формуле Wp=qEd. для потенциальной энергии заряда в однородном поле энергия конденсатора равна:
(1)
где q — заряд конденсатора, a d — расстояние между пластинами.
(2)
Так как Ed=U, где U — разность потенциалов между обкладками конденсатора, то его энергия равна:
Эта энергия равна работе, которую совершит электрическое поле при сближении пластин вплотную.
Заменив в формуле (2) разность потенциалов или заряд с помощью выражения для электроемкости конденсатора, получим
(3)
Можно доказать, что эти формулы справедливы для энергии любого конденсатора, а не только для плоского.
Энергия электрического поля.Согласно теории близкодействия вся энергия взаимодействия заряженных тел сконцентрирована в электрическом поле этих тел. Значит, энергия может быть выражена через основную характеристику поля — напряженность.
Совет
Так как напряженность электрического поля прямо пропорциональна разности потенциалов
(U = Ed),то согласно формуле
(4)
энергия конденсатора прямо пропорциональна напряженности электрического поля внутри него: Wp~E2. Детальный расчет дает следующее значение для энергии поля, приходящейся на единицу объема, т.е. для плотности энергии:
где ε0 — электрическая постоянная
Постоянный ток. Сила и плотность тока. Закон Ома.
Постоянный электрический ток
Краткие теоретические сведения
1. Сила тока определяется по формуле
Для постоянного тока
где – заряд, прошедшей через поперечное сечение проводника за время .
2.Если ток постоянный, плотность тока во всем сечении однородного проводника не изменяется ,
где – площадь поперечного сечения проводника.
Закон Ома
для однородного участка цепи имеет вид:
где – разность потенциалов (напряжение) на концах участка; – сопротивление.
Для неоднородного участка цепи этот закон записывается так:
где – ЭДС источника тока на этом участке; – внутреннее сопротивление источника;
– внешнее сопротивление цепи; – падение напряжения на участке 1-2.
· Для замкнутой цепи .
4.Сопротивление цилиндрического однородного проводника равно ,
где – удельное сопротивление; – удельная проводимость;
– длина; S – площадь поперечного сечения проводника.
Вектор магнитной индукции.
Вектор магнитной индукции – аналог напряженности электрического поля. Основной силовой характеристикой магнитного поля является вектор магнитной индукции.Вектор индукции магнитного поля B⃗направлен от южного полюса S стрелки (свободно вращающейся в магнитном поле) к северному N
Закон Ампера.
Закон Ампера – сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником.
Магнитный момент витка с током – физическая величина характеризующий магнитные свойства системы в виде кругового витка с током Где, I ток протекающий по витку S площадь витка с током n нормаль к плоскости в которой находится виток
Что такое электрическое поле
Однажды Бенджамин Франклин, чей портрет можно увидеть на стодолларовой купюре, запускал воздушного змея во время дождя с грозой. Столь странное занятие он выбрал не просто так, а с целью исследования природы молнии. Заметив, что на промокшем шнуре волоски поднялись вверх (т. е. он наэлектризовался), Франклин хотел прикоснуться к металлическому ключу. Но стоило ему приблизить палец, раздался характерный треск и появились искры. Сработало электрическое поле.
Это случилось в середине XVIII века, но еще целое столетие ученые не могли толком объяснить, как именно заряженные тела взаимодействуют друг с другом, не соприкасаясь. Майкл Фарадей первым выяснил, что между ними есть некое промежуточное звено. Его выводы подтвердил Джеймс Максвелл, который установил, что для воздействия одного такого объекта на другой нужно время, а значит, они взаимодействуют через «посредника».
В современной физике электрическое поле — это некая материя, которая возникает между заряженными телами и обусловливает их взаимодействие. Если речь идет о неподвижных объектах, поле называют электростатическим. |
Объекты, несущие одноименные заряды, будут отталкиваться, а тела с разноименными зарядами — притягиваться.