Какой операционный усилитель использовать
Первые два ОУ должны быть пригодны для аудио приложений. Таковыми являются MC33182, LM833 и многие другие. Если где-нибудь в техническом описании микросхемы промелькнут слова «аудио» или «искажения», скорее всего, это будет хороший выбор. 🙂 Помните, что многие современные операционные усилители имеют узкий диапазон допустимых напряжений питания! Коэффициент усиления в каждом из этих первых двух каскадов установлен равным всего 34, поэтому здесь довольно хорошо будут работать даже более медленные ОУ, однако следите за тем, чтобы произведение их усиления на полосу пропускания равнялось хотя бы 1 МГц. У некоторых операционных усилителей, прекрасных во всех отношениях, размах выходного напряжения недостаточен для этой схемы, выходной каскад которой не имеет усиления. Меньшая амплитуда на выходе IC1b означает снижение максимальной мощности, но впрочем, большого значения это обычно не имеет. Не пытайтесь использовать ОУ LM358 в первых двух каскадах; в режиме усилителя напряжения эта микросхема создаст неприятную проблему переходных искажений.
Для выходного каскада был выбран операционный усилитель LM358. При попытках использовать любые другие микросхемы я сталкивался с какими-нибудь трудностями. Первоначально я брал более быстрые ОУ, и на 8-омном эквиваленте нагрузки они показывали хорошие результаты, однако реактивность некоторых реальных громкоговорителей вызывала возбуждение схемы. Небольшие искажения, вносимые LM358, видны как очень слабое дрожание вблизи точки пересечения нуля на частоте в несколько килогерц, однако уровень результирующих гармоник находится за пределами человеческого слуха. При использовании более быстрых ОУ фазовый сдвиг в транзисторах TIP31 и TIP32 приводил к неустойчивости схемы.
Я временно снижал усиление первых каскадов, шунтируя два резистора 33 кОм резисторами 1 кОм. С помощью анализатора нелинейных искажений я измерил, что суммарный уровень гармоник при напряжении питания от 15 В до 18 В и выходной мощности, близкой к максимальной, равен 0.16%. Для LM358 это совсем неплохо! При сопротивлении нагрузки 16 Ом и напряжении питания 18 В искажения снижались до 0.1%. Замена транзисторов на 2N2219 и 2N2905 привела к росту искажений до 0.2% при питании 12 В.
Усилитель сигнала термопары
Рубрика
: 7. Технические науки
: 04.10.2019
Статья просмотрена:
558 раз
Библиографическое описание:
Галимуллин, Н. Р. Усилитель сигнала термопары / Н. Р. Галимуллин, Н. Т. Хайруллина. — Текст : непосредственный // Исследования молодых ученых : материалы III Междунар. науч. конф. (г. Казань, октябрь 2021 г.). — Казань : Молодой ученый, 2021. — С. 1-3. — URL: https://moluch.ru/conf/stud/archive/349/15255/ (дата обращения: 14.11.2020).
Данная статья посвящена разработке устройства усиления сигнала термопары.
Ключевые слова: термопара, терморегулировка, нихромовая спираль.
Помимо задачи контроля температуры бывает необходимо обеспечить ее регулирование или поддержание на каком-либо заданном уровне. Поэтому становится важным обеспечить согласование блока измерения температуры и нагревателя, в качестве которого может использоваться нихромовая спираль. Для работы нагревателя нужно усилить сигнал с блока измерения по мощности, поэтому в состав устройства терморегулирования входит также усилитель мощности.
В данной статье рассматриваются различного рода термопары, которые часто являются основным видом датчиков температуры. Разрабатывается усилитель сигнала термопары и усилитель мощности для управления нагревательным элементом.
Электрическая схема блока измерения температуры и блока нагрева показаны на рисунках 1 и 2. Рассмотрим их по отдельности.
Термопары типа S — наиболее широкодиапазонные и стабильные, поэтому они получили широкое распространение . Однако им присущ серьезный недостаток: крайне малый коэффициент преобразования, всего 5,88 мкВ/°С при 20°С (у термопары типа J — 51,45 мкВ/°С, типа К — 40,28 мкВ/°С). Поэтому при не очень больших температурах (менее 500°С) вырабатываемый ими сигнал крайне мал. Усилитель должен хорошо подавлять 50-герцовый сигнал и иметь стабильное дифференциальное усиление. Его входное сопротивление должно быть достаточно высоким (более 10 кОм).
Рис. 1. Блок измерения температуры
Мы разработали схему (Рис 1), которая позволяет решить указанные проблемы. Она представлена в виде дифференциального усилителя с Т-образной цепью обратной связи, который имеет достаточно высокий коэффициент усиления по напряжению (200) и достаточно большое входное сопротивление. В качестве операционного усилителя лучше всего применить прецизионный усилитель с крайне малым смещением (менее 10 мкВ) и столь же малым температурным дрейфом (меньше 100 нВ/°С). К таким усилителям относятся LTC1050, LTC1052 фирмы Linear Technology, ICL7650, ICL7652 фирм Intersil и Maxim, а также AD8551 от Analog Devices. Питающее напряжение (от +UПИТ до -UПИТ) данного усилителя 12 В.
Шунтирующие конденсаторы на входе усилителя ослабляют ВЧ-радиопомехи (поскольку у соединительных проводов термопар достаточно большая длина).
Микросхема AD590 которая находится в тепловом контакте с опорным спаем, используется в качестве датчика температуры, вырабатывая ток, пропорциональный ее абсолютной температуре (1 мкА/°С). Температуре 0°С соответствует абсолютная температура 273 К, и следовательно, AD590 выработает ток 273 мкА; температуре 25°С — соответственно 298 К и 298 мкА, и т. д.
Так как основной усилитель DA2 имеет коэффициент усиления 200, то компенсирующее напряжение, вырабатываемое усилителем DA1, должно составлять 200 • 5,88 = 1,176 мВ/°С. Это обеспечивается включением в обратную связь DA1 резистора сопротивлением 1,176 кОм.
Если опорный спай находится при температуре 0°С, на выходе DA1 должно присутствовать нулевое напряжение, так как при нулевой температуре опорного спая коррекция не нужна. Однако AD590 в этом случае вырабатывает ток 273 мкА, который, проходя через резистор сопротивлением 1,176 кОм, создает на нем падение напряжения 0,321 В. Для того чтобы скомпенсировать этот сигнал, на неинвертирующий вход DA1 подается напряжение с делителя напряжения R2-R4, формирующего совместно с прецизионным стабилитроном VD1 (LM336Z-2.5) требуемое напряжение. Точная регулировка осуществляется подстроечным резистором R4.
Чего хорошего в этом усилителе
Существуют микросхемы аудио усилителей, работающие не хуже, чем этот проект. Однако в предлагаемой схеме использованы детали, которые всегда есть под рукой у большинства радиолюбителей. Усилитель работает в широком диапазоне напряжений питания, а его ток покоя легко изменить в соответствии с требованиями конкретного приложения.
Питание напряжением 9 В делает эту схему прекрасным усилителем для небольших проектов. При замене транзисторов на 2N4401 и 2N4403 получается усилитель, похожий на популярный LM386, однако с регулируемым током покоя и несоизмеримо меньшими искажениями на полной мощности.
Подключив электрогитару, я получил отличный репетиционный усилитель! При питании 18 В и с хорошими динамиками он звучит удивительно громко и чисто. Гитаре его усиления более чем достаточно. Для регулировки громкости параллельно входу я добавил резистор, подключив его движок через конденсатор 1 мкФ. Сопротивление этого потенциометра изменяет входной импеданс усилителя. Хорошо подойдет потенциометр 10 кОм с обратной логарифмической зависимостью характеристики.
Сердцевиной проекта является выходной каскад, а предварительный усилитель может быть и другим. Только не забывайте, что для получения максимальной мощности размах напряжения должен быть близок к шинам питания, так как выходной каскад не имеет усиления по напряжению.
С какими проблемами я столкнулся
В этой схеме много усиления собрано в небольшом объеме и, что еще хуже, есть много тока, идущего через выходной каскад. Операционные усилители довольно хорошо подавляют обратную связь, создаваемую помехами по шинам питания и земли, но, тем не менее, эта обратная связь может создавать проблемы устойчивости. Провода от источника питания подключайте к схеме вблизи выходных транзисторов. Провод «земли» припаяйте возле точки соединения трех конденсаторов 10 мкФ и резистора 330 кОм
Обратите также внимание на входной фильтр 1 кОм/10 мкФ. Мощности, потребляемой усилителем, достаточно для небольшого проседания Vcc, и небольшая часть возникающей в связи с этим помехи, проникая на вход, приводит к генерации или, в моем случае, к загадочному падению входного импеданса
Небольшой RC фильтр эту обратную связь устраняет. Снизить усиление схемы вы можете, уменьшив сопротивления резисторов 33 кОм, или ограничившись только одним входным каскадом. Дополнительное усиление можно будет получить с помощью внешней схемы.
Помимо этого, вы можете столкнуться с проблемами устойчивости, связанными с выбором ОУ и транзисторов, о которых говорилось выше, поэтому было бы неплохо воспользоваться осциллографом и убедиться, что усилитель работает правильно.
Стабилизированный источник питания не является абсолютно необходимым для этой схемы, но, как минимум, нужно использовать конденсатор очень большой емкости, такой, как показанный на схеме конденсатор 2200 мкФ. Трехвыводной стабилизатор обеспечит некоторую дополнительную степень защиты транзисторов в случае короткого замыкания выхода на землю.
Особенности
— Однополярное питание: от 3 В до 32 В (26 В для LM2904)
— Биполярное питание : от ±1.5 В до ±16 В (±13 В для LM2904)
- Минимальный потребляемый ток, независящий от напряжения питания:
- Единый коэффициент усиления по всей ширине полосы пропускания: 0.7 МГц
- Низкий входной ток смещения и параметры смещения
— Входное напряжение компенсации смещения нуля: 3 мВ
Для версии с буквой А: 2 мВ
— Входной ток компенсации смещения нуля: 2 нА
— Входной ток смещения: 20 нА
Для версии с буквой А: 15 нА
- Диапазон дифференциального входного напряжения равен максимальному номинальному напряжению питания: 32 В (26 В для LM2904)
- Коэффициент усиления дифференциального напряжения в разомкнутой цепи: 100 dB
- Внутренняя частотная компенсация
- Все изделия соответствуют стандарту MIL-PRF-38535
Корпус / Упаковка / Маркировка
LM358D | LM358DE4 | LM358DG4 | LM358DGKR | LM358DGKRG4 | LM358DR | LM358DRE4 | LM358DRG3 | LM358DRG4 | LM358P | LM358PE3 | LM358PE4 | LM358PSLE | LM358PSR | LM358PW | LM358PWG4 | LM358PWLE | LM358PWR | LM358PWRG3 | LM358PWRG4 | LM358PWRG4-JF | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pin | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Package Type | D | D | D | DGK | DGK | D | D | D | D | P | P | P | PS | PS | PW | PW | PW | PW | PW | PW | PW |
Industry STD Term | SOIC | SOIC | SOIC | VSSOP | VSSOP | SOIC | SOIC | SOIC | SOIC | PDIP | PDIP | PDIP | SOP | SOP | TSSOP | TSSOP | TSSOP | TSSOP | TSSOP | TSSOP | TSSOP |
JEDEC Code | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDIP-T | R-PDIP-T | R-PDIP-T | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G | R-PDSO-G |
Package QTY | 75 | 75 | 75 | 2500 | 2500 | 2500 | 2500 | 2500 | 2500 | 50 | 50 | 50 | 2000 | 150 | 150 | 2000 | 2000 | 2000 | 2000 | ||
Carrier | TUBE | TUBE | TUBE | LARGE T&R | LARGE T&R | LARGE T&R | LARGE T&R | LARGE T&R | LARGE T&R | TUBE | TUBE | TUBE | LARGE T&R | TUBE | TUBE | LARGE T&R | LARGE T&R | LARGE T&R | LARGE T&R | ||
Width (мм) | 3.91 | 3.91 | 3.91 | 3 | 3 | 3.91 | 3.91 | 3.91 | 3.91 | 6.35 | 6.35 | 6.35 | 5.3 | 5.3 | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 |
Length (мм) | 4.9 | 4.9 | 4.9 | 3 | 3 | 4.9 | 4.9 | 4.9 | 4.9 | 9.81 | 9.81 | 9.81 | 6.2 | 6.2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Thickness (мм) | 1.58 | 1.58 | 1.58 | 0.97 | 0.97 | 1.58 | 1.58 | 1.58 | 1.58 | 3.9 | 3.9 | 3.9 | 1.95 | 1.95 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Pitch (мм) | 1.27 | 1.27 | 1.27 | 0.65 | 0.65 | 1.27 | 1.27 | 1.27 | 1.27 | 2.54 | 2.54 | 2.54 | 1.27 | 1.27 | 0.65 | 0.65 | .65 | 0.65 | 0.65 | 0.65 | 0.65 |
Max Height (мм) | 1.75 | 1.75 | 1.75 | 1.07 | 1.07 | 1.75 | 1.75 | 1.75 | 1.75 | 5.08 | 5.08 | 5.08 | 2 | 2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |
Mechanical Data |
Схема неинвертирующего усилителя
Описание схемы:
- На плюсовой вход подается сигнал.
- К выходу операционного усилителя подключается два постоянных резистора R2 и R1, соединенных последовательно.
- Второй резистор соединен с общим проводом.
- Точка соединения резисторов подключается к минусовому входу.
Чтобы вычислить коэффициент усиления, необходимо воспользоваться простой формулой: k=1+R2/R1.
Если имеются данные о значении сопротивлений, входного напряжения, то нетрудно посчитать выходное: U(out)=U(in)*(1+R2/R1). При использовании микросхемы LM358 и резисторов R1=10 кОм и R2=1 МОм, коэффициент усиления окажется равен 101.
Применение
Область применения LM358 — в качестве усилительного преобразователя, в схемах преобразования постоянного напряжения, и во всех стандартных схемах, где используются операционные усилители, как с однополярным питающим напряжением, так и двухполярным.
Типичное применение операционного усилителя в качестве инвертирующего усилителя. Этот усилитель принимает положительное напряжение на входе и преобразует его в отрицательное той же величины. Таким же образом он преобразует отрицательное напряжение в положительное.
Напряжение питания должно быть больше чем диапазоны входного и выходного напряжения сигнала. Например если будет усиливаться сигнал от ±0.5 В до ±1.8 В, напряжения питания ±12 В будет достаточно.
Требуемый коэффициент усиления для инвертирующего усилителя рассчитывается по формулам (1) и (2):
Av=Vout/Vin (1)
Например Av=1.8/-0.5=-3.6 (2)
После того как определен коэффициент усиления, выбираются значения RI или RF. Выбирать значение сопротивления желательно в кОм, так как схема будет использовать токи в мА. Это гарантирует, что не будет потребляться слишком много тока. Для этого примера выберем RI=10 кОм, что дает RF=36 кОм. RF рассчитывается по формуле (3): Av=-RF/RI.
Входное и выходное напряжения на инвертирующем усилителе
В каких корпусах выпускаются микросхемы
Корпус может быть как DIP8 – обозначение LM358N, так и SO8 – LM358D. Первый предназначен для реализации объемного монтажа, второй – для поверхностного. От типа корпуса не зависят характеристики элемента – они всегда одинаковы. Но существует немало аналогов микросхемы, у которых параметры немного отличаются. Всегда есть плюсы и минусы. Обычно, если у элемента большой диапазон рабочих напряжений например, страдает какая-либо другая характеристика.
Существует еще металлокерамический корпус, но такие микросхемы используют в том случае, если эксплуатация устройства будет происходить в тяжелых условиях. В радиолюбительской практике удобнее всего использовать микросхемы в корпусах для поверхностного монтажа
Они очень хорошо паяются, что имеет важное значение при работе. Ведь намного удобнее оказывается работать с элементами, у которых ножки имеют большую длину
Статус
LM358D | LM358DE4 | LM358DG4 | LM358DGKR | LM358DGKRG4 | LM358DR | LM358DRE4 | LM358DRG3 | LM358DRG4 | LM358P | LM358PE3 | LM358PE4 | LM358PSLE | LM358PSR | LM358PW | LM358PWG4 | LM358PWLE | LM358PWR | LM358PWRG3 | LM358PWRG4 | LM358PWRG4-JF | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Статус продукта | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | В производстве | Снят с производства | В производстве | В производстве | В производстве | Снят с производства | В производстве | В производстве | В производстве | В производстве |
Доступность образцов у производителя | Нет | Да | Да | Нет | Нет | Нет | Нет | Да | Нет | Нет | Да | Нет | Нет | Нет | Нет | Нет | Да | Нет | Нет | Нет | Нет |
5.8 Электрические характеристики для LM358A
В указанном диапазоне температур, VCC = 5 В (если не указано иное)
Параметр | Условия(1) | TA(1) | LM358A | Ед. Изм. | ||||
---|---|---|---|---|---|---|---|---|
MIN | TYP(2) | MAX | ||||||
VIO | Входное напряжение компенсации смещения нуля | VCC = от 5 до 30 В, VIC = VICR(min), VO = 1.4 В |
25°C | 2 | 3 | мВ | ||
Весь диапазон | 5 | |||||||
αVIO | Средний температурный коэффициент входного напряжения смещения нуля | Весь диапазон | 7 | 20 | мкA/°C | |||
IIO | Входной ток компенсации смещения нуля | VO = 1.4 В | 25°C | 2 | 30 | нA | ||
Весь диапазон | 75 | |||||||
αIIO | Средний температурный коэффициент входного тока смещения нуля | Весь диапазон | 10 | 300 | пA/°C | |||
IIB | Входной ток смещения | VO = 1.4 В | 25°C | -15 | -100 | нA | ||
Весь диапазон | -200 | |||||||
VICR | Диапазон входного синфазного напряжения | VCC = 30 В | 25°C | от 0 до VCC — 1.5 |
В | |||
Весь диапазон | от 0 до VCC — 2 |
|||||||
VOH | Высокий уровень выходного напряжения | RL ≥ 2 кОм | 25°C | VCC — 1.5 | В | |||
VCC = 30 V | RL= 2 кОм | Весь диапазон | 26 | |||||
RL≥ 10 кОм | Весь диапазон | 27 | 28 | |||||
VOL | Низкий уровень выходного напряжения | RL ≤ 10 кОм | Весь диапазон | 5 | 20 | мВ | ||
AVD | Большой сигнал усиления дифференциального напряжения | VCC = 15 В, VO = от 1 В до 11 В, RL ≥ 2 кОм |
25°C | 25 | 100 | В/мВ | ||
Весь диапазон | 15 | |||||||
CMRR | Коэффициент ослабления синфазного сигнала | 25°C | 65 | 80 | dB | |||
kSVR | Коэффициент подавления помех по питанию (ΔVDD /ΔVIO) |
25°C | 65 | 100 | dB | |||
VO1/ VO2 | Переходное затухание | f = от 1 кГц до 20 кГц | 25°C | 120 | dB | |||
IO | Выходной ток | VCC = 15 В, VID = 1 В, VO = 0 |
Источник | 25°C | -20 | -30 | ?60 | мA |
Весь диапазон | -10 | |||||||
VCC = 15 В, VID = -1 В, VO = 15 В |
Приемник | 25°C | 10 | 20 | ||||
Весь диапазон | 5 | |||||||
VID = -1 В, VO = 200 мВ | 25°C | 30 | мкA | |||||
IOS | Ток короткого замыкания на выходе | VCC около 5 В, GND около -5 В, VO = 0 |
25°C | ±40 | ±60 | мA | ||
ICC | Потребляемый ток (четыре усилителя) |
VO = 2.5 В, Без нагрузки | Весь диапазон | 0.7 | 1.2 | мA | ||
VCC = MAX В, VO = 0.5 В, Без нагрузки |
Весь диапазон | 1 | 2 |
(1) Все характеристики измерены в разомкнутой цепи при нулевом входном синфазном напряжении, если не указано иное. MAX VCC для испытаний составляет 26 В для LM2902 и 30 В для других.
(2) Все типичные значения для температуры TA = 25°C
5.1 Абсолютные максимальные значения
В рабочем диапазоне температур (если не указано иное)(1)
LMx58, LMx58x, LM2904V | LM2904 | Ед. Изм. | |||||
---|---|---|---|---|---|---|---|
MIN | MAX | MIN | MAX | ||||
VCC | Напряжение питания(2) | -0.3 | ±16 или 32 | -0.3 | ±13 или 26 | В | |
VID | Дифференциальное входное напряжение(3) | -32 | 32 | -26 | 26 | В | |
VI | Любой вход | Входное напряжение | -0.3 | 32 | -0.3 | 26 | В |
Длительность короткого замыкания выхода на землю (для одного усилителя) TA = 25°C, VCC ≤ 15 В(4) |
Неограниченна | Неограниченна | с | ||||
TA | Рабочая температура на открытом воздухе | LM158, LM158A | -55 | 125 | °C | ||
LM258, LM258A | -25 | 85 | |||||
LM358, LM358A | 70 | ||||||
LM2904 | -40 | 125 | -40 | 125 | |||
TJ | Эффективная температура p-n перехода | 150 | 150 | °C | |||
Температура корпуса в течении 60 секунд | FK корпус | 260 | °C | ||||
Температура припоя по корпусу в течении 60 секунд | JG корпус | 300 | 300 | °C | |||
Tstg | Температура хранения | -65 | 150 | -65 | 150 | °C |
(1) Абсолютные максимальные значения указывают пределы, превышение которых, может привести к повреждению устройства. Электрические характеристики не применяются при работе с устройством за пределами своих заявленных условий эксплуатации. Воздействие абсолютных максимальных значений на устройство в течении длительного времени, может повлиять на его надежность.
(2) Все значения напряжений (за исключением дифференциальных напряжений и напряжения питания) измеряются относительно земли.
(3) Дифференциальное напряжение на IN+, относительно IN?.
(4) Короткое замыкание выводов на VCC может стать причиной перегрева и возможного выхода из строя.
5.6 Электрические характеристики для LM2904
В указанном диапазоне температур, VCC = 5 В (если не указано иное)
Параметр | Условия(1) | TA(2) | LM2904 | Ед. изм. | ||||
---|---|---|---|---|---|---|---|---|
MIN | TYP(3) | MAX | ||||||
VIO | Входное напряжение компенсации смещения нуля | VCC = от 5 В до MAX, VIC = VICR(min), VO = 1.4 В |
Без A суффикса в маркировке | 25°C | 3 | 7 | мВ | |
Весь диапазон | 10 | |||||||
С А суффиксом в маркировке | 25°C | 1 | 2 | |||||
Весь диапазон | 4 | |||||||
αVIO | Средний температурный коэффициент входного напряжения смещения нуля | Весь диапазон | 7 | мкВ/°C | ||||
IIO | Входной ток компенсации смещения нуля | VO = 1.4 В | Без V суффикса в маркировке | 25°C | 2 | 50 | нА | |
Весь диапазон | 300 | |||||||
С V суффиксом в маркировке | 25°C | 2 | 50 | |||||
Весь диапазон | 150 | |||||||
αIIO | Средний температурный коэффициент входного тока смещения нуля | Весь диапазон | 10 | пA/°C | ||||
IIB | Входной ток смещения | VO = 1.4 В | 25°C | -20 | -250 | нA | ||
Весь диапазон | -500 | |||||||
VICR | Диапазон входного синфазного напряжения | VCC = от 5 В до MAX | 25°C | от 0 до VCC — 1.5 |
В | |||
Весь диапазон | от 0 до VCC — 2 |
|||||||
VOH | Высокий уровень выходного напряжения | RL ≥ 10 кОм | 25°C | VCC — 1.5 | В | |||
VCC = MAX, Без V суффикса |
RL = 2 кОм | Весь диапазон | 22 | |||||
RL ≥ 10 кОм | Весь диапазон | 23 | 24 | |||||
VCC = MAX С V суффиксом |
RL = 2 кОм | Весь диапазон | 26 | |||||
RL ≥ 10 кОм | Весь диапазон | 27 | 28 | |||||
VOL | Низкий уровень выходного напряжения | RL ≤ 10 кОм | Весь диапазон | 5 | 20 | мВ | ||
AVD | Большой сигнал усиления дифференциального напряжения | VCC = 15 В, VO = от 1 В до 11 В, RL ≥ 2 кОм |
25°C | 25 | 100 | В/мВ | ||
Весь диапазон | 15 | |||||||
CMRR | Коэффициент ослабления синфазного сигнала | VCC = от 5 В до MAX, VIC = VICR(min) |
Без V суффикса | 25°C | 50 | 80 | dB | |
С V суффиксом | 25°C | 65 | 80 | |||||
kSVR | Коэффициент подавления помех по питанию (ΔVCC /ΔVIO) |
VCC = от 5 В до MAX | 25°C | 65 | 100 | dB | ||
VO1/ VO2 | Переходное затухание | f = от 1 кГц до 20 кГц | 25°C | 120 | dB | |||
IO | Выходной ток | VCC = 15 В, VID = 1 В, VO = 0 |
Источник | 25°C | -20 | -30 | мA | |
Весь диапазон | -10 | |||||||
VCC = 15 В, VID = -1 В, VO = 15 В |
Приемник | 25°C | 10 | 20 | ||||
Весь диапазон | 5 | |||||||
VID = -1 В, VO = 200 мВ | Без V суффикса | 25°C | 30 | мкA | ||||
С V суффиксом | 25°C | 12 | 40 | |||||
IOS | Ток короткого замыкания на выходе | VCC около 5 В, VO = 0, GND около ?5 V | 25°C | ±40 | ±60 | мA | ||
ICC | Потребляемый ток (четыре усилителя) |
VO = 2.5 В, Без нагрузки | Весь диапазон | 0.7 | 1.2 | мA | ||
VCC = MAX, VO = 0.5 VCC, Без нагрузки | Весь диапазон | 1 | 2 |
(1) Все характеристики измерены в разомкнутой цепи при нулевом входном синфазном напряжении, если не указано иное. MAX VCC для испытаний составляет 26 В для LM2902 и 30 В для других.
(2) Весь диапазон это температуры от -55°C до 125°C для LM158, от -25°C до 85°C для LM258, и от 0°C до 70°C для LM358, и от -40°C до 125°C для LM2904.
(3) Все типичные значения для температуры TA = 25°C
Обозначение и технические характеристики
Компаратор – это устройство, которое сравнивает два разных напряжения и силу тока, выдает конечный силовой сигнал, указывая на большее из них, одновременно производя расчет соотношения. У него есть две аналоговые вводные клеммы с положительным и отрицательным сигналом и один двоичный цифровой выход, как и у АЦП. Для отображения сигнала используется специальный индикатор.
УГО отображение компаратора выглядите следующим образом:
Фото – УГО компаратора
Изначально использовался только интегрированный компаратор напряжения (MAX 961ESA, PIC 16f628a), который известен как высокоскоростной. Он требует определенного дифференциального напряжения в определенном диапазоне, который существенно ниже, чем напряжение сети питания. Эти приборы не допускают никаких других внешних сигналов, которые находятся вне диапазона напряжения сети.
Сейчас гораздо чаще используется аналоговый цифровой компаратор (Attiny/ Atmega 2313), у которого транзисторный ввод. У него вводный потенциал сигнала находится в диапазоне менее 0,3 Вольт и не поднимается выше. Устройство может быть также ультра быстрого типа (стереокомпаратор), благодаря чему входной сигнал меньше обозначенного диапазона, к примеру, 0,2 Вольта. Как правило, используемый диапазон ограничивается только конкретным входным напряжением.
Фото – Компаратор
Помимо простого прибора, также существует видеоспектральный компаратор на ОУ (операционном усилителе). Это прибор, у которого очень тонко сбалансирована разница входа и высокого сопротивления сигнала. Благодаря такой характеристики, операционный компаратор используется в низкопроводимых схемах с небольшим вольтажем.
Фото – схема компаратора
В теории, частотный операционный усилитель работает в конфигурации с открытым контуром (без отрицательной обратной связи) и может быть использован в качестве компаратора низкой производительности. Но при этом, не инвертирующий вход (+ V) находится на более высоком напряжении, чем на инвертирующий (V-). Высокое усиление, выходящее из операционного усилителя, провоцирует выход низкого напряжения на входе в устройство.
Когда неинвертирующий вход падает ниже инвертирующего входа, выходной сигнал насыщается при отрицательном уровне питания, то он все равно может проводить импульсы. Выходное напряжение ОУ ограничивается только напряжением питания. Принципиальная электрическая схема ОУ работает в линейном режиме с отрицательной обратной связью, с помощью сбалансированного сплит-источника питания (питание от ± V S ). Многие приборы, работающие с компаратором, также имеют свойство фиксировать полученные данные при помощи видео-, фото- или документальной записи. Эти электронные принципы не работают в системах, где используются разомкнутые контуры и низкопроводящие элементы.
Фото – простой компаратор
Но у компараторного усилителя существует несколько существенных недостатков:
- Операционные усилители предназначены для работы в линейном режиме с отрицательной обратной связью. Но при этом, ОУ имеет более длительный режим восстановления;
- Почти все операционные усилители имеют конденсатор внутренней компенсации, который ограничивает скорость нарастания выходного напряжения для высокочастотных сигналов. Исходя из этого, данная схема немного задерживает импульс;
- Компаратор не имеет внутреннего гистерезиса.
Из-за этих недостатков, компаратор для управления различными схемами, в большинстве случаев, используется без усилителя, исключением является генератор.
Компаратор предназначен для производственных процессов с ограниченным выходным напряжением, которое легко взаимодействует с цифровой логикой. Поэтому его часто используются в различных термических приборах (терморегулятор, реле температуры). Также его применяют для сравнения сигналов и сопротивлений таких устройств, как таймер, стабилизатор и прочая схемотехника.
Фото – аналоговый компаратор
Видео: компараторы