Маркировка smd транзисторов

Элементы электрических цепей, приборы

Номер на рисунке Описание Номер на рисунке Описание
1 Счетчик учета электроэнергии 8 Электролитический конденсатор
2 Амперметр 9 Диод
3 Вольтметр 10 Светодиод
4 Датчик температуры 11 Диодная оптопара
5 Резистор 12 Изображение транзистора npn
6 Реостат (переменный резистор) 13 Плавкий предохранитель
7 Конденсатор

УГО реле времени, кнопки, выключатели, концевые выключатели, часто используют при разработке схем электропривода.

Схематическое изображение плавкого предохранителя. При чтении электрической схемы следует внимательно учитывать все линии и параметры чертежа, чтобы не спутать назначение элемента. Например, предохранитель и резистор имеют незначительные отличия. На схемах силовая линия изображается проходящей через предохранитель, резистор чертится без внутренних элементов.

Изображение автоматического выключателя на полной схеме

Контактный коммутационный аппарат. Служит автоматической защитой электрической сети от аварий, короткого замыкания. Приводится в действие механическим, либо электрическим способом.

Автоматический выключатель на однолинейной схеме

Трансформатор представляет собой стальной сердечник с двумя обмотками. Бывает одно и трехфазный, повышающий и понижающий. Также подразделяется на сухой и масляный, в зависимости от способа охлаждения. Мощность варьируется от 0.1 МВА до 630 МВА (в России).

УГО трансформаторов

Обозначение трансформаторов тока на полной (а) и однолинейной (в) схеме

Графическое обозначение электрических машин (ЭМ)

Электрические моторы, зависит от вида, способны не только потреблять энергию. При разработке промышленных систем, используют моторы, которые при отсутствии нагрузки генерируют энергию в сеть, тем самым сокращая затраты.

А — Трехфазные электродвигатели:

1 — Асинхронный с короткозамкнутым ротором

2 — Асинхронный с короткозамкнутым ротором, двухскоростной

3 — Асинхронный с фазным ротором

4 — Синхронные электродвигатели; генераторы.

В — Коллекторные электродвигатели постоянного тока:

1 — с возбуждением обмотки от постоянного магнита

2 — Электрическая машина с катушкой возбуждения

В связке с электромоторами, на схемах показаны магнитные пускатели, устройства мягкого пуска, частотный преобразователь. Эти устройства служат для запуска электрических моторов, бесперебойной работы системы. Последние два элемента уберегают сеть от «просадки» напряжения в сети.

 УГО магнитного пускателя на схеме

Переключатели выполняют функцию коммутационного оборудования. Отключают и включают в работу определенные участки сети, по мере необходимости.

Графические обозначения в электрических схемах механических переключателей

Условные графические обозначения розеток и выключателей в электрических схемах. Включают в разработанные чертежи электрификации домов, квартир, производств.

Звонок на электрической схеме по стандартам УГО с обозначенным размером

Азы электроники для чайников

Книга «Электроника для чайников» содержит сотни микросхем и фотографий, позволяющих даже самому далекому от этого дела человеку разобраться в принципах электроники. Подробнейшие советы и инструкции по проведению опытов помогут разобраться, как функционируют те или иные электронные детали. Также материал содержит рекомендации по выбору важнейших инструментов для работы в этой области и их полные описания.

Важно! По мере ознакомления с каждой главой читатель постепенно погружается в предмет, который увлекает его все больше и больше. Теоретические знания закрепляются практикой путем сборки простейших, но интересных устройств

Книга содержит следующие разделы:

  • «Основы теории электрических цепей», в котором дается определение напряжению, силе тока, проводникам, рассеиваемой мощности.
  • «Компоненты электросхем», где рассказывается о том, как простейшие элементы по типу резисторов, транзисторов, диодов и конденсаторов управляют током и задают его характеристики.
  • «Электрические схемы универсального предназначения». Здесь будет рассказано, как использовать простейшие цифровые и аналоговые схемы в сложных устройствах.
  • «Анализ электрических цепей», который познакомит с основными законами электроники и научит управлять силой тока и напряжением в электрической сети, научит применять эти закономерности на практике.
  • «Техника безопасности и рекомендации по ней». Этот раздел обучит безопасной работе с электрическими цепями и током в целом, поможет защищать себя и свои приборы от поражения током.

Вам это будет интересно Определение мощности резистора

Обложка книги «Электроника для чайников»

https://youtube.com/watch?v=UqP_zfOkAwA

https://youtube.com/watch?v=dVPN1xHXqFg

https://youtube.com/watch?v=HvLzN71HkFo

Номиналы радиодеталей

Вообще, в этом плане есть разногласия. Согласно ГОСТУ на текущий момент, номиналы деталей на принципиальных схемах не указывается. Это сделано ради того, чтобы не нагромождать схему информацией.

К принципиальной схеме прилагается список деталей, монтажная и структурные схемы, а также печатная плата.

Есть еще один общепринятый стандарт. На схемах указываются номиналы некоторых деталей и их рабочие напряжения.

Рассмотрим на схеме два конденсатора.

В данном случае C5 это неполярный конденсатор с емкостью 0,01 мкФ. Микрофарады могут обозначаться как мкФ, так и uF. А конденсатор С6 полярный и электролитический. На это указывает знак плюс возле УГО. Емкость С6 равна 470 мкФ. Номинальное рабочее напряжение указывается в вольтах. Здесь для С6 это 16 В.

Если на схеме нет приставки микрофарад (мкФ, uF), или нанофарад (нФ, nF) то емкость этого конденсатора измеряется в пикофарадах (пФ, pF). Такое условие не общепринятое, поэтому тщательно изучите схему, которую вы собираетесь читать или собирать. В фарадах (F) емкостей мало, поэтому используются мкФ, нФ и пФ.

SKF

У этой компании типы подшипников обозначаются следующими буквами:

  • С – тороидальные изделия;
  • ВК – роликоподшипники игольчатые идущие с закрытым торцом и штампованным внешним кольцом;
  • К – такие же как и предыдущие изделия только без колец;
  • N – обозначение цилиндрических роликоподшипников;
  • NA – роликоподшипники игольчатые размеры которых соответствующих ISO 15;
  • NJ – цилиндрические роликоподшипники, имеющие на внешнем кольце два борта, а на внутреннем один;
  • NK – роликоподшипники игольчатые;
  • NN, NNU – двухрядные роликовые подшипниковые узлы;
  • NU – однорядные цилиндрические изделия, внешнее кольцо которых не имеет бортов, а на внутреннем его аналоге их два;
  • NUP – практически такое же, как и предыдущее изделие, только на его внутреннем кольце имеется борт, а также предусмотрено фланцевое кольцо;
  • Т – конические роликоподшипники, параметры которых соответствуют стандарту ISO 355-1977;
  • QJ – шариковые подшипниковые узлы с четырехтактным контактом.

Начало изучения радиотехники начинающими

Перед тем, как изучать радиотехнику или электронику, нужно понять, зачем именно это нужно человеку

Если это увлечение на пару дней или месяцев, то лучше сразу бросить затею, поскольку, если относиться к электронике халатно и не соблюдать меры предосторожности, можно нанести сильный вред своему организму. Если данная сфера увлекала еще с детства, но не было времени начать заниматься, то сейчас самое время начать

Постепенное погружение подразумевает:

  • Получение или закрепление теоретических знаний физики. Для начала достаточно будет школьных знаний по электрофизике, включающих подробное изучение закона Ома – основы всей электрики.
  • Ознакомление с теорией. От более абстрактных вещей физики следует перейти к более осязаемым. Теория подразумевает точное и полное описание всех понятий, деталей, инструментов и приборов, которые будут использоваться на практике. Садиться и начать что-либо паять без теоретических основ не получится.
  • Применение на практике. Логическое завершение теории, позволяющее закрепить весь изученный материал и применить его при создании конкретных схем или приборов.


Закон Ома

Маркировка SMD-компонентов

Мне иногда кажется, что маркировка современных электронных компонентов превратилась в целую науку, подобную истории или археологии, так как, чтобы разобраться какой компонент установлен на плату иногда приходитсяпровести целый анализ окружающих его элементов. В этом плане советские выводные компоненты, на которых текстом писался номинал и модель были просто мечтой для любителя, так как не надо было ворошить груды справочников, чтобы разобраться, что это за детали. 

Причина кроется в автоматизации процесса сборки. SMD компоненты устанавливаются роботами, в которых установлены сециальные бабины (подобные некогда бабинам с магнитными лентами), в которых расположены чип-компоненты. Роботу все равно, что там в бабине и есть ли у деталей маркировка. Маркировка нужна человеку. 

Микросхема в радиоприемнике

Предлагаем испытать эту микросхему в высокочастотном тракте приемника, собранного, например, по схеме, приведенной на рис. 3. Входной контур магнитной антенны такого приемника образуют катушка L1 и конденсатор переменной емкости С1. Высокочастотный сигнал радиостанции, на волну которой контур настроен, через катушку связи L2 и разделительный конденсатор С2 поступает на вход (вывод 3) микросхемы Л1.

С выхода микросхемы (вывод 10, соединенный с выводом 9) усиленный сигнал подается через конденсатор С4 на детектор, диоды VI и V2 которого включены по схеме умножения напряжения, а выделенный им низкочастотный сигнал телефоны В1 преобразуют в звук. Приемник питается от батареи GB1, составленной из четырех элементов 332, 316 или пяти аккумуляторов Д-01.

Рис. 3. Схема приемника на микросхеме.

Во многих транзисторных приемниках усилитель высокочастотного тракта образуют транзисторы, а в этом — микросхема. Только в этом и заключается разница между ними.

Имея опыт предыдущих практикумов, ты, надеюсь, сможешь самостоятельно смонтировать иг наладить такой приемник и даже, если пожелаешь, дополнить его усилителем НЧгдля громкоговорящего радиоприема.

Графические обозначения в электрических схемах

В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:

  • ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
  • ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
  • ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».

Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.

Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.

Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).

Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:

с использованием девяти функциональных признаков:

Наименование Изображение
1. Функция контактора
2. Функция выключателя
3. Функция разъединителя
4. Функция выключателя-разъединителя
5. Автоматическое срабатывание
6. Функция путевого или концевого выключателя
7. Самовозврат
8. Отсутствие самовозврата
9. Дугогашение
Примечание: Обозначения, приведенные в пп. 1 — 4, 7 — 9, помещают на неподвижных контактах, а обозначения в пп. 5 и 6 — на подвижных контактах.

Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:

Наименование Изображение
Автоматический выключатель (автомат)
Выключатель нагрузки (рубильник)
Контакт контактора
Тепловое реле
УЗО
Дифференциальный автомат
Предохранитель
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле)
Выключатель нагрузки с предохранителем (рубильник с предохранителем)
Трансформатор тока
Трансформатор напряжения
Счетчик электрической энергии
Частотный преобразователь
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления автоматически
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вытягивания кнопки
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс)
Контакт замыкающий с замедлением, действующим при срабатывании
Контакт замыкающий с замедлением, действующим при возврате
Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Контакт размыкающий с замедлением, действующим при срабатывании  
 Контакт размыкающий с замедлением, действующим при возврате  
 Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Катушка контактора, общее обозначение катушки реле
Катушка импульсного реле
Катушка фотореле
Катушка реле времени
Мотор-привод
Лампа осветительная, световая индикация (лампочка)
Нагревательный элемент
Разъемное соединение (розетка):гнездоштырь
Разрядник
Ограничитель перенапряжения (ОПН), варистор
Разборное соединение (клемма)
Амперметр
Вольтметр
Ваттметр
Частотометр

Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.

Наименование Изображение
Линия электрической связи, провода, кабели, шины, линия групповой связи
Защитный проводник (PE) допускается изображать штрихпунктирной линией
Графическое разветвление (слияние) линий групповой связи
Пересечение линий электрической связи, линий групповой связи электрически не соединенных проводов, кабелей, шин, электрически не соединенных
Линия электрической связи с одним ответвлением
Линия электрической связи с двумя ответвлениями
Шина (если необходимо графически отделить от изображения линии электрической связи)
Ответвление шины
Шины, графически пересекающиеся и электрически не соединенные
Отводы (отпайки) от шины

Уровни логического нуля и единицы

Как уже говорилось ранее, при обсуждении областей применения,
цифровые микросхемы характеризуются тем, что могут находиться
только в двух состояниях. Состояния цифровых микросхем могут быть описаны двумя цифрами: ‘0’ и ‘1’. При этом
можно состояние микросхемы характеризовать различными параметрами. Например, током или напряжением в цепях
микросхемы, открыты или заперты транзисторы на выходе микросхемы, светится или нет светодиод (если он входит
в состав схемы цифрового устройства).

Условились в качестве логических состояний цифровых микросхем воспринимать напряжение на их входе и выходе. При
этом высокое напряжение договорились считать единицей, а низкое напряжение — считать нулем. В идеальном
случае напряжение на выходе микросхем должно быть равным напряжению питания или общего провода схемы. В реальных
схемах так не бывает. Даже на полностью открытом транзисторе есть падение напряжения. В результате на выходе
цифровой микросхемы напряжение всегда будет меньше напряжения питания и больше потенциала общего провода. Поэтому
договорились напряжение, меньшее заданного уровня (уровень логического нуля) считать нулём, а напряжение, большее
заданного уровня (уровень логической единицы), считать единицей. Если же напряжение на выходе микросхемы будет
больше уровня логического нуля, но меньше уровня логической единицы, то такое состояние микросхемы будем называть
неопределённым. На рисунке 2 приведены допустимые уровни выходных логических сигналов для
ТТЛ микросхем

Обратите внимание, что чем ближе выходное
напряжение к напряжению питания или к напряжению общего провода схемы, тем выше к.п.д. цифровой микросхемы.

Напряжение с выхода одной микросхемы передаётся на вход другой микросхемы по проводнику. В процессе
передачи на этот проводник может наводиться напряжение от каких либо генераторов помех (осветительная сеть,
радиопередатчики, импульсные генераторы). Помехоустойчивость цифровых микросхем определяется максимальным
напряжением помех, которое не приводит к превращению логического нуля в логическую единицу и зависит от
разности логических уровней цифровой микросхемы.

помвых1минвх1мин

То же самое относится и к помехам, превращающим логический ноль в логическую единицу.

+помвых0максвх0макс

Чем меньше разница между Uвх1мин и Uвх0макс, тем большим усилением обладает цифровая
микросхема. Типовое усиление ТТЛ микросхем по напряжению Ku составляет 40 раз. Это приводит к
тому, что подав на вход этой микросхемы напряжение, на 40 мВ меньшее уровня Uпор, мы воспримем
его как логический ноль, и на выходе этой микросхемы получим нормальный логический уровень. При подаче на вход
ТТЛ микросхемы напряжения, на 40 мВ большего уровня Uпор, это напряжение будет восприниматься как
логическая единица. Граница уровня логического нуля и единицы для ТТЛ микросхем приведена на рисунке 3.

Вспомним, что на выходе цифровой ТТЛ микросхемы уровень логической единицы не может быть меньше 2,4 В,
а уровень логического нуля не может быть больше 0,4 В. В результате, даже при наведении на вход ТТЛ
микросхемы помехи, напряжением 0,96 вольт, искажение цифровой информации не произойдёт.

Теперь вспомним, что микросхемы могут работать при воздействии неблагоприятных факторов таких как пониженная
температура, старение микросхем, воздействие радиации. Поэтому производители микросхем гарантируют срабатывание
микросхем с некоторым запасом. Например, фирма Texas Instruments объявляет для своих микросхем входной уровень
единицы — 2 В, а уровень нуля — 0,8 В. Эти уровни тоже показаны на рисунке 3.