Простой способ решения проблемы управления затвором mosfet

Транзистор Дарлингтона

Если нагрузка очень мощная, то ток через неё может достигать
нескольких ампер. Для мощных транзисторов коэффициент может
быть недостаточным. (Тем более, как видно из таблицы, для мощных
транзисторов он и так невелик.)

В этом случае можно применять каскад из двух транзисторов. Первый
транзистор управляет током, который открывает второй транзистор. Такая
схема включения называется схемой Дарлингтона.

В этой схеме коэффициенты двух транзисторов умножаются, что
позволяет получить очень большой коэффициент передачи тока.

Для повышения скорости выключения транзисторов можно у каждого соединить
эмиттер и базу резистором.

Сопротивления должны быть достаточно большими, чтобы не влиять на ток
база — эмиттер. Типичные значения — 5…10 кОм для напряжений 5…12 В.

Выпускаются транзисторы Дарлингтона в виде отдельного прибора. Примеры
таких транзисторов приведены в таблице.

Модель
КТ829В 750 8 А 60 В
BDX54C 750 8 А 100 В

В остальном работа ключа остаётся такой же.

Включенное состояние (1 квадрант)

Состояние прямой проводимости при приложении положительного напряжения VDS и положительном направлении тока стока ID определяет две области характеристической кривой: активную и омическую.

Активная зона характеристики

При большом превышении напряжением «затвор–исток» порогового уровня VGE(th), относительно высокая доля этого сигнала окажется приложенной к каналу вследствие токового насыщения (горизонтальный участок выходной характеристики). Ток стока ID управляется напряжением VGS. Параметром переходной кривой (рис. 11б) является прямая проводимость gfs, определяемая как

gfs = DID/DVGS = ID/(VGS–VGS(th)).

Прямая проводимость растет пропорционально ID и VDS и падает с увеличением температуры кристалла. В режиме коммутации модулей, содержащих несколько параллельных чипов, работа в активной области наблюдается только при включении и выключении. Стационарная работа в этой зоне недопустима, поскольку пороговое напряжение VGS(th)снижается с ростом температуры, т. е. даже небольшая разница характеристик кристаллов может привести к «тепловому убеганию».

Омическая зона характеристики

Данная область (наклонные участки выходной характеристики) соответствует включенному состоянию, при котором величина тока ID определяется только внешними цепями нагрузки. Поведение ключа при этом характеризуется сопротивлением открытого канала RDS(on), определяемым по отношению приращений напряжения VDS и тока стока ID. Величина RDS(on) зависит от сигнала управления VGS и температуры кристалла. В диапазоне рабочих температур MOSFET сопротивление открытого канала почти удваивается при нагреве от +25 до +125 °С.

Как проверить транзистор с управляющим PN-переходом с помощью мультиметра

У нас в гостях уже знакомый вам из прошлой статьи N-канальный полевой транзистор с PN-переходом 2N5485

Сейчас мы будем проверять его на работоспособность.

Впрочем, не так быстро! Полевые транзисторы больше всего боятся статического электричества, особенно МОП-транзисторы. Поэтому, прежде чем начинать проверку, стоит снять статику с себя (и с того, чем ещё можем его коснуться). Можно заземлить себя, скажем, с помощью водосточной или отопительной трубы (коснувшись металлической части трубы без лакокрасочного покрытия). Но лучше всего для этого дела подойдет антистатический браслет.

Для этого нам понадобится мультиметр:

Для проверки полевого транзистора с управляющим PN-переходом первым делом качаем на него даташит и смотрим расположение его выводов (цоколевку).

Вот кусочек даташита моего транзистора с цоколевкой:

Если его повернуть задом к нам, как в даташите, то слева-направо у нас идет Затвор, Исток, Сток

Там же в даташите указано, что он N-канальный.

Ну что же? Начнем проверку?

Так как транзистор N-канальный, следовательно, встаем на Затвор красным щупом мультиметра и проверяем диоды. Проверяем диод Затвор-Исток:

Норм.

Проверяем  диод Затвор-Сток:

Норм.

Как вы помните, диод пропускает электрический ток только в одном направлении. Поэтому, когда мы поменяем полярность и снова проверим диоды, то увидим на экране мультиметра очень большое сопротивление:

Ну а теперь остается проверить сопротивление между Истоком и Стоком. Для того, чтобы его замерить, мы должны подать на Затвор 0 Вольт. Будет большим заблуждением, если мы оставим Затвор болтаться в воздухе, так как в этом случае вывод Затвора – это как маленькая антенна, которая ловит различные наводки, а следовательно имеет уже какой-то потенциал, что конечно же, сказывается на сопротивлении Исток-Сток. Поэтому, цепляемся мультиметром к Стоку и Истоку, а Затвор берем в руку. В идеале, хорошо было бы взяться другой рукой за отопительную батарею, чтобы полностью заземлить Затвор. На мультике должно высветится какое-либо сопротивление:

Что-то показывает? Значит все ОК ;-). Транзистор жив и здоров.

Полевые транзисторы с управляющим p-n переходом

Схематически полевой транзистор с управляющим p-n переходом можно представить в виде пластины, к торцам которой подключены электроды, исток и сток. На рис. показана структура и схема включения полевого транзистора с каналом n-типа:

В транзисторе с n-каналом основными носителями заряда в канале являются электроны, которые движутся вдоль канала от истока с низким потенциалом к стоку с более высоким потенциалом, образуя ток стока Ic. Между затвором и истоком приложено напряжение, запирающее p-n переход, образованный n-областью канала и p-областью затвора.

При подаче запирающего напряжения на p-n-переход Uзи на границах канала возникает равномерный слой, обедненный носителями заряда и обладающий высоким удельным сопротивлением. Это приводит к уменьшению проводящей ширины канала.

Изменяя величину этого напряжения, можно изменить сечение канала и, следовательно, изменять величину электрического сопротивления канала. Для полевого n-канального транзистора потенциал стока положителен по отношению к потенциалу истока. При заземленном затворе от стока к истоку протекает ток. Поэтому для прекращения тока на затвор нужно подать обратное напряжение в несколько вольт.

Значение напряжения Uзи, при котором ток через канал становится практически равен нулю, называется напряжением отсечки Uзап

Таким образом, полевой транзистор с затвором в виде p-n-перехода представляет собой сопротивление, величина которого регулируется внешним напряжением.

Полевой транзистор характеризуется следующей ВАХ:

Здесь зависимости тока стока Iс от напряжения при постоянном напряжении на затворе Uзи определяют выходные, или стоковые, характеристики полевого транзистора. На начальном участке характеристик Uси + |Uзи| < Uзап ток стока Iс возрастает с увеличением Uси. При повышении напряжения сток — исток до Uси = Uзап — |Uзи| происходит перекрытие канала и дальнейший рост тока Iс прекращается (участок насыщения). Отрицательное напряжение Uзи между затвором и истоком смещает момент перекрытия канала в сторону меньших значений напряжения Uси и тока стока Iс. Участок насыщения является рабочей областью выходных характеристик полевого транзистора. Дальнейшее увеличение напряжения Uси приводит к пробою р-n-перехода между затвором и каналом и выводит транзистор из строя.

На ВАХ Iс = f(Uзи) показано напряжение Uзап. Так как Uзи ≤ 0 p-n-переход закрыт и ток затвора очень мал, порядка 10-8…10-9 А, поэтому к основным преимуществам полевого транзистора, по сравнению с биполярным, относится высокое входное сопротивление, порядка 1010…1013 Ом. Кроме того, они отличаются малыми шумами и технологичностью изготовления.

Практическое применение имеют две основные схемы включения. Схема с общим истоком (рис. а) и схема с общим стоком (рис. б) , которые показаны на рисунке:

Инверсный режим (3 квадрант)

В инверсном режиме MOSFET приобретает диодную характеристику при напряжении отсечки VGS(th) (рис. 11). Такое поведение обусловлено наличием паразитного диода в структуре, прямое падение напряжения образуется на переходе «коллектор–(исток)–база–(сток)–p-n-переход». Биполярный ток, проходящий через диод, определяет поведение MOSFET в инверсном режиме работы, когда канал закрыт (рис. 12а).

Рис. 12. Инверсный режим MOSFET :
а) закрытый канал (биполярный ток);
б) открытый канал и низкое отрицательное напряжение VDS (униполярный ток);
в) открытый канал и высокое отрицательное напряжение VDS (комбинированный характер тока)

Возможно, вам также будет интересно

В данной статье анализируется поведение MOSFET-транзистора при высоком напряжении питания в мощном конверторе с преобразованием при нулевом напряжении, и выдвигается оригинальная теория причины пробоя MOSFET-транзистора. Здесь также предложены новые технические решения по повышению устойчивости транзистора и, следовательно, надежности всего оборудования. Преимущества схем конверторов с мягким переключением и, в частности, с переключением при нулевом напряжении (ПНН,

Каждый модуль блочной памяти ПЛИС серии Virtex-4 может конфигурироваться не только как двухпортовое или однопортовое ОЗУ, но и в виде запоминающего устройства, работающего по принципу «первым вошел — первым вышел» (first-in first-out, FIFO) с различной организацией. Для подготовки описаний элементов FIFO-памяти предусмотрен библиотечный примитив FIFO16. На основе экземпляра этого библиотечного примитива выполнены четыре шаблона описаний элементов запоминающих устройств FIFO с различными вариантами организации входных и выходных портов.

GSM40/60 — настольные адаптеры для медицинских применений от Mean Well

Подключение мотора к Arduino

Как уже было сказано выше, ардуино не может обеспечить мотор необходимым током и напряжением. В таких случаях используются транзисторы.

Транзистор это радиоэлектронный компонент из полупроводникового материала способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет его использовать для усиления, генерирования, коммутации и преобразования электрических сигналов. Обычно у транзисторов 3 вывода: база, эмиттер и коллектор. Алгоритм действия можно сформулировать так: пропустить ток от коллектора к эмиттеру в зависимости от сигнала на базе. Транзисторы бывают разных типов и номиналов. Об этом можно подробнее почитать на википедии.

Будьте внимательны при выборе транзисторов для своих проектов. Некоторые рассчитаны на пропуск большого напряжения, или большого тока. Так же многие транзисторы не откроются от 5 вольт на базе. Всегда проверяйте характеристики транзисторов перед покупкой в datasheet

Так же обратите внимание, что для управления переменным током используются мосфет транзисторы

Теперь давайте подключим мотор к ардуино по следующей схеме:

Как всегда ничего сложного. Главное не перепутать выводы транзистора

Обратите внимание на резистор через который ардуино подключена к базе. Это резистор на 1 кОм и нужен он для того что бы обезопасить нашу ардуинку

В видео к схеме добавлены диод и конденсатор, но они не обязательны. Так же можно добавить резистор на 10 — 100 кОм между эмиттером и коллектором для стабильности работы нашей схемы. Так же не забудьте, что земля на всех уровнях напряжения должна быть объединена. И взглянем на наш код:

Как видите скетч очень прост. По комментариям в коде вы легко разберетесь, что к чему. Единственная конструкция, которую мы еще не использовали это цикл for.

Подключение сервопривода практически ни чем не отличается от подключения моторчика. Отличие в том что у сервы 3 вывода. Плюс, минус и логический. В видео подробно об этом рассказано.

Добавим в нашу схему инфракрасный дальномер. Просто потому, что мы можем Будем задавать положение сервопривода в зависимости от показаний дальномера. Мы уже подключали дальномер, поэтому схему рисовать не буду. Подключаем его к пину А0. Новый скетч стал еще проще:

5 комментариев

Добрый день! Что то не получается с транзистором. Взял кт815Г (что было). Эмитер соединил с землей (самая левая ножка). на землю посадил землю от бп (8V) и землю от ардуино. К коллектору (средняя ножка) присоединил лампочку одним выводом. К другому выводу лампочки присоединил + от БП 8V. базу (крайняя правая ножка) завел на землю через резистор 10К. На базу подал 5V от ардуино через резистор 1К. И ничего….

Попробуйте для начала проверить сам транзистор, подав 5 В на базу (через резистор). Если он рабочий, то лампа загорится.

Напишите, для примера, какие транзисторы можно использовать. Или какие у них должны быть характеристики. Также неясно как подбирать резистор между эмиттером и коллектором и о какой стабильности идет речь.

Дмтрий можешь помощь, и немогу написать код с шаговым двигателем и датчиком света, немогу их вместе свезат что когда на улице светло он крутится в одну сторону ждёт пока не стемнет и крутица в другую сторону и там ждёт пока не рвсветет

Объясните пожалуйста, почему вы пишите, что необходимо провести ток от коллектора к эмиттеру, при этом к коллектору у вас подключен мотор. какой сигнал в таком случае усиливает транзистор? разве он не должен быть между питанием и мотором, то есть в роли эмиттера будет мотор?

Источник

NPN mosfet подключение к arduino

Тут все без гемора. Вот пара вариантов подключения:

Если надо еще и плавно включать/выключать лампочку, либо не на всю мощность, а только на половину например, можно из ардуино пищать шимом, а между затвором и истоком включить еще конденсатор микрофарад на 300. Это нужно чтобы открыть мосфет на половину.. Однако это подойдет только для маломощной лампочки, потому как полуоткрытый мосфет имеет некислое внутреннее сопротивление и греется как утюг.

В эту схему подойдет к примеру мосфет  h6n03l. Но тут есть нюанс в выборе резюков. Тот, который между ардуино и gate – чем больше сопротивление, тем меньше ток на ноге ардуино и меньше вероятность что она задымится. И чем больше сопротивление тем медленнее открывается мосфет. Кароч 150 ом норм для ардуино (по закону ома I = E / R, I = 5 / 150 = 0.033 А  — это 33 миллиампера, норм). Зачем он вообще нужен? Дело в том, что затвор (gate) у полевика имеет определенную емкость и является в какой-то мере конденсатором. Так что в момент переключения через затвор проходят большие токи, которые может не выдержать ардуина. Для этого и нужен резистор между gate и пином.

А второй 10 кОм типа подтягивающий резистор – нужен чтобы держать мосфет закрытым и нагрузку выключенной пока порт ардуины в неопределенном состоянии например при загрузке (так называемое Z-состояние).

Но у этой схемы есть косяк – она медленновата. На переключение уйдет 600ns что подходит не для всех задач. Вот фронт и спад.

 

Но это нужно далеко не всегда и как правило достаточно первой схемы. И кстати есть вариант получше — про него в конце статьи.

Поведение транзисторов

Несмотря на доступность широчайшего выбора диапазонов рабочих напряжений и токов мощных транзисторов, выпускаемых в разнообразных корпусах и обеспеченных технической поддержкой производителей, каждому из трех видов транзисторов – биполярным, MOSFET и IGBT – присуще свое поведение, определяющее области их применения. Благодаря дешевизне в больших партиях (например, стоят от 12 до 15 центов за штуку), 100-вольтовые биполярные транзисторы широко используются для получения напряжений ±40 В в усилителях мощности звукового диапазона. (В биполярные транзисторы для аудиоприложений некоторые производители встраивают цепи автоматического смещения).

Между тем, 600-вольтовые IGBT можно найти дома в электроприводах бытовой техники, подключенной к сети переменного тока 220 В, например, в стиральных машинах или сушилках. Основная область применения мощных MOSFET – безусловно, импульсные источники питания. В них транзисторы на напряжения 25, 30 или 40 В, называемые «низковольтные MOSFET», используются для получения питающих напряжений 5 или 12 В, необходимых компьютерам и телекоммуникационной аппаратуре.

Хотя и не всегда, инженеры склонны выбирать транзисторы с запасом по току и напряжению. Вы можете заметить, что в стиральной машине, которая подключается к сети 220 В, используются IGBT, рассчитанные на 600 или 650 В, а в силовых цепях плат серверных модулей, питающиеся от 5.0 В или 3.3 В, установлены MOSFET, допустимые напряжения которых начинаются с 30 В. И, наконец, на стереодинамики работают 100- и 200-вольтовые биполярные транзисторы.

Такой запас позволяет быть уверенным, что наши системы не останутся без источников питания. Кроме того, он защищает от резких выбросов напряжения и скачков тока. (Автомобильное оборудование особенно подвержено выбросам, и для того, чтобы справиться с бросками в 150 В, выбираются компоненты, рассчитанные на 400 В).

Убедить инженеров отказаться от чрезмерного запаса по предельным параметрам, в конечном счете, могут постоянное сглаживание, фильтрация и стабилизация на протяжении всей цепи прохождения питания. Такой подход затронул бы архитектуру вычислительных серверов, где такие производители, как, например, IBM и NTT DOCOMO выступают за распределительные сети 385 В постоянного тока для мегаваттных дата-центров и 48 В как промежуточное напряжение для стоек и шкафов. Это позволило бы разработчикам сузить границы предельных параметров мощных компонентов и, например, использовать меньшие по размерам и более дешевые 60-вольтовые компоненты в тех слотах, где раньше служили компоненты с допустимым напряжением 100 В

При этом инженеры должны обращать внимание на области безопасной работы (safe operating areas – SOA) тех транзисторов, которые они надеются использовать

Возможно, вам также будет интересно

Управление SiC, общие положения В общем случае оптимальные токовые характеристики карбидокремниевых ключей обеспечиваются при напряжении на затворе VGS = 18…20 В, что подтверждается кривыми, показанными на рис. 1 и 2. Как видно из рисунков, у карбида кремния намного выше модулирующий эффект напряжения управления. Это справедливо для режимов, где SiC-прибор ведет себя, как управляемое напряжением сопротивление

Управление изолированным затвором: основные положения В общем случае процесс перезаряда емкостей затвора может контролироваться сопротивлением, напряжением и током (рис. 1) . На практике чаще всего используется самый простой вариант (рис. 1а) с двумя раздельными резисторами для режимов включения и выключения, при этом одним из наиболее важных параметров является уровень «Плато Миллера», соответствующий плоской части характеристики затвора (рис. 2). Скорость и время коммутации

В работе проведено сопоставление импульсно-модуляционных способов регулирования выходных параметров последовательного резонансного инвертора, а именно исследована и аналитически описана частотно-широтно-импульсная модуляция. Получены регулировочные и коммутационные характеристики, показаны преимущества применения схем инверторов с неполной глубиной модуляции, что позволяет существенно снизить величину коммутируемого тока.

Подключение IRF3205

Подключение данного транзистора ничем не отличается от способа подключения остальных n-канальных МОП-транзисторов в корпусе ТО-220. Ниже Вы можете увидеть цоколевку выводов MOSFET’а:

Управление осуществляется затвором (gate). В теории, полевику все равно где у него сток, а где исток. Однако в жизни проблема заключается в том, что ради улучшения характеристик транзистора контакты стока и стока производители делают разными. А на мощных моделях из-за технического процесса образуется паразитный обратный диод.

Подключение к микроконтроллеру

Так как для открытия транзистора на затвор необходимо подать около 20В, то подключить его напрямую к МК, который выйдет максимум 5, не получится. Есть несколько способов решения этой задачи:

  • Регулировать напряжение на затворе менее мощным транзистором, благодаря которому можно управлять напряжением в 5В. В таком случае схема будет простая и все, что придется добавить – это два резистора (подтягивающий на 10 кОм и ограничивающий ток на 100 Ом)
  • Использовать специализированный драйвер. Такая микросхема будет формировать необходимый сигнал управления и выравнивать уровень между контроллером и транзистором. Ниже приведена одна из возможных схем для такого способа.
  • Воспользоваться другим транзистором, у которого вольтаж открытия будет ниже. Вот список наиболее мощных и распространенных транзисторов, которые можно использовать с микроконтроллерами такими, как arduino, например:
    • IRF3704ZPBF
    • IRLB8743PBF
    • IRL2203NPBF
    • IRLB8748PBF
    • IRL8113PBF

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля

Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Источник

Рулим 220 вольтами с помощью мосфета

Мосфетом не совсем удобно рулить 220 вольтами. Ну всяким извращенцам это нравится Вот пример схемы:

Эта схема диммера для лампочек, с помощью ШИМ можно менять яркость. Подробнее тут https://www.learningelectronics.net/circuits/dimmer-with-mosfet.html

А для нормального управления нагрузкой в 220 вольт вместо мосфетов можно использовать:

  • симисторы типа bt131. Если нужна плавная регулировка света, то нужно делать что-то вроде этого:

    Вкратце из за того, что напряжение переменное, надо будет с помощью прерывания отлавливать момент когда лучше всего открыть симистор, и сделать из обычной фазы что-то вроде этого:

    Подробнее тут https://www.cyber-place.ru/showthread.php?t=525

  • транзисторы дарлингтона
  • КР1182ПМ1 (не особо надежно, по отзывам дохнут они)

Подведем итог

Многие из вышеупомянутых фактов касаются исторической основы обоих устройств. Достижения и технологические прорывы в разработке нового оборудования, а также использование новых материалов, таких как карбид кремния (SiC), привели к значительному улучшению производительности этих радиодеталей за последние годы. 

МОП-транзистор: 

  • Высокая частота переключения.
  • Лучшие динамические параметры и более низкое энергопотребление драйвера. 
  • Более низкая емкость затвора.
  • Более низкое термосопротивление, которое приводит к лучшему рассеиванию мощности.
  • Более короткое время нарастания и спада, что означает способность работать на более высоких частотах.

IGBT модуль: 

  • Улучшенная технология производства, которая приводит к снижению затрат.
  • Лучшая устойчивость к перегрузкам.
  • Улучшенная способность распараллеливания схемы.
  • Более быстрое и плавное включение и выключение.
  • Снижение потерь при включении и при переключении.
  • Снижение входной мощности.

В любом случае модули MOSFET и IGBT быстро заменяют большинство старых полупроводниковых и механических устройств, используемых для управления током. Силовые устройства на основе SiC демонстрируют такие преимущества как меньшие потери, меньшие размеры и более высокая эффективность. Подобные инновации будут продолжать расширять пределы использования MOSFET и IGBT транзисторов для схем с более высоким напряжением и большей мощностью.