Маркировка smd конденсаторов (керамических, электролитических, танталовых)

Содержание

Емкость конденсатора

Электрические заряды

Как вы знаете, существует два типа зарядов: положительный заряд и отрицательный заряд. Ну и все как обычно, одноименные заряды отталкивается, а разноименные  – притягиваются. Физика седьмой класс).

Давайте еще раз рассмотрим простую модель конденсатора.

Если мы соединим наш конденсатор с каким-нибудь источником питания постоянного тока, то мы его зарядим. В этот момент положительные заряды, которые идут от плюса источника питания, осядут на одной пластине, а отрицательные заряды с минуса источника питания – на другой.

Самое интересное то, что количество положительных зарядов будет равняться количеству отрицательных зарядов.

Даже если мы отсоединим источник питания постоянного тока, то у нас конденсатор так и останется заряженным.

Почему так происходит?

Во-первых, заряду некуда течь. Хотя с течением времени он все равно будет разряжаться. Это  зависит от материала диэлектрика.

Во-вторых, происходит взаимодействие зарядов. Положительные заряды притягиваются к отрицательным, но они не могут соединиться с друг другом, так как им мешает диэлектрик, который, как вы знаете, не пропускает электрический ток. В это время между обкладками конденсатора возникает электрическое поле, которое как раз и запасает энергию конденсатора.

Когда конденсатор заряжается, электрическое поле между обкладками становится сильнее. Соответственно, когда конденсатор разряжается, электрическое поле слабеет. Но как много заряда мы можем “впихнуть” в конденсатор? Вот здесь и применяется такое понятие, как емкость конденсатора.

Что такое емкость

Емкость конденсатора – это его способность накапливать заряд на своих пластинах в виде электрического поля.

Но ведь емкость может быть не только у конденсатора. Например, емкость бутылки 1 литр, или емкость бензобака – 100 литров и так далее. Мы ведь не можем впихнуть в бутылку емкость в 1 литр больше, чем рассчитана эта бутылка, так ведь? Иначе остатки жидкости просто не влезут в бутылку и будут выливаться из нее. Точно такие же дела и обстоят с конденсатором. Мы не сможем впихнуть в него заряда больше, если он не рассчитан на это. Поэтому, емкость конденсатора выражается формулой:

где

С – это емкость, Фарад

Q – количество заряда на одной из обкладок конденсатора, Кулоны

U – напряжение между пластинами, Вольты

Получается, 1 Фарад – это когда на обкладках конденсатора хранится заряд в 1 Кулон и напряжение между пластинами 1 Вольт. Емкость может принимать только положительные значения.

Значение в 1 Фарад – это слишком много. На практике в основном пользуются значениями микрофарады, нанофарады и пикофарады. Хочу вам напомнить, что приставка “микро” – это 10-6 , “нано” – это 10-9 , пико – это 10-12 .

Маркировка конденсаторов импортного производства

На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.

Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.

Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.

Цветовая маркировка импортных конденсаторов

Обозначение наименований на таком предмете, как конденсатор, имеет такой же принцип производства, что и на резисторах. Первые полосы на двух рядах обозначают емкость данного устройства в тех же измерительных единицах. Третья полоса имеет обозначение о количестве непосредственных нулей. Но при этом полностью отсутствуют синий окрас, вместо него применяют голубой.

Важно знать, что если цвета идут одинаковые подряд, то между ними целесообразно осуществить промежутки, чтобы было четко понятно. Ведь в другом случае эти полосы будут сливаться в одну

Случай с УКВ радиоприемником

Недавно у меня произошел очередной отказ, виновником которого стал старый танталовый конденсатор. Я купил ста­рый советский УКВ-радиоприемник для радиоразведки Р313М2, который давно напрашивался в мою коллекцию. Про­дав­ца я знаю не первый год, человек порядочный, никогда меня не обманывал и не подводил. Приемник анон­си­ро­вал­ся как ра­бо­чий. И вот приношу я сей аппарат домой, включаю, и тишина… Никакой реакции на органы управления.

У меня за годы работы с техникой выработалось правило — там, где это возможно всегда использовать ограничение то­ка или защиту по току, поэтому перед первым выключением на внешнем блоке питания я выставил предел в 2А. В при­ем­ни­ке на входе стоит ком­пен­са­ци­он­ный стабилизатор напряжения на 10V с проходным транзистором П210 ус­та­нов­лен­ным на лицевой панели приемника. Этот стабилизатор питает двухтактный преобразователь для по­лу­че­ния не­об­хо­ди­мых на­пря­же­ний питания всех узлов приемника. Я подумал, что не хватает тока для запуска пре­об­ра­зо­ва­те­ля, и увеличил ток защиты до 5 Ампер. Больший ток мой блок питания выдать не может. Результат тот же. Тогда я по­нял, что есть неисправность в блоке питания приемника.

Фрагмент схемы питания УКВ-радиоприемника Р313М2 для радиоразведки

Блок питания конструктивно установлен в приемнике на разъеме и легко извлекается. Отрадно, что старичок П210А (ПП34) выдержал пятиамперные издевательства с моей стороны и даже не нагрелся. После недолгих манипуляций с тестером, была найдена точка короткого замыкания и, как оказалось, виновником оказался конденсатор С206 (указан на схеме красной стрелкой). Это был электролитический конденсатор типа ЭТО-2 на 400 мкФ 15В. И стоит он как раз в цепи фильтрации напряжения, питающего импульсный двухтактный преобразователь. Добраться к нему было совсем непросто.

Электролитический конденсатор емкостью 400,0 мкФ на 15В серии ЭТО-2

Вынимать конденсатор из платы было тоже нелегко, так как он был намертво приклеен к плате эпоксидной смолой

Я обратил внимание, что адгезия (сила сцепления) краски конденсатора со смолой была выше, чем с кор­пу­сом са­мо­го кон­ден­са­то­ра

И еще было видно, что из конденсатора вытек электролит и запачкал весь отсек.

Это фото сделано уже после того, как отсек был очищен от загрязнения. При измерении сопротивления конденсатора я увидел следующее.

Комментарии, как говорится, излишни. Пробит наглухо.

Конденсаторов ЭТО-2 у меня уже давно нет, было решено поставить связку из трех более современных, и, со­от­вет­ст­вен­но, более свежих «танталов» К52-1 на 100,0 мкФ х 35В. В сумме получилось 300,0 мкФ, но в данном случае это до­пус­ти­мо: у родного конденсатора был допуск ±20%. Современную маркировку всегда нужно ве­ри­фи­ци­ро­вать по при­бо­рам, что и было сделано на китайском тестере Т4.

Результаты измерений меня удовлетворили, показатель утечки в 0,4% очень хороший. Для сравнения, у подавляющего количества современных новых алюминиевых электролитов этот показатель колеблется от 1% до 2,5%. Конденсаторы были изготовлены в декабре 2006 года, значит прослужат еще лет десять, а там видно будет.

После окончательной сборки приемник ожил и устойчиво заработал на всех диапазонах. Вот так выглядит приемник во включенном состоянии.

Особенности проектирования плат и монтажа танталовых конденсаторов

Для этих устройств подходят практически все материалы печатных плат – FR4, FR5, G10, фторопласт, алюминий. Форма, размер посадочного места и способ монтажа указываются производителями деталей. Изменить рекомендуемые параметры монтажа может специалист, имеющий достаточно знаний и навыков, чтобы правильно скорректировать температуру пайки.

Перед монтажом на плату наносят паяльную пасту. Толщина слоя – 0,178+/-0,025 мм. Для того чтобы флюс, находящийся в пасте, эффективно растворил оксиды с мест контакта, подбирают оптимальный температурный режим пайки. Обычно это делают опытным путем.

Монтаж на плату осуществляется вручную или с помощью автоматизированного оборудования любого типа, применяемого сегодня. Пайка производится: вручную, волновым способом, в инфракрасных или конвекционных печах. Температурный режим предподогрева и пайки обычно предоставляют производители конкретной продукции.

SMD Разъемы

Многоконтактные разъемы:

  • CI11;
  • CA30 (Micro-Match);
  • CP35 (Micro-Fit);
  • FPC

USB C;

  • Micro USB;
  • mini USB;
  • SATA;
  • Разъемы питания

Аудио разъем 3.5 мм;

ВЧ разъем U.FL;

  • SMA разъем на плату;
  • ВЧ разъём MCX

Розетки RJ45;

  • RJ-45 вертикальная;
  • RJ-45 и RJ-46;
  • RJ-45 в «тело» платы;
  • RJ-45 с трансформатором

Держатели карт памяти:

  • Micro SD;
  • SD;
  • Compact Flash

Разъемы на панель

M12;

  • RJ-45;
  • Push-pull;
  • USB;
  • Сильноточные разъемы;
  • BNC RF;
  • Герметичные разъемы 9 и 12 контактов;
  • XLR

Тактовые генераторы кварцевые 0532 и 0705;

Кварцевые резонаторы 0532 и 0705;

Керамические резонаторы MURATA на 4 и 16 МГц;

Часовые кварцы и микро мощный генератор на 32 768 Гц;

Как проверить неполярный конденсатор мультиметром

Эксплуатация радиоэлектроники подразумевает и устранение неисправностей в оборудовании. Поэтому, рассматривая неполярные емкости, нельзя абстрагироваться от темы диагностики их работоспособности.

Как показывает практика, в большинстве случаев причиной выхода из строя емкости является пробой, что приводит к уменьшению сопротивления утечки. То есть, элемент становится, практически, проводником. Такую неисправность часто можно определить по внешнему виду емкости (см. рисунок 5), если это не помогло, потребуется простейший цифровой или аналоговый мультиметр.


Рисунок 5. «Выгоревшая» (пробитая) емкость

С помощью прибора следует замерить сопротивление утечки, в рабочих элементах оно должно быть бесконечно большим. Проверка выполняется следующим образом:

  • необходимо полностью демонтировать деталь, или отпаять один из ее выводов, чтобы исключить влияние других элементов цепи на показания мультиметра;
  • устанавливаем на приборе режим прозвонки или измерения сопротивления (выбираем максимальный предел);
  • подключаем щупы к выходным контактам (рисунок 6), при этом стараемся не прикасаться к ним, в противном случае прибор покажет сопротивление кожи;


Рисунок 6. Подключение емкости к измерительному прибору Проводим измерение, если емкость исправна на экране отобразится единица (рисунок 7), что свидетельствует о бесконечно большом сопротивлении между обкладками.


Рисунок 7. Прибор в режиме прозвонки показывает бесконечно большое сопротивление

К сожалению, данным способом можно только проверить емкость на пробой, для определения внутреннего обрыва такой метод не подходит. В этом случае отличить поломанную деталь от работоспособной, можно измерив ее емкость, некоторые модели мультиметров имеют такую функциональную возможность. Принцип проверки практически не отличается от тестирования на пробой, за исключением того, что прибор необходимо перевести в режим измерения емкости.

Типы маркировок

На данный момент производителями используется несколько типов, которые могут располагаться на корпусе как по отдельности, так и взаимозаменяемыми значениями. Все значения ниже будут исключительно теоретическими, предоставленными для наглядного примера.

Самый простой тип маркировки – никаких шифров и табличных замещений, емкость напрямую пишется на корпусе, что без лишних движений сразу предоставляет конечному пользователю реальные параметры. И такой способ использовался бы везде, если бы не его громоздкость – полностью написать емкость получится только на довольно больших изделиях, иначе рассмотреть надпись будет невозможно даже с помощью лупы. Например: запись 100 µF±6% означает, что данный конденсатор имеет емкость 100 микрофарад с амортизацией в 6% от общей емкости, что равно значению 94–106 микрофарад. Также допускается использование маркировки вида 100 µF +8%/-10%, что означает неравнозначную амортизацию, равную 90–108 микрофарад. Это самый простой и понятный способ, однако такая маркировка очень громоздкая, поэтому применяется на больших и очень емких конденсаторах.

Цифровая маркировка конденсаторов (а также численно-буквенная) используется в тех случаях, когда маленькая площадь изделия не позволяет поместить подробную запись о емкости. Поэтому определенные значения заменяются обычными цифрами и латинскими буквами, которые поочередно расшифровываются для получения полной информации.

Все очень просто – если используются только цифры (а на подобных изделиях их обычно три штуки), то расшифровывать нужно следующим образом:

  • первые две цифры обозначают первые две цифры емкости;
  • третья цифра обозначает количество нулей, которое необходимо дописать после первых двух цифр;
  • такие конденсаторы всегда измеряются в пикофарадах.

Возьмем для примера первый вариант с картинки выше с записью 104. Первые две цифры так и оставляем – 10. К ним приписываем количество нулей, обозначенных третьей цифрой, то есть 4. Получаем значение в 100 000 пикофарад. Возвращаемся к таблице в начале статьи, уменьшаем количество нулей и получаем приемлемое значение в 100 микрофарад.

Если используется одна или две цифры, они так и остаются. Например, обозначения 5 и 15 обозначают 5 и 15 пикофарад соответственно. Маркировка .55 равна 0.55 микрофарад.

Интересная запись выполняется с использованием букв либо вместо точки, либо как другой величины. Например, 8n2 обозначает 8.2 нанофарад, когда как n82 означает 0.82 нанофарад. Для определенного класса конденсаторов в конце может дописываться дополнительная кодовая маркировка, например, 100V.

Маркировка керамических конденсаторов численно-буквенным способом является стандартом для этих изделий. Здесь используются точно такие же алгоритмы шифрования, а сами надписи физически наносятся производителем на керамическую поверхность.

  • Устаревшим, однако все еще используемым вариантом, считается цветовая индикация. Она применялась в советском производстве для упрощения считывания маркировки даже на очень маленьких изделиях. Минус в том, что запомнить сходу такую таблицу достаточно проблематично, поэтому желательно иметь ее под рукой, по крайней мере, поначалу. Цвета наносятся на конденсаторы, где маркировка выполняется в виде монотонных полосок. Считываются следующим образом:
    • первые два цвета означают емкость в пикофарадах;
    • третий цвет показывает количество нулей, которые необходимо дописать;
    • четвертый и пятый цвета соответственно показывают возможный допуск и номинал подаваемого напряжения на изделие.
Цвет Значение
Черный
Коричневый 1
Красный 2
Оранжевый 3
Желтый 4
Зеленый 5
Голубой 6
Фиолетовый 7
Серый 8
Белый 9

Маркировка импортных конденсаторов выполняется аналогичными способами, только вместо кириллицы может использоваться латиница. Например, на отечественных вариантах может встречаться 5мк1, что означает 5.1 микрофарад. Тогда как на импортных это значение будет выглядеть как 5µ Если запись совершенно непонятна, то можно обратиться к официальному производителю за разъяснениями, скорее всего на сайте есть таблицы или программа, которые расшифровывают его маркировку. Однако это встречается только в исключительных случаях и редко попадается.

Конденсаторы из тантала

Выбор этого материала обоснован особенностями слоя оксида, который формируется на поверхности. Именно параметрами данного слоя определяется накопительная емкость конденсатора. В ходе специальной технологической обработки заготовки из тантала не слишком сложно контролировать толщину, проводимость, равномерность структуры, другие важнейшие характеристики рабочей зоны.

Конструкция

На рисунке отмечены основные компоненты типовой конструкции:

  1. компаунд, формирующий корпус;
  2. вывод (катод) для монтажа пайкой на печатной плате;
  3. адгезивный слой из серебра;
  4. комбинированное покрытие из серебра и графита;
  5. оксид (MnO2) с электролитическими характеристиками;
  6. анод из гранулированного тантала со слоем пентаоксида (Ta2O5);
  7. маркировочная линия;
  8. анодный вывод для пайки.

Следует отметить аморфность оксидного слоя, обеспечивающую увеличенное сопротивление в сравнении с кристаллическим аналогом. Серебро и графит применены для получения обратного эффекта – лучшей проводимости. При чрезмерном перегреве происходит пробой диэлектрика. Если размеры повреждений невелики, возможно самостоятельное восстановление. Эти особенности надо учитывать при выполнении монтажных операций и в процессе эксплуатации.

Прочная конструкция рассчитана на сохранение целостности при значительных механических нагрузках. С помощью точного воспроизведения технологических процессов производители поддерживают единство технических параметров каждой партии готовых изделий.

Рабочие характеристики (номиналы) показаны на примере типовой 293-й серии D

  • емкость, мкФ – от 0,1 до 1 000;
  • напряжение, В – от 4 до 75;
  • мощность рассеиваемая – от 0,075 до 0,165 Вт при 25°C.

Для более точного учета реактивных и активных составляющих пользуются классической эквивалентной схемой

Полное сопротивление (импеданс) зависит от частоты. По графику видно, как быстро уменьшается сопротивление в диапазоне 1-100 кГц.  Эквивалентное последовательное сопротивление обозначают стандартной аббревиатурой ESR.

Корпуса чип-компонентов

Корпуса для компонентов делают из различных типов материалов. В наибольшем ходу – корпуса в форме цилиндра из стекла и металла и прямоугольные коробки из керамики или пластика. Есть приборы относительно сложной конструкции, например, вертикальные розетки-коннекторы, ответственные за соединение с локальной сетью Ethernet.

Элементы монтажа можно квалифицировать по сочетанию двух параметров: габаритов и числа выводов. Наименьшее количество выводов (при их наличии), встречающееся у этих изделий, – 2. Иногда встречаются приборы с многочисленными выводами, даже более 8, это может сочетаться с очень мелким размером. Есть детали совсем без выводов, тогда припаивание осуществляется через контактные площади или специальные шарики. У разных отечественных и зарубежных производителей есть некоторые отличия в обозначениях маркировки и в размерах производимых изделий (к примеру, конденсаторы отличаются параметром высоты). Существует классификация корпусов, в которой каждому виду присваивается код из 3-5 латинских букв (например, SOT – маленький транзистор с тремя выводами).

Пробои танталовых конденсаторов

При использовании этих эффективных, но немного капризных устройств, необходимо контролировать появление состояния отказа, поскольку известны случаи их возгорания при отказе. Отказы связаны с тем, что при неправильной эксплуатации пентаоксид тантала меняет аморфную структуру на кристаллическую, то есть из диэлектрика он превращается в проводник. Смена структур может наступить из-за слишком высокого пускового тока. Пробой диэлектрика вызывает повышение токов утечки, которые в свою очередь приводят к пробою самого конденсатора.

Причиной неприятностей, связанных с эксплуатацией танталовых конденсаторов, может быть диоксид марганца. Кислород, который присутствует в этом соединении, вызывает появление локальных очагов возгорания. Пробои с возгоранием характерны для старых моделей. Новые технологии позволяют получать более надежную продукцию.

Пробои, которые произошли при высоких температурах и напряжении, могут вызывать эффект лавины. В этом случае повреждения часто распространяются на большую часть или всю площадь устройства. Если же площадь кристаллизованного пентаоксида тантала небольшая, то часто происходит эффект самовосстановления. Он возможен, благодаря преобразованиям, происходящим в электролите в случае пробоя диэлектрика. В результате всех превращений кристаллизованный участок-проводник оказывается окруженным оксидом марганца, который полностью нейтрализует его проводимость.

Таблицы цветовой маркировки конденсаторов

  • В данной статье речь пойдет об определении параметров конденсатора по таблицам цветовой маркировки конденсаторов.
  • Цветовая маркировка конденсаторов содержит сокращенное обозначение параметров конденсатора и может быть представлена в виде полос, колец или точек.
  • На конденсаторе маркируют такие параметры как:
  • номинальная емкость;
  • множитель;
  • допускаемое отклонение напряжения;
  • температурный коэффициент емкости (ТКЕ) и (или) номинальное напряжение.

Три метки информируют о допуске 20%. При этом возможно сочетание двух колец и точки, указывающий на множитель.

При пяти метках цвет корпуса указывает на значение рабочего напряжения.

Цветовая маркировка шестью метками применяется для прецизионных конденсаторов с малыми ТКЕ.

В зарубежных конденсаторов используется маркировка по допуску и температурному коэффициенту.

Обозначение группы ТКЕ приведено в соответствии со стандартом EIA, в скобках – IEC. В зависимости от технологий, которыми обладает фирма, диапазон температуры может быть другим. Например, фирма PHILIPS для группы Y5P нормирует -55…+125 С. Буквенный код указан в таблице соответствии с EIA.

  1. Рассмотрим на примере как использовать представленные таблицы цветовой маркировки для определения параметров конденсаторов.
  2. Пример
  3. Определим параметры конденсатора с шесть полосами: зеленый, коричневый, черный, красный, красный, желтый, используя таблицу «Цветовая маркировка конденсаторов (общая таблица)», номиналы элементов указаны в пФ – 10-12.

  • первая цифра (1 — элемент) – 5;
  • вторая цифра (2 — элемент) – 1;
  • третья цифра(3 — элемент) – 0;
  • множитель – 102;
  • допуск,% – 2;
  • группа ТКЕ – М220.

Соответственно получается: 510*10-12 * 102 = 51*10-9 Ф или 51 нФ±2%, М220.

Определим параметры для конденсатора с тремя полосами: коричневый, красный и желтый.

  • первая цифра (1 — элемент) – 1;
  • вторая цифра (2 — элемент) – 2;
  • множитель – 104;

Соответственно получается: 12*10-12 * 104 = 0,12*10-6 Ф или 0,12 мкФ.

Как мы видим ничего сложного в определении параметров конденсаторов нету, не много практики и вскоре Вам данные таблицы будут уже не нужны, уже на автомате будете определять номинальную емкость конденсатора.

Конденсаторы постоянной емкости

Конденсаторы постоянной емкости применяют в различных схемах для разделения переменной и постоянной составляющих тока и сглаживания пульсации напряжений выпрямителя. В сочетании с другими элементами схем конденсаторы образуют резонансные контуры, широко используемые в радиоаппаратуре. Конденсаторы постоянной емкости классифицируют по величине номинальной емкости, классу точности, номинальному рабочему напряжению, назначению, материалу диэлектрика и по конструктивным признакам.

Номинальные величины емкостей конденсаторов установлены ГОСТ 2519 — 60. При изготовлении конденсаторов действительное значение емкости отличается от номинального, обозначенного в маркировке. Допустимое отклонение емкости от номинального называется допуском. По этому принципу все конденсаторы разделяют на пять классов: 0, 1, II, III, IV, допуски их соответственно составляют ±2%; ±5%; ±10%; ±20% и от — 20 до + 50%.

В зависимости от назначения различают контурные, разделительные, блокировочные и фильтровые конденсаторы. По материалу диэлектрика конденсаторы делят на слюдяные, керамические, бумажные, металлобумажные, бумаго-масляные, пленочные, стеклоэмалевые, стеклокерамические, электролитические, воздушные, вакуумные, газонаполненные. По конструктивному признаку конденсаторы подразделяют на трубчатые, дисковые, бочоночные, горшковые, опрессованные и герметизированные, плоские и цилиндрические и т. д.

Независимо от вида конденсатор характеризуется рабочим напряжением. Рабочим напряжением называется напряжение, под которым обкладки конденсатора могут длительно находиться без пробоя разделяющего их диэлектрика. Рабочее напряжение выражают в вольтах. Большое значение для нормальной работы конденсатора имеет сопротивление его изоляции. При малом сопротивлении изоляции возникают утечки, нарушающие нормальную работу схемы. Потери в конденсаторе характеризуются тангенсом угла диэлектрических потерь, выражающим отношение мощности активных потерь к реактивной мощности конденсатора.

В маломощных конденсаторах потери энергии в основном вызываются проводимостью диэлектрика и диэлектрическим гистерезисом, т. е. потерями на поворот полярных молекул в направлении поля при приложении напряжения к обкладкам. Потери в обкладках и выводах малы, поэтому ими обычно пренебрегают. Одной из важнейших характеристик конденсатора является стабильность — неизменность величины емкости конденсатора во время работы. Изменение емкости может быть как временным, так и необратимым. Основным фактором, влияющим на стабильность емкости конденсатора, является воздействие температуры окружающей среды и нагрев конденсатора за счет рассеиваемой на нем мощности. При повышении температуры увеличиваются геометрические размеры материала, что и влечет за собой временное (до возвращения температуры к первоначальному значению) изменение емкости.

Примеры:

Подобрать необходимый конденсатор в каталоге Терраэлектроники можно двумя способами:

  1. использовать параметрический поиск в соответствующем разделе каталога, для чего необходимо зайти в раздел конденсаторов, выбрать соответствующий задаче тип конденсатора, а далее заполнить ряд фильтров с параметрами. Фрагмент скриншота поиска MLCC конденсатора с параметрами: номиналом 1 нФ, точностью 10 %, диэлектриком X7R, напряжением 250 В и корпусом 0805 представлен на Рис. 9.
  2. воспользоваться интеллектуальным поиском конденсатора по параметрам. Для этого достаточно скопировать строку из спецификации “Конденсатор 1 нФ, X7R, 10%, 250 В, 0805″ или ввести «1n X7R 10% 250V 0805» в строку поиска и получить тот же самый список подходящих по указанным параметрам компонентов.

Рис. 9. Фрагмент скриншота сервиса поиска конденсатора