Магнитные полюса и магнитное поле.
Магнитные свойства стержневого магнита наиболее заметны вблизи его концов. Если такой магнит подвесить за среднюю часть так, чтобы он мог свободно поворачиваться в горизонтальной плоскости, то он займет положение, примерно соответствующее направлению с севера на юг. Конец стержня, указывающий на север, называют северным полюсом, а противоположный конец – южным полюсом. Разноименные полюса двух магнитов притягиваются друг к другу, а одноименные взаимно отталкиваются.
Также по теме:
МАГНИТНОЕ ПОЛЕ ЗЕМЛИ
Если к одному из полюсов магнита приблизить брусок ненамагниченного железа, то последний временно намагнитится. При этом ближний к полюсу магнита полюс намагниченного бруска будет противоположным по наименованию, а дальний – одноименным. Притяжением между полюсом магнита и индуцированным им в бруске противоположным полюсом и объясняется действие магнита. Некоторые материалы (например, сталь) сами становятся слабыми постоянными магнитами после того, как побывают около постоянного магнита или электромагнита. Стальной стержень можно намагнитить, просто проведя по его торцу концом стержневого постоянного магнита.
Итак, магнит притягивает другие магниты и предметы из магнитных материалов, не находясь в соприкосновении с ними. Такое действие на расстоянии объясняется существованием в пространстве вокруг магнита магнитного поля. Некоторое представление об интенсивности и направлении этого магнитного поля можно получить, насыпав на лист картона или стекла, положенный на магнит, железные опилки. Опилки выстроятся цепочками в направлении поля, а густота линий из опилок будет соответствовать интенсивности этого поля. (Гуще всего они у концов магнита, где интенсивность магнитного поля наибольшая.)
М.Фарадей (1791–1867) ввел для магнитов понятие замкнутых линий индукции. Линии индукции выходят в окружающее пространство из магнита у его северного полюса, входят в магнит у южного полюса и проходят внутри материала магнита от южного полюса обратно к северному, образуя замкнутую петлю. Полное число линий индукции, выходящих из магнита, называется магнитным потоком. Плотность магнитного потока, или магнитная индукция (В
), равна числу линий индукции, проходящих по нормали через элементарную площадку единичной величины.
Магнитной индукцией определяется сила, с которой магнитное поле действует на находящийся в нем проводник с током. Если проводник, по которому проходит ток I
, расположен перпендикулярно линиям индукции, то по закону Ампера силаF , действующая на проводник, перпендикулярна и полю, и проводнику и пропорциональна магнитной индукции, силе тока и длине проводника. Таким образом, для магнитной индукцииB можно написать выражение
где F
– сила в ньютонах,I – ток в амперах,l – длина в метрах. Единицей измерения магнитной индукции является тесла (Тл) (см. также ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ).
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.
1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S
2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?
1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу
3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка
1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение
4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?
1) 1
2) 2
3) 3
4) 4
5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?
1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа
6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки
1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный
7. Два параллельно расположенных проводника подключили параллельно к источнику тока.
Направление электрического тока и взаимодействие проводников верно изображены на рисунке
8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная
9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена
10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?
11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.
1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.
12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).
Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.
1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.
Часть 2
13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.
Расчет магнитных цепей
Теперь внимание. Мы можем провести прямую аналогию и рассматривать магнитный поток в цепи, как характеристику электрической цепи — силу тока
Рассмотренное второе следствие означает, что для магнитной цепи, также как и для электрической, справедливо первое правило Кирхгофа. Отсюда можно лаконично перейти к закону полного тока, который в рамках классического магнетизма будет выглядеть следующим образом (приготовьтесь, немного математики):
Также мы помним, что напряженность магнитного поля связана с магнитным потоком следующим образом:
Руководствуясь приведенным законом полного тока и определением напряженности через магнитный поток, мы можем переписать закон полного тока относительно магнитного потока.
Откуда в уравнении появился и что символизирует аргумент l? Все просто. Так как мы рассматриваем контур L, то логично предположить, что на разных его участках наши показатели могут принимать разные значения: площадь сечения может изменяться, как и магнитная проницаемость или магнитный поток.
Полученное уравнение можно рассматривать как второй закон Кирхгофа, который, напомню, звучит следующим образом:
Для полной ясности, проведем аналогию между электрическими и магнитными цепями, а также их величинами.
Именно проведя аналогичное представление для электрической цепи, мы можем рассчитывать магнитные цепи. Для того, чтобы это сделать, следует:
-
Мысленно разбить сердечник на отдельные однородные участки (непрерывные, с постоянным сечением) без разветвлений и определить их магнитные сопротивления;
-
Построить эквивалентную электрическую цепь, последовательно заменяя участки магнитной цепи участками электрической с электрическими сопротивлениями, а также заменяя индуктивности (катушки) на источники ЭДС;
-
После обозначения заданных сопротивлений и ЭДС, можем вычислить в общем токи в элементах электрической цепи;
-
Произвести замену полученных величин согласно таблице (токи в потоки, ЭДС в МДС [Магнитодвижущую силу / Ампер-витки], а электрическое сопротивление в магнитное сопротивление).
Именно таким образом, мы можем рассчитать характеристики магнитной цепи. Полученные результаты позволяют, например, вычислить индуктивности.
Магнитное поле Земли
Земля является не только большим отрицательным зарядом и источником электрического поля, но в то же время магнитное поле нашей планеты подобно полю прямого магнита гигантских размеров.
Географический юг находится недалеко от магнитного севера, а географический север приближен к магнитному югу. Если компас разместить в магнитном поле Земли, то его северная стрелка ориентируется вдоль линий магнитной индукции в направлении южного магнитного полюса, то есть укажет нам, где располагается географический север.
Характерные элементы земного магнетизма весьма медленно изменяются с течением времени — вековые изменения
. Однако время от времени происходят магнитные бури, когда в течение нескольких часов магнитное поле Земли сильно искажается, а затем постепенно возвращается к прежним значениям. Такое резкое изменение влияет на самочувствие людей.
Магнитное поле Земли является «щитом», прикрывающего нашу планету от частиц, проникающих из космоса («солнечного ветра»). Вблизи магнитных полюсов потоки частиц подходят гораздо ближе к поверхности Земли. При мощных солнечных вспышках магнитосфера деформируется, и эти частицы могут переходить в верхние слои атмосферы, где сталкиваются с молекулами газа, образуются полярные сияния.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.
1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S
2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?
1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу
3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка
1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение
4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?
1) 1
2) 2
3) 3
4) 4
5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?
1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа
6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки
1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный
7. Два параллельно расположенных проводника подключили параллельно к источнику тока.
Направление электрического тока и взаимодействие проводников верно изображены на рисунке
8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная
9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена
10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?
11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.
1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.
12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).
Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.
1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.
Часть 2
13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.
Магнитное поле соленоида. Формула, суть явления.
Магнитное поле соленоида представляет собой суперпозицию отдельных полей, которые создаются каждым витком в отдельности. Через все витки протекает один и тот же ток. Оси всех витков лежат на одной лини. Соленоид представляет собой катушку индуктивности, имеющую цилиндрическую форму. Эта катушка намотана из проводящей проволоки. При этом витки уложены плотно друг к другу и имеют одном направление. При этом считается, что длинна катушки значительно превышает диаметр витков. Давайте рассмотрим магнитную индукцию, создаваемую каждым витком. Видно, что индукция внутри каждого витка направлена в одну и ту же сторону. Если смотреть в центр витка, то индукция от его краев будет складываться. При этом индукция магнитного поля между двух соседних витков направлена встречно. Так как она создана одним и тем же током то она компенсируется.
Если витки соленоида намотаны достаточно плотно, то между всеми витками встречное поле будет компенсировано, а внутри витков произойдет сложение отдельных поле в одно общее. Линии этого поля будут проходить внутри соленоида, и охватывать его снаружи.
Если исследовать магнитное поле внутри соленоида любыми способами, например, с помощью железных опилок то можно сделать вывод, что оно однородно. Лини магнитного поля в этой области представляют собой параллельные прямые. Мало того что они параллельны сами себе но они еще параллельны оси соленоида. Выходя за приделы соленоида, они искривляются и замыкаются снаружи катушки.
Из рисунка видно, что поле создаваемое соленоидом похоже на поле, которое создает постоянный стержневой магнит. На одном конце силовые линии выходят из соленоида и этот конец аналогичен северному полюсу постоянного магнита. А в другой они входят, и этот конец соответствует южному полюсу. Отличие же заключается в том, что поле присутствует и внутри соленоида. И если провести опыт с железными опилками, то они втянутся в пространство между витками.
Но если внутрь соленоида вставить деревянный сердечник либо сердечник из любого другого немагнитного материала, то при проведении опыта с железной стружкой картина поля постоянного магнита и соленоида будет идентична. Так как деревянный сердечник не исказит силовые лини, но при этом не даст проникнуть опилкам внутрь катушки.
Для определения полюсов соленоида можно использовать несколько методов. Например, самый простой, использовать магнитную стрелку. Она притянется к противоположному полюсу магнита. Если же известно направление тока в витке полюсы можно определить при помощи правила правого винта. Если вращать головку правого винта в направлении тока, то поступательное движение укажет направление поля в соленоиде. А зная, что поле направлено от северного полюса к южному и можно определить, где какой полюс находится.
Чтобы найти модуль магнитной индукции соленоида состоящего из одного слоя можно воспользоваться формулой.
Где N число витков соленоида
l длинна соленоида
n число витков на единицу длинны
I Ток в соленоиде
Мю магнитная проницаемость среды находящейся внутри соленоида
Источник
Магнитное поле и его графическое изображение
На прошлых уроках мы выяснили, что причиной возникновения магнитной силы является наличие магнитного поля. Магнитное поле порождается движущимися электрическими зарядами и, в частности, электрическим током, поскольку это упорядоченный поток заряженных частиц. Например, магнитное поле образуется вокруг проводника с током. Каким же образом можно пояснить наличие магнитного поля у постоянных магнитов, у которых никаких видимых токов нет? Согласно гипотезе великого французского физика Ампера, в атомах и молекулах вещества в результате движения электронов возникают кольцевые токи. В магнитах такие кольцевые токи ориентируются одинаково. Магнитные поля, которые они образуют, направлены одинаково и усиливают друг друга. В результате образуется магнитное поле внутри и вблизи постоянного магнита. Когда мы ранее сталкивались с понятием «поле», то возникала проблема понимания, что же это такое. Если сравнивать с понятием «вещество», этой проблемы, очевидно, нет, так как из вещества созданы все окружающие нас тела, мы их можем потрогать, мы их можем увидеть. Что же касается магнитного поля, то это особый вид материи, который проявляется через взаимодействие с определенными телами. Вспомним, что гравитационное поле взаимодействует с телами, имеющими массу, то есть со всеми телами. При этом электрическое поле взаимодействует с телами, имеющими заряд, что же касается поля магнитного, то оно будет взаимодействовать с телами, в которых есть подвижные заряды. Из этого возникает вопрос: если поле нельзя увидеть, можно ли его как-то изобразить? Проведем эксперимент, возьмем обыкновенный полосовой магнит, положим его на стол и накроем обыкновенной прозрачной пластиковой накладкой. Сверху на поверхность накладки над магнитом аккуратно посыпаем железные опилки, в процессе посыпания мы можем увидеть интересный эффект: опилки будут распределяться неравномерным образом, образуя так называемые дорожки, и картина этих дорожек получается упорядоченной. Что же мы увидели и почему так происходит?
Рис. 4. Силовые линии магнитного поля в опыте железными опилками
Наш опыт позволяет наглядно продемонстрировать так называемые силовые линии магнитного поля (или, как их еще именуют, просто магнитные линии). Магнитные линии – это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле. В нашем эксперименте в роли магнитных стрелок выступают железные опилки. Они имеют очень простое свойство намагничиваться во внешнем магнитном поле и выстраиваться вдоль магнитных линий, причем по правилу взаимодействия магнитов, то есть противоположными полюсами друг к другу. Стоит отметить, что магнитные линии могут быть как прямолинейными, так и криволинейными, при этом правило их построения очень простое: в любой точке нахождения магнитной стрелки касательная, проведенная через нее должна быть и касательной к магнитной линии.
Для того чтобы правильно изображать магнитное поле, не проводя постоянных экспериментов с железными опилками и магнитами, необходимо знать правило его построени.
Во-первых, силовые линии магнитного поля являются замкнутыми либо уходят на бесконечность. Кроме этого, следует помнить, что они выходят из северного полюса магнита и входят в южный. Во-вторых, наиболее сильное магнитное поле является у полюсов магнитов, что изображается как более плотное расположение магнитных линий, в областях же с менее сильным магнитным полем магнитные линии изображают на большем расстоянии друг от друга.
Какие же выводы мы можем сделать из этих правил?
Магнитные линии позволяют изображать направление поля в данной точке. Магнитные линии позволяют определять силу действия этого поля.
Магнитное поле электрического тока. Правило буравчика
Вы уже знаете, что вокруг проводника с током существует магнитное поле. Исследуем это поле с помощью железных опилок. Для этого проводник пропустим через лист картона перпендикулярно его поверхности, насыплем на картон железные опилки и пустим через проводник электрический ток. В магнитном поле проводника опилки намагнитятся и воссоздадут картину линий магнитной индукции магнитного поля прямого проводника с током — концентрические круги, охватывающих проводник. А как определить направление магнитных линий?
Знакомимся с правилом буравчика
Расположим рядом с проводником несколько магнитных стрелок и пустим в проводнике ток — стрелки повернутся в магнитном поле проводника. Северный полюс каждой стрелки укажет направление вектора индукции магнитного поля в данной точке, а следовательно, и направление магнитных линий этого поля.
С изменением направления тока в проводнике изменится и ориентация магнитных стрелок. Это означает, что направление магнитных линий зависит от направления тока в проводнике.
Понятно, что определять направление линий магнитной индукции с помощью магнитной стрелки неудобно, поэтому используют правило буравчика: если вкручивать буравчик по направлению тока в проводнике, то направление вращения ручки буравчика укажет направление линий магнитного поля тока.
Или иначе:
Если направить большой палец правой руки по направлению тока в проводнике, то четыре согнутых пальца укажут направление линий магнитного поля тока.
Выясняем, от чего зависит модуль индукции магнитного поля проводника с током
Вспомните: магнитное действие проводника с током первым обнаружил Г. Эрстед в 1820 г. А вот почему это открытие не было сделано раньше? Дело в том, что с увеличением расстояния от проводника магнитная индукция созданного им магнитного поля значительно уменьшается. Итак, если магнитная стрелка расположена не вблизи проводника с током, магнитное действие тока почти незаметно.
Магнитная индукция зависит от силы тока: с увеличением силы тока в проводнике магнитная индукция созданного им магнитного поля увеличивается.
Изучаем магнитное поле катушки с током
Смотайте изолированный провод в катушку и пустим в нем ток. Если теперь вокруг катушки разместить магнитные стрелки, то к одному торцу катушки стрелки вернутся северным полюсом, а ко второму — южным. Итак, вокруг катушки с током существует магнитное поле.
Как и полосовой магнит, катушка с током имеет два полюса — южный и северный. Полюса катушки расположены на ее торцах, и их легко определить с помощью правой руки: Если четыре согнутые пальцы правой руки направить по направлению тока в катушке, то отогнутый на 90 ° большой палец укажет направление на северный полюс катушки, то есть направление вектора магнитной индукции внутри катушки.
Сопоставив магнитные линии постоянного полосового магнита и магнитные линии катушки с током, увидим их удивительное сходство. Отметим: магнитная стрелка, подвешенная катушка с током и подвешен полосовой магнит ориентируются в магнитном поле Земли одинаково.
Подводим итоги
Вокруг проводника с током существует магнитное поле. Магнитная индукция поля, созданного током, уменьшается с увеличением расстояния от проводника и увеличивается с увеличением силы тока в проводнике.
Направление линий магнитной индукции магнитного поля проводника с током можно определить с помощью магнитных стрелок или с помощью правила буравчика.
Катушка с током, как и постоянный магнит, имеет два полюса. Их можно определить с помощью правой руки: если четыре согнутых пальцы правой руки направить по направлению тока в катушке, то отогнутый на 90 ° большой палец укажет направление на ее северный полюс.
Возможно, вас заинтересует:
Индукция магнитного поля. Опыт Эрстеда. Магнитная сила Ампера
Электрический ток. Закон Ома для полной цепи.
Магнетизм и электромагнетизм
Электрическое поле
Открытия Лоренца
Выделим основные открытия Лоренца.
Лоренц установил, что магнитное поле действует на движущуюся в нём частицу, заставляя её двигаться по дуге окружности:
(1.3.)
Поскольку сила Лоренца – центростремительная сила, перпендикулярная направлению скорости. Прежде всего, открытый Лоренцем закон, позволяет определять такую важнейшую характеристику как отношение заряда к массе – удельный заряд.
(1.4.)
Значение удельного заряда – величина уникальная для каждой заряженной частицы, что позволяет их идентифицировать, будь-то электрон, протон или любая другая частица. Таким образом, учёные получили мощный инструмент для исследования. Например, Резерфорд сумел провести анализ радиоактивного излучения и выявил его компоненты, среди которых присутствуют альфа-частицы – ядра атома гелия и бета-частицы – электроны. В ХХ веке появились ускорители, работа которых основана на том, что заряженные частицы ускоряются в магнитном поле. На этом принципе разработан Большой адронный коллайдер. Благодаря открытиям Лоренца наука получила принципиально новый инструмент для физических исследований, открывая дорогу в мир элементарных частиц.
Для того чтобы охарактеризовать влияние учёного на технический прогресс вспомним о том, что из выражения для силы Лоренца вытекает возможность рассчитать радиус кривизны траектории частицы, которая движется в постоянном магнитном поле. При неизменных внешних условиях этот радиус зависит от массы частицы, её скорости и заряда. Таким образом, получаем возможность классифицировать заряжённые частицы по этим параметрам и, следовательно, можем проводить анализ какой-либо смеси. Если смесь веществ в газообразном состоянии ионизировать, разогнать и направить в магнитное поле, то частицы начнут двигаться по дугам окружностей с различными радиусами – частицы будут покидать поле в разных точках и остаётся только зафиксировать эти точки вылета, что реализуется при помощи экрана, покрытого люминофором, который светится при попадании на него заряжённых частиц. Именно по такой схеме работает масс-анализатор. Масс-анализаторы широко применяют в физике и химии для анализа состава смесей.
Это ещё не все технические устройства, которые работают на основе разработок и открытий Ампера и Лоренца, ведь научное знание рано или поздно перестает быть исключительной собственностью учёных и становится достоянием цивилизации, при этом оно воплощается в различных технических устройствах, которые делают нашу жизнь более комфортной.
Проявление магнитного поля
Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца, которая всегда направлена перпендикулярно к векторам v и B. Она пропорциональна заряду частицы q, составляющей скорости v, перпендикулярной направлению вектора магнитного поля B, и величине индукции магнитного поля B.
В Международной системе единиц (СИ) сила Лоренца выражается так:
в системе единиц СГС:
где квадратными скобками обозначено векторное произведение.
Также (вследствие действия силы Лоренца на движущиеся по проводнику заряженные частицы) магнитное поле действует на проводник с током. Сила, действующая на проводник с током называется силой Ампера. Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника заряды.
Взаимодействие двух магнитов
Одно из наиболее часто встречающихся в обычной жизни проявлений магнитного поля — взаимодействие двух магнитов: одинаковые полюса отталкиваются, противоположные притягиваются. Представляется заманчивым описать взаимодействие между магнитами как взаимодействие между двумя монополями, и с формальной точки зрения эта идея вполне реализуема и часто весьма удобна, а значит практически полезна (в расчётах); однако детальный анализ показывает, что на самом деле это не полностью правильное описание явления (наиболее очевидным вопросом, не получающим объяснения в рамках такой модели, является вопрос о том, почему монополи никогда не могут быть разделены, то есть почему эксперимент показывает, что никакое изолированное тело на самом деле не обладает магнитным зарядом; кроме того, слабостью модели является то, что она неприменима к магнитному полю, создаваемому макроскопическим током, а значит, если не рассматривать её как чисто формальный приём, приводит лишь к усложнению теории в фундаментальном смысле).
Правильнее будет сказать, что на магнитный диполь, помещённый в неоднородное поле, действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен с магнитным полем. Но никакой магнит не испытывает действия (суммарной) силы со стороны однородного магнитного поля. Сила, действующая на магнитный диполь с магнитным моментом m выражается по формуле:
Сила, действующая на магнит (не являющийся одиночным точечным диполем) со стороны неоднородного магнитного поля, может быть определена суммированием всех сил (определяемых данной формулой), действующих на элементарные диполи, составляющие магнит.
Впрочем, возможен подход, сводящий взаимодействие магнитов к силе Ампера, а сама формула выше для силы, действующей на магнитный диполь, тоже может быть получена, исходя из силы Ампера.
Явление электромагнитной индукции
Основная статья: Электромагнитная индукция
Если поток вектора магнитной индукции через замкнутый контур меняется во времени, в этом контуре возникает ЭДС электромагнитной индукции, порождаемая (в случае неподвижного контура) вихревым электрическим полем, возникающим вследствие изменения магнитного поля со временем (в случае неизменного со временем магнитного поля и изменения потока из-за движения контура-проводника такая ЭДС возникает посредством действия силы Лоренца).