Левитирующий двигатель как собрать

Содержание

Техника для летней кухни

Солнечная энергия подходит не только для освещения и работы садового оборудования. Ее можно применять и для готовки пищи. Более того, как бы это странно ни звучало, существует такой прибор, как гриль на солнечной энергии. Его выпускает компания GoSun, по утверждению которой устройство пригодится и на даче, и в походе. Судя по размерам устройства, представляющего собой колбу диаметром 7 см и длиной 61 см, в это можно легко поверить. Внутренний объем пространства для мяса и других продуктов – 1,2 литра. Максимальная температура нагрева, которую гриль позволяет достичь всего за 20 минут – 288 градусов.

Гриль на солнечной батарее можно заказать с доставкой примерно за 7000 рублей 

Тот же производитель разработал не только гриль, но и холодильник, для работы которого не нужен ни лед, ни специальные охлаждающие элементы. Модель GoSun Chill работает на солнечной энергии, потребляя около 144 Вт. А батарея располагается здесь отдельно – поэтому покупатель может выбрать несколько вариантов источников. В том числе, гибкий модуль или специальный стол.

В обычных условиях холодильник легко подключается к электросети и даже к автомобильному прикуривателю. После использования на даче аппарат может пригодиться и в городской квартире для хранения небольшого количества продуктов (объем холодильника – 40 литров). Одного полного заряда достаточно на 5-14 часов работы, минимальная температура при этом – минус 20ᵒC.

Холодильник на солнечных батареях стоит почти как классическая модель для большой кухни – около 40 000 рублей 

Среди продукции GoSun есть еще одно не требующее подключения к электросети устройство – раскладной стол со встроенной солнечной батареей. С его помощью можно заряжать другую технику, начиная от телефона или ноутбука и заканчивая холодильником того же бренда. Лучше всего устройство подойдет для пикника, но пригодится и для дачи, и для загородного дома.

Принцип действия гравитационного устройства

В процессе вращения двигатель будет подвержен силам трения, сопротивлению воздуха и влиянию других факторов. В качестве примера рассматривается конструкция, состоящая из герметичных S-образных элементов. Каждый из них наполняется водой и воздухом в пропорции 1:1. При каждом цикле вращения данной конструкции, из гравитационного поля будут поступать небольшое количество энергии.

Если суммарное количество энергии, поступившее от каждого элемента за весь цикл, превысит затраты двигателя на преодоление трения и других факторов, то устройством постепенно начнут набираться обороты. Это будет происходить до тех пор, пока под действием центробежных сил не перестанут проявляться гравитационные эффекты. Таким образом, гравитационный двигатель изначально требует хорошей раскрутки, как и другие движущие устройства. Типичным примером служит автомобильный двигатель внутреннего сгорания, который заводился разными способами: вначале – специальной рукояткой, а в современных условиях – стартером. В данном случае от количества S-образных элементов зависит мощность гравитационного двигателя.

Работа водяного двигателя происходит по определенной схеме. Вначале его нужно хорошо раскрутить в направлении часовой стрелки. После этого участок с водой будет находиться в горизонтальном положении, а вода перетечет из одного колена в другое. Участок, освобожденный от воды, начнет ускоренное вращение.

Описание мотора

Платформа вечного двигателя сделана из 5 магнитов. Четыре магнита в основе отвечают за взлёт, они работают (отталкиваются) с магнитами, которые находятся на валу двигателя. Пятый магнитик делает магнитное поле для ротора. Так же точно должна быть специальная боковая панелька, в которую будет входить ось двигателя.

Мотор создаётся из четырёхстороннего (специального сечения) ротора, наложенного на вал. На блоке ротора есть 4 специальные батареи; по одной батарее на каждую из 4 сторонок и 2 комплекта обмоток.

Как же мотор работает? Ротор поднимается на силах отталкивания между магнитами вала и основы.

Когда свет спадает на одну из солнечных панелей, она создаёт электрический ток, который идёт по одной части ротора. Этот ток создаёт магнитное поле, которое работает с полем магнита под нашим ротором. Это взаимодействие вводит ротор в рабочее состояние. При вращении ротора новая её батарея переходит к свету и возбуждает ток во второй обмотке. Процесс повторяется до того момента, пока на батарею попадают солнечные лучи.

Создаём парящий настольный двигатель Мендосино своими руками. Двигатель сделан из крутящегося вала, который держится на магнитах, закреплённых друг напротив друга. За питание отвечают солнечные панели (поставленные на вращающейся оси), что создаёт ток, который идёт через катушки ротора.

Помните, что этот двигатель средней мощности. Вы не сможете применить его в электромобиле. По сути, это смешная научная игрушка, которая наглядно показывает принципы работы всех электродвигателей.

Собираем мотор Мендосино своими руками: детальное рассмотрение конструкции

Секрет американского изобретателя открыл возможность тысячам домашних умельцев сконструировать аналогичное устройство у себя дома, чтобы впечатлить родных и удивить любителей загадок природы. Однако прежде чем приниматься за работу, стоит рассмотреть устройство в деталях

На счету здесь каждый сантиметр – важно, чтобы все элементы находились на своем месте и взаимодействовали строго в рамках физических законов

Ротор движка Мендосино имеет квадратное сечение и располагается в устройстве горизонтально. Такое решение позволяет расположить на его поверхности солнечные панели. На концах вала ротора закреплены постоянные кольцевые магниты. Благодаря созданному ими магнитному полю ротор запускается в движение, которое неспособна остановить даже сила взаимного трения металлических элементов.

Чтобы удержать ротор в подвешенном состоянии, магнитные кольца валов располагаются прямо над магнитными подставками. Еще один магнит под ротором необходим для создания магнитного поля статора, которое дает «старт» вращению ротора.

При попадании солнечного света на одну из солнечных панелей генерируется электрический ток. Он направляется на обмотку ротора, которая находится у магнита прямо под осью. Создается магнитное поле соответствующего полюса ротора, и последний начинает вращение, отталкиваясь от магнитного поля статора. Солнечный свет поочередно попадает на каждую из солнечных батарей по четырем сторонам оси, запуская аналогичный процесс в отношении каждой из обмоток катушек. Это обеспечивает постоянное вращение ротора в его «подвешенном» состоянии. Устройство будет исправно работать при наличии интенсивного или среднего светового потока.

И последний секрет, о котором нужно знать перед началом изготовления и сборки мендосинского мотора по схеме. Постоянные магниты в подвеске ротора – обязательный элемент конструкции, благодаря которому удается преодолеть возникающую силу трения. В противном случае мощности движка окажется недостаточно, и вращение прекратится уже после первых оборотов.

Гонки на солнцемобилях

Появление различных моделей солнечных автомобилей, выпускаемых крупными автопроизводителями и производимые индивидуальными изобретателями, привело к тому, что появился новый вид спорта – брейнспорт или гонки на солнцемобилях.

Данные соревнования проводятся в разных странах, но наиболее известные проходят в Австралии между городами Дарвин и Аделаида. Протяженность участка 3000,0 км.

Участие в подобных соревнованиях позволяет автомобильным компаниям тестировать свои новые технические разработки в экстремальных условиях, что в свою очередь служит развитием солнечного автомобиле строения.

Мендосинский мотор своими руками: изготовление во всех подробностях

Последовательность работы выглядит следующим образом:

  • В качестве вала выбран деревянный штырь около 25 см длиной. На его концах необходимо закрепить кольцевые магниты RX088.
  • Рассчитывается интервал между центрами пар рабочих магнитов. Слишком большое расстояние не удержит движок на весу, тогда как маленький промежуток приведет к нестабильности положения основного плавающего магнита. Для конструкции в рамках указанных выше параметров магниты стоит расположить на расстоянии около 75 мм между центральными точками.
  • Чтобы вал не задирался вверх во время движения под действием силы вращения, дальнюю пару магнитов следует установить чуть дальше от стены относительно магнита на валу. На этом этапе сборки можно поэкспериментировать, чтобы найти оптимальную точку фиксации.
  • Чтобы обеспечить стабильность вращающихся магнитов, параллельно оси укладывают два магнитных диска. Взаимодействие их магнитных полей обеспечит устойчивое положение вращающегося элемента.
  • Из шпона изготавливается конструкция ротора. Отдельные элементы склеиваются с помощью термоклея.
  • После того как детали подсохнут, можно приступать к намотке катушек. Десять витков делают на одной стороне вала, затем десять витков — на противоположной. Аналогичным образом наматывают витки на каждой из двух оставшихся поверхностей. Число витков в каждой катушке должно составлять около 1000. После намотки провода каждой катушки помечают, чтобы отследить направление намотки.
  • Теперь необходимо подключить солнечные панели – по одной на каждую катушку.

Собранный своими руками двигатель Мендосино можно использовать как наглядную модель для демонстрации принципа действия любого мотора. Остается только выбрать для него подходящее место с учетом качества естественного освещения.

Источник

Обзор солнцемобилей

Stella

Автомобиль был разработан в 2013 году командой студентов из Технологического университета Эйндховена (Голландия). Он был представлен как авто семейного типа, работающий исключительно за счет солнечного излучения. Суммарная площадь батарей, которые вырабатывают энергию для передвижения транспортного средства – 5,8 кв. м, скорость – до 125 км/час. При полном заряде аккумуляторной батареи машина проедет до 1000 км.

Основной материал корпуса – углеродистое волокно и алюминий, благодаря этому автомобиль получился легким и аэродинамичным. Вес без пассажиров – 375 кг. Транспортное средство оснащено инновационными устройствами, в том числе и необычной навигационной системой. Она следит за изменениями погодных условий и автоматически выбирает тот маршрут движения, по которому получит максимальное количество солнечного света. Фото автомобиля на солнечных батареях вы увидите далее.

Trev

Это транспортное средство было разработано австралийскими учеными в качестве пробного образца. Разработчики уверены в том, что в скором времени автомобиль Trev станет популярным средством передвижения. Изобретение проходит стадию регистрации, когда будут получены все необходимые документы – машины поступят в продажу.

Характеристики авто на солнечных батареях Trev:

  • масса – 270 кг;
  • время разгона до 100 км/час – 10 секунд;
  • масса батареи – 44 кг;
  • расстояние, которое машина проедет без подзарядки – 150 км;
  • количество сидений – 2;
  • бесшумный ход;
  • есть большое багажное отделение.

Конструкция автомобиля обеспечивает пассажирам комфорт и безопасность. Источником энергии может быть как солнце, так и ветер.

Solar World Gt

Машина на солнечных батареях была создана в 2011 году разработчиками из Бохумского университета (Германия). По внешнему виду она напоминает легковое купе, в котором с комфортом смогут разместиться два человека и багаж. На крыше и бампере электромобиля расположены высокопроизводительные солнечные элементы, а во внутреннем отделении – аккумуляторы для накопления электричества. Скорость, которую способно развивать транспортное средство, – до 100 км/час.

В 2011 году работающая на солнечной энергии машина участвовала в ежегодной гонке World Solar Challenge в Австралии, но не выиграла ее. Зато она стала победителем в номинации «Лучший дизайн». После завершения гонки автомобиль отправился в кругосветное путешествие, за год он преодолел более 30 тыс. км.

Sono Sion

Это первый автомобиль на солнечных батареях, который будет запущен в серийное производство. Разработчики обещают сделать это в 2019 году. Созданием транспортного средства в течение трех лет занималась группа инженеров из Мюнхена.

На кузове электромобиля размещено 330 фотоэлементов. От неблагоприятных условий окружающей среды и механического воздействия они защищены поликарбонатным покрытием. Солнечные батареи способны обеспечить машине запас хода в 30 км. Время заряда встроенных аккумуляторов от солнечных панелей – 8 часов, от розетки – 1 час. Ожидаемая стоимость транспортного средства – 16 тыс. евро, батареи будут продаваться отдельно.

Venturi Astrolab

Гоночный автомобиль на солнечной батарее был разработан французской компанией Venturi, его стоимость составляет 90 тыс. евро. Транспортное средство обладает рядом характеристик, которые делают его подходящим вариантом для повседневной езды:

  • асинхронный двигатель с воздушным охлаждением;
  • аккумуляторные батареи 7 кВт/час;
  • источник питания – фотогальванические элементы мощностью 600 Вт;
  • автономный ход при полном заряде – 110 км;
  • скорость – до 100 км/час;
  • вес устройства – 300 кг;
  • корпус изготовлен из легких композитных материалов.

Асинхронный линейный двигатель[ | ]

Представление об устройстве линейного асинхронного двигателя можно получить, если мысленно разрезать статор и ротор с обмотками обычного асинхронного двигателя вдоль оси по образующей и развернуть в плоскость. Образовавшаяся плоская конструкция представляет собой принципиальную схему линейного двигателя. Если теперь обмотки статора такого двигателя подключить к сети трёхфазного переменного тока, то образуется магнитное поле, ось которого будет перемещаться вдоль воздушного зазора со скоростью V, пропорциональной частоте питающего напряжения f и длине полюсного деления t: V = 2пf . Это перемещающееся вдоль зазора магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС, под действием которой по обмотке начнут протекать токи. Взаимодействие токов с магнитным полем приведёт к появлению силы, действующей, по правилу Ленца, в направлении перемещения магнитного поля. Ротор — в дальнейшем будем называть его уже вторичным элементом — под действием этой силы начнёт двигаться. Как и в обычном асинхронном двигателе, перемещение элемента происходит с некоторым скольжением относительно поля S = (V — v)/V, где v — скорость движения элемента. Номинальное скольжение линейного двигателя равно 2-6%. Вторичный элемент линейного двигателя не всегда снабжается обмоткой. Одно из достоинств линейного асинхронного двигателя заключается в том, что в качестве вторичного элемента может использоваться обычный металлический лист. Вторичный элемент при этом может располагаться также между двумя статорами, или между статором и ферромагнитным сердечником. Вторичный элемент выполняется из меди, алюминия или стали, причём использование немагнитного вторичного элемента предполагает применение конструктивных схем с замыканием магнитного потока через ферромагнитные элементы. Принцип действия линейных двигателей со вторичным элементом в виде полосы повторяет работу обычного асинхронного двигателя с массивным ферромагнитным или полым немагнитным ротором. Обмотки статора линейных двигателей имеют те же схемы соединения, что и обычные асинхронные двигатели, и подключаются обычно к сети трёхфазного переменного тока. Линейные двигатели очень часто работают в так называемом обращённом режиме

движения, когда вторичный элемент неподвижен, а передвигается статор. Такой линейный двигатель, получивший название двигателя с подвижным статором, находит, в частности, широкое применение на электрическом транспорте. Например, статор неподвижно закреплён под полом вагона, а вторичный элемент представляет собой металлическую полосу между рельс, а иногда вторичным элементом служат сами рельсы. Одной из разновидностей линейных асинхронных двигателей являются трубчатый (коаксиальный) двигатель. Статор такого двигателя имеет вид трубы, внутри которой располагаются перемежающиеся между собой плоские дисковые катушки (обмотки статора) и металлические шайбы, являющиеся частью магнитопровода. Катушки двигателя соединяются группами и образуют обмотки отдельных фаз двигателя. Внутри статора помещается вторичный элемент также трубчатой формы, выполненный из ферромагнитного материала. При подключении к сети обмоток статора вдоль его внутренней поверхности образуется бегущее магнитное поле, которое индуцирует в теле вторичного элемента токи, направленные по его окружности. Взаимодействие этих токов с магнитным полем двигателя создаёт на вторичном элементе силу, действующую вдоль трубы, которая и вызывает (при закреплённом статоре) движение вторичного элемента в этом направлении. Трубчатая конструкция линейных двигателей характеризуется аксиальным направлением магнитного потока во вторичном элементе в отличие от плоского линейного двигателя, в котором магнитный поток имеет радиальное направление.

Как повысить эффективность гравитационного устройства

Повысить эффективность гравитационного двигателя возможно с помощью изменения всей конструкции. То есть, вместо колеса, за основу можно взять, например, маятник. Для этого понадобится бачок, наполненный водой. Большое значение имеет правильный выбор параметров: размер емкости, плотность поплавка и жидкости в бачке, вес груза, а также обе высоты, обозначенные на рисунке.

Правильно выполненная конструкция будет работать до полного износа всех деталей и успешно выполнять свое предназначение в различных устройствах. Для повышения эффективности такого маятника рекомендуется несколько изменить его конструкцию. В процессе колебаний она будет вести себя по-другому.

В качестве груза используется цилиндр, разделенный на отсеки. В первом отсеке находится жидкость или ртуть, а также поплавок, наполненный воздухом. Другой отсек наполнен воздухом и содержит груз с жидкостью или ртутью. Этот груз соединяется с поплавком с помощью штока, в связи с этим, перемещение одного из них оказывает влияние на перемещение другого. То есть, груз и поплавок взаимно связаны между собой.

Жидкость, вытесненная поплавком, должна иметь вес, превышающий массу груза в воздушном отсеке. Размер поплавка выбирается таким образом, чтобы он не шатался внутри отсека с жидкостью. Это предотвратит поломку тока и уменьшит сопротивление.

Двигатель Минато

Еще одним ярким примером использования энергии магнетизма для самовозбуждения и автономной работы является сегодня уже серийный образец, разработанный более тридцати лет назад японцем Кохеи Минато. Его отличают бесшумность и высокая эффективность. По собственным заявлениям Минато, самовращающийся магнитный двигатель подобной конструкции имеет КПД выше 300%.

Двигатель Минато

Ротор имеет форму диска или колеса, на котором под определенным углом располагаются магниты. Когда к ним подводится статор с большим магнитом, возникает момент и колесо Минато начинает вращаться, используя попеременное сближение и отталкивание полюсов. Чем ближе статор к ротору, тем выше момент и скорость вращения. Питание осуществляется через цепь реле прерывателя.

Для предотвращения импульсов и биения при вращении колеса Минато, используют реле стабилизаторы и сводят к минимуму потребление тока управляющего эл. магнита. Недостатком можно считать отсутствие данных по нагрузочным характеристикам, тяге, используемых реле цепи управления, а также необходимость периодического намагничивания, о которой, кстати, тоже от Минато информации нет.

Может быть собран, как и остальные прототипы, экспериментально, из подручных средств, например, деталей конструктора, реле, эл. магнитов и т. п.

Магнитный мотор Говарда Джонсона

Магнитный мотор Говарда Джонсона

В своей работе и следующем за ней патенте на изобретение, Говард Джонсон использовал энергию, генерируемую потоком непарных электронов, присутствующих в магнитах для организации цепи питания мотора. Статор Джонсона представляет собой совокупность множества магнитов, дорожка расположения и движения которых будет зависеть от конструктивной компоновки агрегата Говарда Джонсона (линейной или роторной). Они закрепляются на специальной пластине с высокой степенью магнитной проницаемости. Одноименные полюса статорных магнитов направляются в сторону ротора. Это обеспечивает поочередное притяжение и отталкивание полюсов, а вместе с ними, момент и физическое смещение элементов статора и ротора относительно друг друга.

Организованный Говардом Джонсоном расчет воздушного зазора между ними позволяет корректировать магнитную концентрацию и силу взаимодействия в большую или меньшую сторону.

Левитирующий двигатель, описание для желающих повторить

Шаг первый: материалы и инструменты для создания вечного двигателя.

Для создания ротора нам потребуются следующие изделия:

  • штырь из дерева с диаметром тринадцать мм;
  • шпон;
  • специальный клей;
  • специальная проволока для обмотки с диаметром 0,28 мм;
  • четыре специальные панели «SZGD5433» (3.0V 45mA);
  • два магнитика в виде кольца «RX088».

Для основания:

  • доски и рейки;
  • маленький кусок алюминия для создания стены;
  • магниты 12 штук «RX033CS-N».

Шаг второй: разложим наши магниты на валу. За основание возьмём деревянный штырь диаметром тринадцать мм и длиной двадцать пять см.

Закрепим магниты в виде кольца RX088 на валу.

Шаг третий.

Нужно узнать интервал между двумя главными парами магнитов.

Если магнитики будут близко находиться друг к другу, «магнит, который плавает» будет находиться над ними в неустойчивом положении. Если они будут очень далеки друг от друга – магнит просто не будет удерживаться в воздухе. После определения расстояния (76 мм между центральными частями магнитов) установим дальнюю парочку магнитов основы дальше от стены (сравнивая с магнитиком на валу). Это создаст устойчивость, так как вал имеет свойство «задираться вверх».

Шаг четвёртый: теория ненастоящей левитации.

Теорема Ирншоу рассказывает о том, что отталкивающиеся магнитики редко имеют стабильность. Нужна вспомогательная сила, которая будет заставлять магниты парить в воздухе.

Ненастоящая левитация всегда ограничивает движение изделий, применяя определённую привязку или специальный ограничитель.

Если поставить параллельно оси два магнитных диска, то между ними будет карман стабильности.

Два набора магнитов будут заставлять вал парить. Поэтому он будет стабильным только в одной части – в точке контакта со стенкой.

Шаг пятый: обмотка медным проводком. Делаем ротор из шпона, присоединяя части нашим клеем. Начинаем наматывать наш проводок вокруг ротора. Создаём 10 витков, держа провод на одной части вала, а потом ещё 10 в другую от вала сторону. Наматывая проводок, советуем вести счёт виткам. Повторим те же действия, на другой сторонке, пересекая первичную обмотку. Для поделки возьмём 0,28 мм экранированный проводок и намотаем где-то тысячу витков в каждой катушке.

Шаг шестой: подключим специальные панели. Как только обмотка закончена, отмечаем провода, чтобы можно было выследить направление катушечки и знать где какой проводок. Нам будет нужна лента, чтобы предотвратить обрывы соединений во время нашей сборки. Скрепим панели.

Добавим в двигатель ещё один набор панелей и катушечку таким же образом.

Шаг седьмой. Созданный ротор получился очень тяжёлым, поэтому пришлось применять сборки из 3 изделий RX033CS-N, что находились в 4 точках основания.

Первая иллюстрация

Когда мне что-то неясно, я рисую картинку. Для простоты она будет в двумерном пространстве. Давайте представим четыре закреплённых единичных заряда по углам квадрата и свободный заряд в центре квадрата. Примерно так:

Неужели свободный заряд не находится в состоянии устойчивого равновесиия? Ведь куда бы он ни двинулся, он приближается к одному из фиксированных зарядов, увеличивая силу отталкивания! Давайте попробуем нарисовать карту потенциальной энергии свободного заряда. Я в школе учился плохо, физику прогуливал, поэтому будем черпать знания из википедии. Итак, если мы имеем в пространстве только один закреплённый заряд, то он создаёт во всём пространстве электростатический потенциал.

Во всех умозрительных опытах все коэффициенты у меня равны либо нулю, либо единице. Поэтому заряд q единичный, неясный k тоже единица. То есть, один закреплённый заряд создаёт потенциал, измеряемый по формуле 1/r, где r — это расстояние до заряда.

Потенциальная энергия свободного единичного заряда в поле нашего закреплённого заряда также равна 1/r. (Вообще говоря, энергия равна k*q1*q2/r, но коэффициенты выбираем так, чтобы было удобно считать). Для нескольких зарядов все потенциалы просто складываются. Давайте рисовать карту потенциальной энергии нашего свободного заряда, я это делаю при помощи sage:

Вот карта, я выколол точки, где потенциальная энергия уходит в бесконечность:

По центру квадрата чётко виден локальный минимум энергии. Куда бы ни двинулась частица из центра, энергия будет увеличиваться, поэтому от небольших возмущений она явно захочет вернуться назад в центр, это точка устойчивого равновесия. Неужели Ирншоу соврал? Нет, он не соврал. Проблема в том, что я плохо нарисовал картинку. И многие ошибаются ровно так же, как и я. Остановитесь сейчас, подумайте, где я ошибся?

В данном случае ошибка в том, что в двумерном пространстве закреплённый заряд создаёт потенциал, измеряемый по формуле -ln r, где r — это расстояние до заряда, а вовсе не 1/r. Давайте на некоторое время вы мне поверите на слово и разрешите неясным образом изменить кулоновскую формулу, тогда корректный код будет выглядеть вот так:

Вот картинка с картой потенциальной энергии:

Обратите внимание, что локальных минимумов на карте нет. Центр квадрата — седловая точка, то есть, точка неустойчивого равновесия

Как только свободный заряд сдвинется хоть на микрон от центра квадрата, он обязательно скатится и вылетит из квадрата, ускоряясь и ускоряясь.

7 Replies to “Делаем парящий двигатель Мендосино своими руками”

прокомментирую своё мнение по вышеперечисленному. Мендосинский мотор по соотношению видимая простота/точный подход ко всему можно сравнить с космической ракетой. На вид всё просто, но суть таится в каждой мелочи.1. как и в ракете, сначала надо было продумать как сделать ротор мотора максимально лёгким, а не брать всё, что есть под руками. 2. Положение роторного магнита со свободной стороны оси показано не правильно — роторный магнит должен быть немного правее опорного (как и у упора), иначе будет как лебедь, рак и щука — правая пара выталкивается вправо, а левая — влево. Они должны выталкивать ось в одну сторону, т.е. — вправо, в упор. 3. Выбирать кольцевые магниты в качестве опорных тоже сомнительно — отверстие в центре им ни к чему, разве только в качестве крепления. Дисковый магнит с такими же размерами будет сильнее кольцевого. 4. Конечно в статье ошибка — провод должен быть в эмалевой изоляции типа ПЭВ, ПЭТВ, ПЭЛ, а не экранированный. 5. 1000 витков провода, да ещё и 0,28 считаю перебором. Всё должно быть оптимальным — достаточно 100 — 200 витков. Учитывая напряжение элементов — это около 200 витков и проводом максимум 0,2, а то и меньше. всё это делает конструкцию тяжелее и неповоротливее. По солнечным элементам: лучше брать кристаллы с меньшим напряжением (0,5 вольта), но с большим током — эффективность элемента значительно выше, т.к. это будет монокристалл на всю площадь, а не спайка нескольких и витков, согласно закона Ома надо меньше, 150 — предел. 6. Магнитные пары опора/ось надо будет подобрать оптимально (количество в опоре и на оси). Если сила отталкивания будет малой, то ротор при работе может цеплять за основание (центральный магнит). Если сила будет превышена, ротор может выбросить из магнитного поля опорных магнитов при малейшем толчке. 7

Обратите внимание на самые дешёвые модели Мендосино на китайских сайтах — там не даром написано, что это «Солнечный» мотор, некоторые честно пишут, что от люминесцентных ламп мотор не работает. А всё потому, что это самая дешёвая модель — солнечный элемент самый маленький, магнитов на оси мало — он не сможет развить мощность достаточную для старта от слабого освещения, моделька миниатюрная, цена того и стоит

8. Серьёзно надо отнестись к конечному действию — балансировке ротора. Ротор в затенённом помещении должен занимать произвольное положение, а не поворачиваться всегда одним боком. Если всё это соблюдено, мотор должен запускаться от света пламени свечи или фонарика мобильника как в ролике https://vk.com/public78793337?z=video-78793337_456239030%2Fe5c7f68ee53714b330%2Fpl_wall_-78793337

единственный нормальный комментарий)))

подскажите пожалуйста , по магнитам . По той маркировке, которая прописана у вас выше ничего подобрать не могу , есть какие то другие характеристики и габаритные размеры

Скажите пожалуйста , по марке магнитов которую вы указываете ничего не могу подобрать , может пропишите их габариты и характеристики

«Для поделки выберем 0,28 мм экранированный провод» какой это провод, укажи марку.

не «эканированный», а «эмалированный»

Техника для освещения и украшения ландшафта

Светильник на солнечных батареях – отличный выбор для любого частного жилья. И хотя покупка таких источников света, скорее всего, обойдется дороже обычных фонарей, все это окупится не только за счет экономии электроэнергии, но и благодаря отсутствию проводов.

Газонные светильники на солнечных батареях

В списке светильников с солнечными батареями, подходящих для размещения на участке, можно встретить разные модели:

  • Устанавливаемые на столбах фонари, предназначенные для освещения газонов и дорожек – такие как модель Oasis Light P9011-1003 –SP с поворотным модулем.
  • Подвесные и настенные источники света типа Smart Home MFYH54B. Применяются обычно в качестве декоративного освещения.
  • Компактные газонные модели, лампа у которых находится на небольшом расстоянии от земли (в основном светодиодные, как TDM ЕLECTRIC СС-298). Иногда даже не требуют специальной установки, а просто втыкаются в грунт.
  • Встроенные источники света, с помощью которых могут освещаться дорожки, площадки и даже ступени. Одна из таких моделей – НайтЛайт-8, комплект из 4 «накладок» для садовой лестницы, позволяющих не споткнуться в темноте.
  • Светильники-гирлянды. Техника, к которой относится и модель Uniel USL-S-122/PT5000 Milkyway, позволяет украсить деревья, кустарники, веранды или беседки.

Плавающий фонарь Bestway 58111 на солнечной батарее 

Для украшения сада или приусадебного участка можно использовать декоративные светильники, изображающие сказочных персонажей, людей или животных. Также в продаже можно найти «солнечные» лампы, имитирующие камни. А при наличии бассейна или пруда их могут освещать плавающие фонари, такие как модель Bestway 58111.

МОТОР МЕНДОСИНО Своими руками Очень Просто и Забавно

Знаменитый Мотор Мендосино обычно располагают осью параллельно земному горизонту и подвешивают в магнитном поле для уменьшения трения.

В классической версии используется 3 — 4 солнечных панели и множество магнитов для создания магнитного подвеса. Увы, без одной точки опры такие конструкции все равно обойтись не могут и одна точка оси вращения обязательно упирается в стопор из прозрачной пластины.

Вы можете самостоятельно собрать такую конструкцию гораздо проще, используя мой совет в картинках (видео).

Избавившись от излишков, я оставил всего две солнечные панельки с катушками из медного провода, а весь магнитный подвес заменил старой шариковой ручкой и полоской жести (можно что угодно) согнутой уголком. Суть процесса при этом нисколько не изменилась — Солнышко или лампа освещая одну из панелей питает электротоком катушку и включает электромагнит который старается повернуться в магнитном поле и вращает конструкцию. После поворота, под освещение попадает другая панель и процесс повторяется — Мотор Крутится.

https://youtube.com/watch?v=xYTtxnr-4-A

Вы сами можете убедиться на сколько это просто и собрать подобную установку у себя на кухонном столе или подоконнике.

Совет: Если панельки слабы, то можно использовать магнит для разгона вращения Двигателя, поставив его рядом с мотором.