Новые n-канальные mosfet-транзисторы в корпусах общепромышленного стандарта

Полевой транзистор, имеющий изолированный затвор

Прибор, где есть изолированный затвор. Кристалл полупроводника с довольно высоким удельным сопротивлением имеет две сильнолегированные области с противоположным типом проводимости. Конструктивная особенность данного вида полевого транзистора заключается в том, что затвор отделяется слоем диэлектрика от основной части прибора. На сильнолегированных областях имеются металлические электроды – сток и исток. Расстояние между ними может составлять меньше микрона. Поверхность между истоком и стоком покрывается тонким слоем (что-то около 0,1 микрометра) диэлектрика. Поскольку в качестве проводника используется кремний, то изолятор – это его диоксид, который выращивается путём окисления при высокой температуре. На слой диэлектрика наносят металлический электрод – затвор. Такое разнообразие привело к возникновению нового названия – МДП-транзистор. Ведь в конструкции используется металл, диэлектрик и полупроводник. Хотя схемы включения транзисторов от этого не меняются.

Существует две разновидности полевых МДП-транзисторов:

  1. Индуцированный канал. Могут производить значительное усиление электромагнитных колебаний, причем как по мощности, так и по напряжению.
  2. Встроенный канал. Могут работать в 2-х режимах и меняют статические характеристики.

Параметры, характеризующие полевой транзистор

  1. Ширина канала – расстояние между p-n-переходами W.
  2. Напряжение отсечки — напряжение на затворе при исчезновении каналов.
  3. Напряжение насыщения – с него начинается формирование пологой части ВАХ.
  4. Стоко-затворная ВАХ (вольт-амперная характеристика).

Рис. №1. Стоко-затворная ВАХ n-канального транзистора с

Ic= Icmax (I – Uзи / U)2 , здесь Icmax стока.

  1. Крутизна определяется по формуле S = dIc / dUзи(мА/В),что является следствием увеличенияU рабочего стока, при этом крутизна полевого транзистора становится меньше.
  2. Внутреннее сопротивление транзистора (дифференциальное сопротивление) rcсоставляет в пологой части характеристики несколько МОм.
  3. Лавинный пробой p-n-переходов возможен после повышения напряжения области стока и истока, что считается причиной ограничения применения полевого транзистора относительноUc.
  4. Коэффициент усиления относительно напряжения µu= srспри уменьшении величины тока стока коэффициент µuповышается.
  5. Инерционность полевого транзистора обуславливается временем,отводимым на заряд барьерной емкости переходов затвора.
  6. Полевой транзистор обладает граничной частотой для улучшения своих качественных частотных свойств.

Проводимость транзистора

Существует две разновидности проводимости – электронная и дырочная, это означает, что в основе работы лежит использование электронов и дырок. Транзистор с электронной проводимостью относится к n-канальным устройствам, p-канальные транзисторы обладают дырочной проводимостью.

Небольшие габаритные размеры МОП-транзисторах позволяет занимать очень малую площадь в конструкции интегральной схемы, в противоположность биполярным аналогам. Благодаря этому достигается значительно уплотненная компоновка элементов в интегральных схемах. Технология производства интегральной схемы на МОП-транзисторах затрачивает намного меньшее количество операций, чем технология производства ИС с применением биполярного транзистора.

Как проверить полевой транзистор?

В норме сопротивление между любыми выводами ПТ бесконечно велико.

И, если тестер показывает какое-то небольшое сопротивление, то ПТ, скорее всего, пробит и подлежит замене.

Во многих ПТ имеется встроенный диод между стоком и истоком для защиты канала от обратного напряжения (напряжения обратной полярности).

Таким образом, если поставить «+» тестера (красный щуп, соединенный с «красным» входом тестера) на исток, а «-» (черный щуп, соединенный с черным входом тестера) на сток, то канал будет «звониться», как обычный диод в прямом направлении.

Это справедливо для ПТ с n-каналом. Для ПТ с p-каналом полярность щупов будет обратной.

Как проверить диод с помощью цифрового тестера, описано в соответствующей статье. Т.е. на участке «сток — исток» будет падать напряжение 500-600 мВ.

Если поменять полярность щупов, к диоду будет приложено обратное напряжение, он будет закрыт и тестер это зафиксирует.

Однако исправность защитного диода еще не говорит об исправности транзистора в целом. Более того, если «прозванивать» ПТ, не выпаивая из схемы, то из-за параллельно подключенных цепей не всегда можно сделать однозначный вывод даже об исправности защитного диода.

В таких случаях можно выпаять транзистор, и, используя небольшую схему для тестирования, однозначно ответить на вопрос – исправен ли ПТ или нет.

В исходном состоянии кнопка S1 разомкнута, напряжение на затворе относительно стока равно нулю. ПТ закрыт, и светодиод HL1 не светится.

При замыкании кнопки на резисторе R3 появляется падение напряжения (около 4 В), приложенное между истоком и затвором. ПТ открывается, и светодиод HL1 светится.

Эту схему можно собрать в виде модуля с разъемом для ПТ. Транзисторы в корпусе D2 pack (который предназначен для монтажа на печатную плату) в разъем не вставишь, но можно припаять к его электродам проводники, и уже их вставить в разъем. Для проверки ПТ с p-каналом полярность питания и светодиода нужно изменить на обратную.

Иногда полупроводниковые приборы выходят из строя бурно, с пиротехническими, дымовыми и световыми эффектами.

В этом случае на корпусе образуются дыры, он трескается или разлетается на куски. И можно сделать однозначный вывод об их неисправности, не прибегая к приборам.

В заключение скажем, что буквы MOS в аббревиатуре MOSFET расшифровываются как Metal — Oxide — Semiconductor (металл – оксид – полупроводник). Такова структура ПТ – металлический затвор («кран») отделен от канала из полупроводника слоем диэлектрика (оксида кремния).

Надеюсь, с «трубами», «кранами» и прочей «сантехникой» вы сегодня разобрались.

Однако, теория, как известно, без практики мертва! Надо обязательно поэкспериментировать с полевиками, поковыряться, повозиться с их проверкой, пощупать, так сказать.

Как паять полевые транзисторы правильно и безопасно: 5 советов

Рекомендую новичкам на этот вопрос обратить самое пристальное внимание. Тогда разочарования от проделанной работы у вас не возникнет

Где спрятана засада или чем опасна статика для электроники

В повседневной жизни статическое электричество мы ощущаем редко, например, при расчесывании волос пластиковой расческой, выходе из автомобиля после поездки или в некоторых других случаях.

Обычно статика доставляет нашему организму небольшие неприятности, которые просто раздражают. Но с полупроводниками дела обстоят иначе.

У МОП транзисторов очень тонкий слой изоляции между затвором и материалом канала. Он образует емкостную связь затвор-исток, затвор-сток. Причем сам диэлектрик создает этот эффект, работая как емкость.

Мы знаем, что любой конденсатор выпускается для работы под определенным напряжением. Если его превысить, то происходит пробой изоляции. Для повреждения оксидной пленки полевика обычно достаточно десятка вольт, а иногда и меньше.

Теперь показываю фотографиями какие опасности мы можем создать своими руками для транзисторов, если не будем соблюдать правила их пайки.

Я взял свой любимый трансформаторный паяльник Момент, включил его шнур питания в розетку, но кнопку включения не нажимал. Один конец провода мультиметра через крокодил посадил на жало, а второй — просто прислонил к пальцу. Установил режим вольтметра переменного тока.

Прибор показывает 28 вольт. Вот такие наводки создаются даже при обесточенном трансформаторе.

Продолжаю эксперимент. Черный щуп оставил на прежнем месте, а красный прислонил к диэлектрической поверхности табуретки, где размещены все приборы.

Почти 6,4 вольта. Когда отделил красный щуп воздушным пространством — показание стало вообще 8 вольт.

А ведь это совершенно случайные замеры, результаты которых зависят от множества факторов, что значит: напряжение может быть значительно больше или меньше.

Мы можем даже не чувствовать эту статику, но ее случайный разряд способен выжечь тонкий полупроводниковый переход кристалла.

Чтобы этого не допустить важно соблюдать обязательные рекомендации

Совет №1: шунтирование выводов

Исключить повреждение полупроводниковых переходов при хранении и работе можно содержанием микросхем, транзисторов, изделий интегральной электроники в слое фольги.

Аналогичный результат, в частности, получается, если обмотать контакты их выводов тонкой медной проволочкой без изоляции.

Совет №2: снятие статики с работающего оборудования

Работать лучше всего профессиональной паяльной станцией с заземленным наконечником. Если ее нет, то заземлите отдельными проводниками жало паяльника и монтажную плату. Выводы транзистора зашунтируйте тонкой проволочкой, которая будет снята после пайки.

Снять опасный потенциал статики с пинцета и инструмента, которым будете работать, позволяет заземляющий браслет на руке или иной части тела. Его сопротивление в 1 МОм исключает возможность опасного статического разряда.

Совет №3: подготовка рабочего места

Сухой воздух северных широт, особенно зимой, способствует накоплению статики на окружающих предметах. Увлажнители и мойки воздуха успешно борются с этим явлением.

Антистатический коврик сразу надежно снимает статические потенциалы, воздействия электрических помех из окружающей среды.

Совет№4: профессиональные смеси

Специальный флюс марки FluxOff не только отлично смывает канифоль и следы от коррозии, но реально убирает статику. Им достаточно просто смочить плату.

Совет №5: быстрая пайка

Выбирайте минимально необходимую мощность паяльника, но работайте им быстро. Опытные ремонтники умудряются разогреть жало, взять им припой, обесточить паяльник и затем припаять деталь на место.

Часть современных микросхем и транзисторов имеет защиту от статики, но это не отменяет необходимости соблюдать правила безопасной пайки со всеми остальными изделиями.

Основные принципы [ править ]

В n-канальных устройствах с расширенным режимом внутри транзистора не существует проводящего канала, и для его создания необходимо положительное напряжение затвор-исток. Положительное напряжение привлекает свободно плавающие электроны внутри тела к затвору, образуя проводящий канал. Но сначала необходимо привлечь достаточно электронов возле затвора, чтобы противодействовать ионам легирующей примеси, добавленным в тело полевого транзистора; это формирует область без мобильных носителей, называемую областью истощения , а напряжение, при котором это происходит, является пороговым напряжением полевого транзистора. Дальнейшее увеличение напряжения затвор-исток привлечет к затвору еще больше электронов, которые могут создать токопроводящий канал от истока к стоку; этот процесс называетсяинверсия . Обратное верно для p-канального МОП-транзистора «улучшенного режима». Когда VGS = 0, устройство выключено и канал открыт / непроводящий. Приложение отрицательного (-ve) напряжения затвора к полевому МОП-транзистору p-типа «улучшенного режима» увеличивает проводимость каналов, включая его.

Напротив, устройства с n-канальным режимом обеднения имеют токопроводящий канал, естественно существующий внутри транзистора. Соответственно, термин пороговое напряжение не всегда применяется к включению таких устройств, а используется вместо этого для обозначения уровня напряжения, при котором канал достаточно широк, чтобы позволить электронам свободно течь. Этот порог легкости прохождения потока также применяется к устройствам с режимом истощения p-канала , в которых отрицательное напряжение от затвора к телу / источнику создает обедненный слой, отталкивая положительно заряженные дырки от границы раздела затвор-изолятор / полупроводник, оставляя обнажила свободную от носителей область неподвижных отрицательно заряженных акцепторных ионов.

Для n-канального обедненного МОП-транзистора отрицательное напряжение затвор-исток, -VGS будет истощать (отсюда и его название) проводящий канал своими свободными электронами, переключая транзистор в положение «ВЫКЛ». Точно так же для МОП-транзистора с p-каналом «обедненного режима» положительное напряжение затвор-исток + VGS истощает канал своих свободных отверстий, переводя его в положение «ВЫКЛ».

В широких планарных транзисторах пороговое напряжение практически не зависит от напряжения сток-исток и, следовательно, является хорошо определенной характеристикой, однако в современных полевых МОП-транзисторах нанометрового размера оно менее четкое из -за уменьшения барьера, вызванного стоком .

Область истощения nMOSFET режима улучшения, смещенного ниже порога

Область истощения nMOSFET режима улучшения, смещенного выше порога с формированием канала

На рисунках исток (левая сторона) и сток (правая сторона) помечены как n +, что указывает на сильно легированные (синие) n-области. Легирующая добавка обедненного слоя обозначена как N A чтобы указать, что ионы в (розовом) обедненном слое отрицательно заряжены и дырок очень мало. В (красном) объеме количество дырок p = N A, делающих объемный заряд нейтральным.

Если напряжение затвора ниже порогового напряжения (левый рисунок), транзистор «улучшенного режима» выключен, и в идеальном случае ток от стока к истоку транзистора отсутствует. Фактически, существует ток даже при смещении затвора ниже порогового ( подпороговая утечка ) тока, хотя он невелик и экспоненциально изменяется с смещением затвора.

Если напряжение затвора выше порогового напряжения (правый рисунок), транзистор «улучшающего режима» включается из-за наличия большого количества электронов в канале на границе оксид-кремний, создавая канал с низким сопротивлением, в котором может происходить заряд. течь от слива к истоку. Для напряжений, значительно превышающих пороговое значение, такая ситуация называется сильной инверсией. Канал сужается, когда V D > 0, потому что падение напряжения из-за тока в резистивном канале уменьшает оксидное поле, поддерживающее канал, по мере приближения к стоку.

Предназначен для жестких условий эксплуатации

Как отмечалось выше, MRF1K50H исключительно надежен и устойчив к перегрузкам, что позволяет ему без повреждения и деградации параметров выдерживать КСВ 65:1. Пробивное напряжение прибора, равное 135 В, и способность к поглощению лавинной энергии, увеличенная по сравнению с предшественником на 40%, идеально подходят для тяжелых условий эксплуатации в промышленном оборудовании.

Рисунок 4. Для демонстрации типичных радиочастотных характеристик MRFK150 NXP предлагает четыре эталонные схемы, охватывающие диапазон от 27 МГц до 230 МГц.

Высокая выходная мощность предъявляет повышенные требования к системам отвода тепла. Для упрощения конструкций устройств охлаждения и повышения надежности тепловое сопротивление керамического корпуса прибора MRF1K50H было уменьшено до 0.12 °C/Вт, а фланцы выпускаемого в пластмассовом корпусе транзистора MRF1K50N изготавливаются из меди, благодаря чему его тепловое сопротивление переход-корпус снижено на 30%. Кроме того, более жесткие допуски на размеры и улучшенная паяемость выводов обеспечивают более точное и надежное крепление транзисторов к печатной плате в процессе производства.

Необходимым дополнением к анонсу любого нового устройства должны быть соответствующие проектные ресурсы, поэтому NXP предлагает четыре базовые схемы, в которых MRF1K50H будет использоваться чаще всего:

  • 27 МГц:Эта узкополосная эталонная схема работает на частоте, наиболее распространенной в промышленных приложениях, таких как термосклеивание, сушка и сварка.
  • 81.36 МГц:MRF1K50H хорошо подходит для этой частоты, которую производители выбрали для накачки CO2 лазеров.
  • 87.5 … 108 МГц:Очень большая выходная мощность MRF1K50H позволит сократить число транзисторов и усилительных модулей, необходимых для получения требуемой мощности на входах антенн передатчиков УКВ и цифрового радио. Эта широкополосная оценочная плата адресована разработчикам именно таких систем.
  • 230 МГц:На этой частоте в импульсном режиме работают узкополосные передатчики аэрокосмических и ряда других систем. Данная эталонная схема разработана для приложений с длительностью импульса 100 мкс, коэффициентом заполнения 20% и пиковой выходной мощностью 1500 Вт.

MRF1K50H, как и варианты транзистора в пластмассовых корпусах, уже выпускаются серийно. Во многих системах, в которых будет использоваться MRF1K50H, особенно в оборонных и промышленных приложениях, транзисторам предстоит работать в течение многих лет

Следовательно, для производителей очень важно быть уверенными в том, что важнейшие компоненты их систем будут доступны на протяжении всего этого времени. Для поддержки таких приложений NXP разработала программу «Долголетие продуктов», гарантирующую доступность критически важных компонентов, как минимум, в течение 15 лет после начала их производства

Применительно к MRF1K50H это означает, что NXP обеспечит их поставку, по крайне мере, до 2031 года.

Перевод: AlexAAN по заказу РадиоЛоцман

Характеристики IRF740

При ознакомлении с характеристиками полевого транзистора IRF740 изначально обращают внимание на его максимальные (предельно допустимые) характеристики. Затем, исходя из поставленной задачи, изучают электрические параметры

После этого переходят к графикам типовых выходных, передаточных и других характеристик. Рассмотрим основные фрагменты из DataSheet irf740 на русском языке.

Максимальные

Ниже представлены предельно допустимые значения МОП-транзистора IRF740. Не следует воспринимать их как основные, при которых mosfet будет работать стабильно. Превышение любого из них, даже на короткий промежуток времени, может привести к выходу устройства из строя.

Электрические

В электрических характеристиках IRF740 содержится информация проверенная производителем при определенных условия. Эти условия указываются дополнительно, в одном из столбцов таблицы. Например, из дополнительных условий можно узнать, что irf740 при напряжении 400 вольт между стоком-истоком, при отсутствующем напряжении на затворе, начинает проводить слабый ток — 250 микроампер.

Тепловые параметры

Основным параметром, который ограничивает применение полевого транзистора, является его рабочая температура. А точнее её увеличение, которое связанно с ростом сопротивления транзистора при прохождении через него электрического тока. Несмотря на низкое сопротивление mosfet, на нём все равно рассеивается некоторая мощность, из-за этого он нагревается.  Для упрощения расчётов связанных с нагревом IRF740, в даташит приводятся значения его тепловых сопротивлений: от кристалла к корпусу (Junction-to-Case ) и от корпуса в окружающую среду (Junction-to-Ambient).

Неправильные расчеты тепловых параметров для использования в проектах и плохая пайка приводит к перегреву mosfet. На одном из форумов радиолюбитель жаловался на то, что в собранной им схеме металлоискатель пират на irf740 сильно греется. После продолжительных разбирательств причина перегрева выяснилась и оказалась самой банальной – плохая пайка прибора на плату и охлаждение.

Полевые транзисторы с изолированным затвором (МДП-транзисторы)

Термин «МДП-транзистор» используется для обозначения полевых транзисторов, в которых управляющий электрод – затвор – отделен от активной области полевого транзистора диэлектрической прослойкой – изолятором. Основным элементом для этих транзисторов является структура металл-диэлектрик-полупроводник (М-Д-П).

Технология МДП-транзистора с встроенным затвором приведена на рисунке:

Исходный полупроводник, на котором изготовлен МДП-транзистор, называется подложкой (вывод П). Две сильнолегированные области n+ называется истоком (И) и стоком (С). Область подложки под затвором (З) называется встроенным каналом (n-канал).

Физической основой работы полевого транзистора со структурой металл-диэлектрик-полупроводник является эффект поля. Эффект поля состоит в том, что под действием внешнего электрического поля изменяется концентрация свободных носителей заряда в приповерхностной области полупроводника. В полевых приборах со структурой МДП внешнее поле обусловлено приложенным напряжением на металлический электрод-затвор. В зависимости от знака и величины приложенного напряжения могут быть два состояния области пространственного заряда (ОПЗ) в канале – обогащение, обеднение.

Режиму обеднения соответствует отрицательное напряжение Uзи, при котором концентрация электронов в канале уменьшается, что приводит к уменьшению тока стока. Режиму обогащения соответствует положительное напряжение Uзи и увеличение тока стока.

ВАХ представлена на рисунке:

Топология МДП-транзистора с индуцированным (наведенным) каналом р-типа приведена на рисунке:

При Uзи = 0 канал отсутствует и Ic = 0. Транзистор может работать только в режиме обогащения Uзи < 0. Если отрицательное напряжение Uзи превысит пороговое Uзи.пор, то происходит формирование инверсионного канала. Изменяя величину напряжения на затворе Uзи в области выше порогового Uзи.пор, можно менять концентрацию свободных носителей в инверсионном канале и сопротивление канала. Источник напряжения в стоковой цепи Uси вызовет ток стока Iс.

ВАХ представлена на рисунке:

В МДП-транзисторах затвор отделен от полупроводника слоем окисла SiO2. Поэтому входное сопротивление таких транзисторов порядка 1013…1015 Ом.

К основным параметрам полевых транзисторов относятся:

  • Крутизна характеристики при Uсп = const, Uпи = const. Типичные значения параметра (0,1…500) мА/В;
  • Крутизна характеристики по подложке при Uсп = const, Uзи = const. Типичные значения параметра (0.1…1) мА/В;
  • Начальный ток стока Iс.нач. – ток стока при нулевом значении напряжения Uзи. Типичные значения параметра: (0,2…600) мА – для транзисторов с управляющим каналом p-n переходом; (0,1…100) мА – для транзисторов со встроенным каналом; (0,01…0,5) мкА – для транзисторов с индуцированным каналом;
  • Напряжение отсечки Uзи.отс.. Типичные значения (0,2…10) В; пороговое напряжение Uп. Типичные значения (1…6) В;
  • Сопротивление сток-исток в открытом состоянии. Типичные значения (2..300) Ом
  • Дифференциальное сопротивление (внутреннее): при Uзи = const;
  • Статистический коэффициент усиления: μ = S · ri

Графические иллюстрации характеристик

Рис. 1. Зависимость времени задержки td и времени нарастания импульса tr от коллекторной нагрузки IC.

Характеристика снята при напряжении питания UCC = 125 В, температуре п/п структуры Tj = 25°C, и соотношении токов IC / IB = 5.

При измерении времени задержки td установлено напряжение смещения UBE(OFF) = 5 В.

Рис. 2. Зависимость времени сохранения ts и времени спадания импульса tf от величины коллекторной нагрузки IC.

Характеристика снята при напряжении питания UCC = 125 В, температуре п/п структуры Tj = 25°C, и соотношении токов IC / IB = 5.

Рис. 3. Зависимость статического коэффициента усиления hFE транзистора в схеме с общим эмиттером от величины коллекторной нагрузки IC.

Зависимость снята для различных значений температуры структуры Tj и напряжений коллектор-эмиттер UCE.

Рис. 4. Изменение падения напряжения на транзисторе UCE при изменении управляющего тока базы IB. Зависимости сняты при различных нагрузках IC и температуре структуры Tj = 25°C.

Рис. 5. Изменение напряжения насыщения на базовом переходе UBE(sat) при разных нагрузках IC и разных температурах структуры Tj. Соотношение токов IC / IB = 3.

Пунктиром показано изменение напряжения включения UBE(ON) при напряжении на коллекторе UCE = 2 В.

Рис. 6. Зависимость напряжения насыщения коллектор-эмиттер UCE(sat) от коллекторного тока IC при различных температурах и соотношении токов IC/ IB = 3.

Рис. 7. Область выключения транзистора. Зависимость коллекторного тока IC от напряжения база-эмиттер UBE.

Характеристика снята при разных температурах Tj структуры и напряжении коллектор-эмиттер UCE = 250 В.

FORWARD – напряжение база-эмиттер приложено в прямом направлении.

REVERS — напряжение база-эмиттер приложено в обратном направлении.

Рис. 8. Зависимости входной емкости Cib перехода эмиттер-база и выходной емкости Cob коллекторного перехода от величины обратного приложенного напряжения. Температура структуры Tj= 25°С.

Рис. 9. Область безопасной работы транзистора при резистивной нагрузке.

Предельные токи ограничены: значением максимального постоянного тока IC = 1,5 А и максимального импульсного тока ICM = 3,0 А.

При этих значениях тока разрушаются паяные соединения подводящих проводов со слоями п/п структуры. Показано штрихпунктирной линией.

Предельные напряжения ограничены максимальным рабочим напряжением UCEO(SUS) = 400 В.

Общее тепловое разрушение структуры наступает при превышении ограничений по току и напряжений, показанных пунктирной линией.

Сплошная линия обозначает ограничения, связанные с вторичным необратимым пробоем п/п структуры транзистора. Во всех режимах работы линии нагрузки транзистора (зависимости IC от напряжения коллектор-эмиттер UCE) не должны превышать обозначенных ограничений.

Рис. 10. Ограничение величины рассеиваемой мощности (нагрузки) транзистора при возрастании температуры окружающей среды Ta.

Характеристика снята для условий работы на резистивную нагрузку.

Рис. 11. Область безопасной работы транзистора с обратным смещением для случая с введенными ограничениями перенапряжений.

Предельное ограничение по напряжению (перенапряжению) UCLAMP = 700 В.

Величины напряжений обратного смещения UBE(OFF) соответственно 9 В, 5 В, 3 В и 1,5 В.

Характеристики построены для температуры структуры в пределах 100°С и при токе базы IB1 = 1 А.

Такая ОБР с обратным смещением характерна для схем работы транзистора на индуктивную нагрузку.

В этих режимах работы, линии нагрузки транзистора (зависимости IC от напряжения коллектор-эмиттер UCE) не должны превышать обозначенных ОБР ограничений.

Кратко о MOSFET

MOSFET — это управляемый переключатель с тремя контактами (затвор, сток и исток). Сигнал затвора (управления) подается между затвором и истоком, а контактами переключения являются сток и исток. Сам затвор выполнен из металла и отделен от истока оксидом металла в качестве диэлектрика. Это позволяет снизить энергопотребление и делает этот транзистор отличным выбором для использования в качестве электронного переключателя или усилителя в схеме с общим истоком. 

Существует много различных типов МОП-транзисторов, но наиболее сопоставимыми с IGBT являются мощные MOSFET. Они специально разработаны для работы со значительными уровнями мощности и используются чаще всего только во включенном или выключенном состояниях, что делает их наиболее используемым ключом для низковольтных схем. По сравнению с IGBT, мощные полевые МОП-транзисторы имеют преимущества — более высокую скорость коммутации и более высокую эффективность при работе при низких напряжениях. Более того, такая схема может выдерживать высокое напряжение блокировки и поддерживать высокий ток. Это связано с тем что большинство мощных МОП-структур являются вертикальными (а не плоскими). Номинальное напряжение является прямой функцией легирования и толщины эпитаксиального слоя с примесью N-типа, а ток зависит от ширины канала (чем шире канал, тем выше ток).

Справочник по отечественным мощным транзисторам.

В справочники по транзисторам кт… включена

подробная сканированная документация с графиками на биполярные отечественные транзисторы и даташиты на их

импортные аналоги. Кроме популярных и широко распространенных транзисторов
(КТ502, КТ503, КТ805, КТ814, КТ815,
КТ816, КТ817, КТ818,
КТ819, КТ837 и проч.), приведены и новые транзисторы, ими справочник дополнен с сайтов

производителей. В таблице кратких справочных данных приведены тип проводимости транзистора, значение

максимального допустимого постоянного тока, предельного напряжения коллектор —

эмиттер и максимальный возможный коэффициент усиления в схеме с общим эмиттером. В

pdf документации описана типичная область применения

транзисторов в бытовой и промышленной технике. Для маломощных транзисторов кт…, где

используется цветовая или символьная маркировка, приведена расшифровка. Для

мощных транзисторов приведены графики зависимости коэффициента усиления от тока

коллектора ( h21э может изменяться на порядок),
зависимость напряжения насыщения от тока (что важно для расчета тепловых
потерь), область безопасной работы и зависимость допустимой рассеиваемой
мощности от температуры корпуса. (например, КТ829) в справочнике
выделены цветом

Их также можно найти
по коэффициенту усиления, он, как правило, больше 500.