Средние цены
Стоимость калькулятора зависит от его назначения, мощности и количества функций, которые он способен выполнять, марки и бренда производителя, а также торговой сети, где он реализуется.
Для того, чтобы определить порядок цен, на данные устройства, ниже приведены цены на уже рассмотренные модели, это:
- Модель Citizen SDC-640II, в зависимости от торговой сети и региона продажи, стоимость составляет от 700,00 до 1100,00 рублей.
- Модель Canon WS-1210T, у различных продавцов, стоит от 600,00 до 1100,00 рублей.
- Сенсорный прозрачный калькулятор, в различных торговых сетях, стоит от 400,00 до 800,00 рублей.
- Калькулятор кредитная карта – стоит от 100,00 до 600,00 рублей.
Плюсы и минусы СЭС
Солнечные генераторы имеют массу достоинств. Главным из них является экологическая чистота для окружающей среды.
Плюсы солнечных электростанций:
- Солнечная энергия постоянно возобновляется;
- СЭС не причиняет вред окружающей среде;
- Независимость от центральной подачи электричества;
- Полная автономность системы;
- Длительный срок эксплуатации;
- Бесплатный энергетический ресурс.
Роль человека в получении электричества в данном случае сводится к нулю. Выработка энергии таким способом имеет и минусы. Покупка оборудования потребует серьезных вложений. Кроме этого необходимо приобрести аккумулятор, так как в ночное время СЭС не производит выработку электричества. Установка оборудования требует дополнительной площади. Она может осуществляться на земле, крыши дома, стене здания. К недостаткам можно отнести необходимость очищать отражающую поверхность от пыли и загрязнений, а также нагрев атмосферы над поверхностью оборудования. Мощность вырабатываемого тока напрямую зависит от погодных условий.
Если рационально подходить к вопросу установки солнечных батарей, необходимо учесть некоторые нюансы:
- Проанализировать много ли солнечных дней в предполагаемом районе;
- Уточнить возможность подключения к центральной сети;
- Выяснить, как часто бывают перебои электричества;
- Решить, приборы какой мощности будут использоваться в быту.
Достаточно много достоинств и недостатков у СЭС, однако природные ресурсы не вечны и станции на солнечной энергии смогут стать достойной заменой привычным ресурсам.
Расчет аккумуляторов для солнечной электростанции
Далее перейдем к расчёту ёмкости аккумуляторной батареи для солнечных панелей. Их количестов и емкость должна быть такой, чтобы энергии которая в них запасается хватило на темное время суток, стоит учесть что ночью потребление электроэнергии минимально, по сравнению с дневной активностью.
Аккумулятор на 100А.ч. запасает примерно 100А * 12В = 1200Вт. (лампочка на 100Вт. проработает от такого акб 12 часов). Так если за ночь вы потребляете 2,4кВт.ч. электричества, то вам необходимо установить 2 АКБ по 100А.ч. (12В), но тут стоит учитывать что аккумуляторы нежелательно разряжать на 100%, а лучше не более 70%-50%. Исходя из этого получаем, что 2 АКБ по 100А.ч. будут запасать 2400 * 0,7 = 1700Вт.ч. Это верно при разряде не большими токами, при подключении мощных потребителей происходит просадка напряжения и емкость по факту уменьшается.
Если вы хотите рассчитать, какая емкость аккумулятора нужна к солнечной батари, ниже приводим таблицу соответствия (для системы 12В.):
- Солнечная батарея 50Вт. — АКБ 20-40А.ч.
- 100Вт. — 50-70А.ч.
- 150Вт. — 70-100А.ч.
- 200Вт. — 100-130А.ч.
- 300Вт. — 150-250А.ч.
Пример расчета энергопотребления приборов
Всегда в доме работает холодильник, телевизор, компьютер, машина стиральная, бойлер, утюг, микроволновая печь и иные бытовые приборы, без которых жизнь становится некомфортной. Помимо этого, как минимум 100 лампочек используется для освещения (пусть они будут энергосберегающими). Все это должно следует учесть при проведении расчета мощности солнечных батарей, монтируемых в доме.
В таблице приводятся данные по их мощности, времени функционирования, потребляемой энергии и т.д. Все они работают круглый год:
Прибор | Мощность | Продолжительность использования в сутки | Суточное потребление |
Лампочки для освещения | 200 Вт | примерно 10 часов | 2 кВт*ч |
Холодильник | 500 Вт | 3 часа | 1,5 кВт*ч |
Ноутбук | 100 Вт | до 5 часов | 0,5 кВт*ч |
Стиральная машина | 500 Вт | 6 часов | 3 кВт*ч |
Утюг | 1500 Вт | 1 час | 1,5 кВт*ч |
Телевизор | 150 Вт | 5 часов | 0,8 кВт*ч |
Бойлер на 150 литров | 1,2 кВт | 5 часов | 6 кВт*ч |
Инвертор | 20 Вт | 24 часа | 0,5 кВт*ч |
Контроллер | 5Вт | 24 часа | 0,1 кВт*ч |
Микроволновая печь | 500 Вт | 2 часа | 3 кВт*ч |
Сделав несложный подсчет, выходим на итоговое суточное энергопотребление – 18,9 кВт/ч. Сюда добавить нужно мощность дополнительной техники, пользуются которой не каждый день – электрочайника, комбайна кухонного, насоса, фена и пр. В среднем получится в сутки не менее 25 кВт/ч.
Рекомендуем:
- Инвертор для солнечных батарей: виды, обзор моделей, особенности подключения, критерии выбора и цена
- Лучшие гибридные солнечные инверторы: сходства и отличия, цена, где купить — ТОП-6
- Кемпинговый фонарь на солнечных батареях: особенности, функции, характеристики, цена — ТОП-7
Следовательно, месячное потребление энергии составит 750 кВт/ч. Чтобы текущие расходы покрывались, солнечная батарея должна вырабатывать не меньше итоговой цифры, т.е. 750 кВт.
Особенности используемых в формуле показателей
Величина солнечной энергии, падающей на крышу и стены дома в определенном регионе, может измеряться для разных промежутков времени. Метеорологи рассчитывают годовую, месячную и дневную солнечную радиацию, приходящуюся на 1 кв. м. Если этот показатель годовой, то его единицей измерения является кВт*ч/(м²*год). Вместо слова «год» могут быть слова «месяц» и «день». Например, показатель 5 кВт*ч/(м²*день) означает, что за 1 день на 1 кв. м. падает 5 кВт солнечной энергии.
В вышеуказанную формулу можно подставлять любой показатель. Если подставляется годовая солнечная энергия, то результатом расчета будет такое количество электроэнергии, сколько панель производит за 1 год. Так же с показателями других промежутков времени. Наиболее целесообразно высчитывать месячную выработку электрической энергии. Интенсивность освещения в каждом месяце различна, и для выработки, например, 10 кВт электричества, надо использовать разное количество панелей, а также подключать соответствующее число аккумуляторов.
Выражение включает в себя 2 показателя, но его следует рассматривать, как один. Это потому, что он показывает производительность панели. Более правильно было бы использовать выражение , где S является площадью светочувствительных пластин в кв. м. Оно позволяет определить КПД солнечных батарей, а точнее, какую часть света может превратить 1 кв. метр панели в электрическую энергию.
Например, есть немецкая монокристаллическая панель SolarWorld 2015. Она имеет площадь 1,995 кв. метр и мощность 320 Вт. Ее КПД составляет 320 / (1 000 * 1,995) * 100 = 16,04%. Для применения в формуле выражение на 100 умножать не надо. В ней следует использовать число 0,1604.
Второе выражение не используют потому, что результатом будет мощность 1 кв. метра панели. Батарея редко имеет такую площадь. Этот ее показатель значительно больше. Например, вышеупомянутое изделие имеет площадь 1,995 м². В итоге, конечный рассчитанный по формуле результат нужно было бы умножать на площадь. Получилось бы так, что в числителе и знаменателе выражения будет S. А если S делить на S выйдет 1.
Определение стоимости системы
Назвать точно, во сколько вам обойдутся солнечные батареи вместе с необходимым техническим оборудованием и установкой, невозможно. Так как сегодня на рынке представлено огромное количество фирм, которые предлагают различные панели как по качеству, так и по мощности, срокам гарантии, дополнительным характеристикам. Есть даже схожие варианты по своим параметрам, но цена будет разной. Поэтому оценивайте все факторы в совокупности и выбирайте проверенных поставщиков. В среднем стоимость батареи мощностью 1кВт где-то в пределах 70 000 рублей. Но если вам нужно купить не одну панель, а несколько, то вы можете смело рассчитывать на скидку либо на бесплатную доставку.
Помимо расходов, связных с покупкой солнечных батарей, вам в обязательном порядке нужно будет приобрести и другие элементы системы, а именно: специализированный аккумулятор, инвертор и качественный контроллер. Например, мощный аккумулятор 12В и 200А/ч обойдется около 20 000 рублей. Есть и дороже, которые отличаются длительным сроком службы более 10 лет. В качестве альтернативы вы можете купить автомобильный аккумулятор, его цена будет на порядок ниже, однако его нельзя будет использовать в жилых домах, к тому же они не отличаются долгой работой, не более 5 лет обычно.
Ну и, конечно же, не обойтись без инвертора. С помощью инвертора постоянный ток от солнечной батареи перерабатывается в переменный с напряжением 220В, который мы используем для своих бытовых нужд. Инверторы также отличаются устройством, техническими характеристиками, производителями и сроком гарантии. Лучшими считаются синусоидные. Цена их находится в пределах от 13 000 до 20 000 рублей. Поэтому рассчитать общую сумму расходов на установку солнечной системы можно только исходя из своих потребностей, финансовых возможностей и качества оборудования.
Определиться с местом расположения будущей солнечной электростанции – крыша или приусадебный участок
Начну с того, что наиболее благоприятным расположением солнечной электростанции для максимальной выработки электроэнергии является расположение панелей строго на юг под углом от 30 до 40 градусов. Если крыша на вашем объекте соответствует этим критериям — можно установить на неё, но нужно ещё учесть площадь.
Для того чтобы определить примерную площадь, необходимую для установки солнечной электростанции, вам нужно знать размеры солнечной панели, из которых будет состоять солнечная электростанция. Затем высчитать площадь одной панели и умножить на то количество панелей, которое будет в вашей станции.
Например, если мы выбрали панель мощностью 500 Вт. (таких панелей для 30 кВт. станции нам нужно 60 штук), ее размеры 2,2 метра на 1,1 метра. Значит площадь одной панели (2,2*1,1) =2,42 квадратных метра. А необходимая общая площадь всех панелей составляет (2,42,*60) = 145,2 квадратных метра.
https://youtube.com/watch?v=xXEa1J7fJ9M
Но вам стоит понимать, что эта рассчитанная площадь является примерной и минимально необходимой, так как при установке солнечной электростанции ещё может затрачиваться дополнительное место на установку конструкции или креплений. Более точно необходимую площадь может рассчитать специалист, который занимается монтажами солнечных электростанций, после выезда на ваш объект.
Расчет количества солнечных батарей и их мощности
Так как солнечные панели вырабатывают электрическую энергию только в светлое время суток, то это необходимо учесть в первую очередь, так же стоит понимать, что выработка в пасмурные дни и зимой очень сильно снижается, и может составлять 10-30 процентов от мощности панелей. Для простоты и удобства мы будем делать расчет с апреля по октябрь, по времени суток основная выработка идет с 9 до 17 часов, т.е. 7-8 часов в день. В летнее время интервалы конечно будут больше, с восхода до заката, но в эти часы выработка будет значительно меньше номинала, поэтому мы усредняем.
Итак 4 солнечные батареи мощностью 250Вт. (всего 1000Вт). За день выработают 8кВт.ч энергии, т.е. в месяц это 240кВт.ч. Но это идеальный расчет, как мы говорили выше, в пасмурные дни выработка будет меньше, поэтому можно лучше взять 70% от выработки, 240 * 0,7 = 168 кВт.ч. Это усредненный расчет без потерь в инверторе и аккумуляторных батареях. Так же это значение можно применить для рассчета сетевой солнечной электростанции где не используются аккумуляторные батареи.
Расчет мощности
Рассмотрим подробно, как рассчитать мощность гелиопанелей. Прежде всего, необходимо вычислить свое потребление. Для этого надо сложить потребляемую мощность всех электроприборов, нагревателей, освещения и прочих потребителей. Сделать это непросто, так как придется вспомнить все мелочи, которых оказывается довольно много.
Стоит отметить, что если планируется установить солнечные батареи на дачу, то как правило, такое решение окупится по причине достаточно небольшой требуемой мощности.
Для простоты рассмотрим пример расчета по готовой сумме потребления. Например, есть частный дом, который потребляет в месяц 300 кВт/час. Это означает, что в день потребление составляет 10 кВт/час. Здесь необходимо определить, сколько солнечных панелей, способных вырабатывать в сутки не менее 10 кВт, нужно для дома.
Прежде всего, надо определиться с временем работы системы. Даже самые мощные элементы способны принимать энергию только в определенное время суток. Рабочий период называется пиковыми солнечными часами. Их не следует путать с длительностью светового дня, которая гораздо больше. Однако, утренние и вечерние часы в расчет не берутся, так как для оборудования они непродуктивны.
Как правило, учитывается время с 9 до 16 часов. Этот период можно еще сократить, чтобы скорректировать потери от деградации панелей, изношенного оборудования или АКБ. Допустим, рабочее время панелей в сутки составит 5 часов. При потребности в 10 кВт, необходимо, чтобы на 1 час приходилась выработка не менее 2 кВт энергии. Руководствуясь этим значением, можно подсчитать, сколько солнечных батарей нужно для обеспечения дома, если часовая выработка составляет 2 кВт. Для этого надо изучить технические характеристики разных моделей и выбрать наиболее удачные варианты.
Существуют и другие методы. Можно рассчитать мощность по формуле:
где Рсп — мощность панелей, кВт;
Еп — суточное потребление, кВт;
К — коэффициент потерь (1.2–1.4);
Ринс — мощность инсоляции на земной поверхности;
Еинс — среднемесячное значение инсоляции (берется в таблицах).
Эта формула дает достаточно корректный результат, но неподготовленному человеку пользоваться ей трудно. Придется искать величины инсоляции, которые различаются по регионам. Для неопытных людей проще всего использовать онлайн-калькулятор, которых в сети довольно много.
Одна панель в сутки вырабатывает около 100 Вт энергии. Есть маломощные модели, по 50 Вт, пригодные для питания осветительных приборов с низким потреблением. Выбирать устройства необходимо с некоторым запасом, учитывая возможность появления дополнительных потребителей и деградацию оборудования. На практике приходится учитывать также стоимость панелей и условия их работы. Например, если солнечных дней в году мало, оптимальным вариантом станут гибкие модели, хорошо работающие даже в сумерках.
В заключение необходимо напомнить, что самостоятельный расчет мощности — задача трудная даже для профессионалов. Приходится учитывать большое количество факторов, о которых неподготовленный человек даже не имеет представления. Поэтому, лучшим вариантом будет обращение к специалисту, или расчет с помощью онлайн калькуляторе (что несколько хуже).
Что еще учесть при расчете солнечных панелей
Значение коэффициента уровня радиации, на которое вы будете опираться при расчетах солнечных батарей для дома, влияет на их производительность. Например, если вы возьмете минимальное значение, то в основном вам постоянно будет хватать производимой энергии за исключением продолжительных периодов плохой/пасмурной погоды. Если вы будете отталкиваться от максимального показателя, то у вас наверняка будет перепроизводство и лишняя электроэнергия в некоторые месяцы в течение года.
Еще учитывайте, что приведенные выше алгоритмы – это приблизительный вариант, дающий в общих чертах понимание, как рассчитать солнечные панели для дома. При более детальных расчетах учитываются и другие уточняющие коэффициенты, угол наклона батарей, их месторасположение и пр. Кроме того, вы должны помнить, что рассчитанная мощность может вами корректироваться в зависимости от потребностей – если они вырастут, количество электроэнергии легко увеличить, добавив N-е количество солнечный батарей. Но только после соответствующих расчетов, которые предпочтительно уточнить у специалистов.
И еще один момент. На этапе подготовки к расчету солнечной установки, необходимо знать потребности в электроэнергии конкретного потребителя, технические нормы и требования законодательства, текущий проект дома, квартиры или объекта, где планируется установка гелиосистемы. Если вы планируете использовать генерируемую солнечными панелями энергию не только для собственных нужд домохозяйства/предприятия, но и для продажи излишков электроэнергии, учитывайте требования к солнечным установкам согласно Зеленому тарифу и договору с поставщиком электроэнергии (РЭС).
Что такое солнечная электростанция
Любая СЭС представляет собой специализированный комплекс оборудования, способный улавливать электромагнитное излучение солнца и преобразовывать его в тепловую или электрическую энергию.
Для этого использовались разные технологии, которые с годами совершенствовались.
Наиболее ранний известный метод позволял получать энергию за счет перепада температур в герметичной прозрачной башне. Его использовали на французских фермах еще в 19 столетии.
Следующим технологическим решением стала система зеркал, размещаемых концентрическими кругами вокруг высокой центральной башни, на которой устанавливался бак с теплоносителем. Фокусировка лучей от каждого зеркала нагревала бак до температур от 500 до 700°C. Теплоноситель превращался в перегретый пар, передающийся на лопатки турбин. К сожалению, эффективные установки подобного рода требовали огромных площадей, а небольшие домашние солнечные электростанции смонтировать таким путем было невозможно.
Гораздо более прогрессивными и перспективными являются современные СЭС на базе фотоэлектрических солнечных панелей. Теоретическая эффективность таких установок может достигать 80%, а их размеры могут колебаться от миниатюрной батареи на поясе до огромных ферм, занимающих сотни квадратных километров.
В связи с этим далее мы будем рассматривать только станции, генерирующие энергию с помощью фотоэлектрических батарей.
Принцип работы солнечной электростанции в домашних условиях
Солнечная электростанция – это система состоящая из панелей, инвертора, аккумулятора и контроллера. Солнечная панель трансформирует лучистую энергию в электричество (как было сказано выше). Постоянный ток попадает в контроллер, который распределяет ток по потребителям (например, компьютер или освещение). Инвертор преобразовывает постоянный ток в переменный и обеспечивает работу большинства электрических бытовых приборов. В аккумуляторе накапливается энергия, которая можно расходовать в темное время суток.
Видео описание
Наглядный пример расчетов, показывающий, сколько панелей нужно для обеспечения автономного энергоснабжения, смотрите в этом видеоролике:
https://youtube.com/watch?v=ID34smUuqdA
Как солнечная энергия используется для получения тепла
Гелиосистемы применяются для нагревания воды и отопления жилища. Они могут давать тепло (по желанию владельца) даже тогда, когда отопительный сезон закончится, и обеспечивать дом горячей водой бесплатно. Простейшее устройство представляет собой металлические панели, которые устанавливают на крыше дома. Они аккумулируют энергию и согревают воду, которая циркулирует по скрытым под ними трубам. Функционирование всех гелиосистем основано на этом принципе, несмотря на то, что конструктивно они могут отличаться друг от друга.
Солнечные коллекторы состоят из:
- бака-аккумулятора;
- насосной станции;
- контроллера;
- трубопроводы;
- фиттингов.
По типу конструкции различают плоские и вакуумные коллекторы. У первых дно покрыто теплоизоляционным материалом, а жидкость циркулирует по стеклянным трубам. Вакуумные коллекторы отличаются большой эффективностью, потому что теплопотери в них сведены к минимуму. Этот тип коллектора обеспечивает не только отопление солнечными батареями частного дома – его удобно использовать для систем горячего водоснабжения и подогрева бассейнов.
Принцип действия солнечного коллектораИсточник 21ek.ru
Популярные производители солнечных батарей
Чаще всего на прилавках встречается продукция компаний Yingli Green Energy и Suntech Power Ко. Также популярностью пользуются панели HiminSolar (Китай). Их солнечные батареи производят электроэнергию даже в дождливую погоду.
Производство солнечных батарей налажено и у отечественного производителя. Этим занимаются такие компании:
- ООО «Хевел» в Новочебоксарске;
- «Телеком-СТВ» в Зеленограде;
- «Sun Shines» (ООО «Автономные Системы Освещения») в Москве;
- ОАО «Рязанский завод металлокерамических приборов»;
- ЗАО «Термотрон-завод» и другие.
По стоимости всегда можно найти подходящий вариант. Например в Москве на солнечные батареи для дома стоимость будет варьироваться от 21 000 до 2 000 000 руб. Стоимость зависит от комплектации и мощности устройств.
Солнечные батареи не всегда плоские – есть ряд моделей, которые фокусируют свет в одной точкеИсточник pinterest.com
Этапы монтажа батарей
- Для установки панелей выбирается самое освещенное место – чаще всего это крыши и стены зданий. Чтобы устройство функционировало максимально эффективно, панели монтируются под определенным углом к горизонту. Учитывается также уровень затемненности территории: окружающие предметы, которые могут создавать тень (постройки, деревья и т. п.)
- Устанавливаются панели при помощи специальных крепежных систем.
- Затем модули соединяются с аккумулятором, контроллером и инвертором, и производится наладка всей системы.
Для монтажа системы всегда разрабатывается персональный проект, который учитывает все особенности ситуации: как будет выполняться установка солнечных батарей на крыше дома, цена и сроки. В зависимости от вида и объема работ, все проекты рассчитываются в индивидуальном порядке. Клиент принимает работу и получает на нее гарантию.
Установка солнечных батарей должна производиться профессионалами и с соблюдением мер безопасностиИсточник pinterest.ca
Как итог – перспективы развития солнечных технологий
Если на Земле максимально эффективной работе солнечных батарей мешает воздух, который в известной мере рассеивает излучение Солнца, то в космосе такой проблемы не существует. Учеными ведется разработка проектов гигантских орбитальных спутников с солнечными батареями, которые будут работать 24 часа в сутки. От них энергия будет передаваться на наземные приемные устройства. Но это дело будущего, а для уже существующих батарей усилия направлены на повышение энергоэффективности и уменьшение размеров устройств.
Расчет количества солнечных батарей и их мощности
Так как солнечные панели вырабатывают электрическую энергию только в светлое время суток, то это необходимо учесть в первую очередь, так же стоит понимать, что выработка в пасмурные дни и зимой очень сильно снижается, и может составлять 10-30 процентов от мощности панелей. Для простоты и удобства мы будем делать расчет с апреля по октябрь, по времени суток основная выработка идет с 9 до 17 часов, т.е. 7-8 часов в день. В летнее время интервалы конечно будут больше, с восхода до заката, но в эти часы выработка будет значительно меньше номинала, поэтому мы усредняем.
Итак 4 солнечные батареи мощностью 250Вт. (всего 1000Вт). За день выработают 8кВт.ч энергии, т.е. в месяц это 240кВт.ч. Но это идеальный расчет, как мы говорили выше, в пасмурные дни выработка будет меньше, поэтому можно лучше взять 70% от выработки, 240 * 0,7 = 168 кВт.ч. Это усредненный расчет без потерь в инверторе и аккумуляторных батареях. Так же это значение можно применить для рассчета сетевой солнечной электростанции где не используются аккумуляторные батареи.
Окупаемость сетевой солнечной электростанции и ее экономическая эффективность
Вопрос окупаемости сетевых солнечных электростанций тревожит умы прагматиков уже многие годы. Сейчас я постараюсь навязать вам свое мнение. Хехе )) Конечно же навязывать я ничего не буду, я лишь покажу как считать стоимость киловатта солнечной электроэнергии.
Допустим, по квитанциям за электроэнергию вы потребляете 1000 кВт*ч, из них 600 кВт*ч в дневное время. Если у вас потребление сильно меньше, то экономия также будет гораздо меньше, а срок окупаемости больше. Так вот. Регион все таже Московская область, тогда Мощность солнечной электростанции = 600 кВт*ч / 30 дней / 3,47 часа = 5,76 кВт
Стоимость сетевой солнечной электростанции мощностью 6 кВт в час (на март 2018 года) составляет 290 тыс. рублей. Плюс крепеж для 24 солнечных модулей на крыше – 24 тыс. рублей. Плюс монтаж 10-15% от стоимости системы – еще 40 тыс. рублей. Итого, такая сетевая солнечная электростанция под ключ обойдется владельцу в 354 тыс. рублей.
При тарифе за электроэнергию в дневное время 6 рублей, 600 кВт*ч в месяц из городской сети будут обходиться в 6*600=3 600 рублей или 43,2 тыс. в год.
Таким образом, окупаемость системы составит 354 тыс. руб / 43, 2 тыс. руб = 8,2 года.
График роста тарифа на электроэнергию с прогнозом до 2030 г.
Но если учесть, что в среднем тариф на электроэнергию вырастает на 10% в год, то через 5 лет, ваша солнечная электростанция будет окупаться на 50% быстрее, то есть общий срок окупаемости составит 6 лет. И все, с того момента электроэнергия в дневное время для вас будет бесплатной. По-моему неплохо!
Производители солнечных батарей гарантируют, что за 25 лет эксплуатации КПД панелей не снизится ниже 80%, а расчетный период жизни и того превышает 75 лет.
А теперь смотрите, даже если мы возьмем гарантийные 25 лет эксплуатации, то за это время ваша солнечная электростанция сгенерирует порядка 6 кВт * 3,47 часа * 365 дней в году * 25 гарантийных лет = 190 МВт, что эквивалентно 1 млн 140 тыс. рублей даже без роста тарифа, который, как вы видите на графике, просто неизбежен. Но даже после этого система будет работоспособна и продолжит экономить ваши деньги.
Итак, 354 тыс. рублей делим 190 000 кВт = стоимость 1 кВт электроэнергии от солнечных батарей 1 руб. 86 коп. Как вам?
А что будет когда введут Зеленый тариф?
А что если эту электростанцию поставить в южном регионе?
Ууух, количество денег, которые можно заработать, так и толкают действовать. Так почему же я все еще пишу эту статью, а не строю новые и новые электростанции? А вот одно другому не мешает ) И я буду активно писать и снимать видео о своих проектах и проектах людей, которые уже в теме. Подписывайтесь на наши публикации и первые узнаете о трендах солнечной энергетики.
Что собой представляют солнечные батареи?
В общей сложности солнечные батареи – это генераторы постоянного тока, к которым подключаются аккумуляторы с контролером заряда и специальные устройства, именуемые инверторами, непосредственно предназначенными для преобразования постоянного в переменный ток.
Множество фотоэлементов на панели предназначены для трансформации солнечной в электрическую энергию.
Благодаря параллельному и последовательному подключению всех отдельных фотоэлементов воедино создаётся определённое количество энергии. Элементы, подключённые параллельно, на выходе дают ток, а последовательная сборка – напряжение.
Скомбинировав оба способа – обеспечивается бесперебойная работа солнечной батареи. В качестве соединяющих элементов для панели используются диоды, которые в свою очередь не допускают её перегрева и одновременно не дают аккумуляторам самостоятельно разрядиться.
Для «сбора» и «хранения» энергии от солнечной панели используются аккумуляторы со специальным контроллёром заряда. Дабы предотвратить поломку всей системы от избыточной мощности, к ней подключается резистор. С помощью инвертора из солнечной батареи поступает преобразованный переменный ток, которым можно пользоваться для решения бытовых потребностей (например, освещение здания).
Комплектация
Базовая комплектация всей системы состоит:
- Солнечная панель (и) – предназначена для приёма солнечного излучения.
- Контроллер заряда – нормализует работу батареи и способствует повышению эффективности выработки электроэнергии.
- Аккумуляторные батареи – благодаря батареям в системе сохраняется полученная электроэнергия.
- Инвертор – необходим для преобразования постоянного в переменный ток, ведь он используется электроприборами.
Преимущества и нюансы
К главным достоинствам относятся:
- Отсутствие затрат во время эксплуатации.
- Долговечность.
- В процессе работы используется природный неиссякаемый ресурс – солнечное излучение.
- Минимальное техническое обслуживание.
- Бесшумность в работе.
- Достаточный уровень КПД.
- 0% загрязнения окружающей среды.
Некоторые нюансы:
- Относительная зависимость от солнечного света.
- Высокая общая стоимость.
- Необходимы навыки при монтаже.
Виды батарей
- Солнечные батареи из монокристаллического кремния. Получаются от литья кристаллов высокоочищенного кремния. Особое расположение атомов монокристалла повышает КПД до 19%. Фотоэлементы имеют толщину от 200 до 300 мкм. Данного рода батареи надёжны и долговечны, но отличаются от остальных видов батарей повышенной ценой.
- Солнечные батареи из мультикристаллического кремния. Материал для батарей состоит из разных монокристаллических решёток кремния, благодаря чему служит примерно 25 лет, а КПД составляет 14 – 15%.
- Солнечные батареи из поликристаллического кремния. Атомы кремния имеют различную ориентацию, чем немного уступают электрическими показателями монокристаллу. Отличаются средним сроком службы (20 лет), КПД – 14%. В отличии от тёмных аналогов – материал в конечном варианте имеет светло синий цвет.
- Тонкоплёночные батареи. В качестве материала для панелей используется специальная плёнка, которая хорошо поглощает свет. Данные батареи могут использоваться в местах с преобладающей пасмурной погодой. КПД у них небольшой 10%, но этот нюанс компенсируется привлекательной ценой батарей.
- Батареи из аморфного кремния. Батареи эконом варианта с показателем КПД не больше 8%, но особые фотоэлектрические преобразователи позволяют вырабатывать дешёвую электроэнергию.
- Батареи на основе теллуида кадмия. В основе этих батарей лежит плёночная технология. Несмотря на микроскопический слой материала, добивается результат КПД в 11%. Выработанная ими энергия обходится немного дешевле, в отличии от кремниевых панелей.
Область применения
Вырабатываемая дешёвая электроэнергия солнечными батареями востребована в различных отраслях и используется для:
- Освещения жилых и не жилых помещений – дома, дачи, офисы, больницы, тепличные комплексы.
- Обеспечения энергией телекоммуникационного и медицинского оборудования.
- Освещения придомовых территорий, улиц, шоссе.
- Производить зарядку микроэлектроники.
- Особой популярностью солнечные батареи пользуются в космической и автомобильной отрасли.
Инструкция к калькулятору
Для вашего удобства мы создали специальную программу, которая поможет вам оценить затраты на компоненты солнечной электростанции. Надо иметь ввиду, что это не все затраты, а только на основное оборудование – солнечные модули, аккумуляторы и инверторы. Отдельно вам потребуется оплатить стоимость конструкции и проводки. Она зависит от конкретного места крепления модулей и их расстояния до аккумуляторов и потребителей. Местами крепления могут быть:
- крыши различных конструкций,
- стены,
- балконы
- участки земли
- другие места
Шаг 1
Вы должны оценить сколько электрической энергии вам необходимо, чтобы обеспечить работу всех бытовых приборов. К примеру, вам необходимо 3 светодиодные лампочки на 6 часов в сутки, холодильник на 24 часа, компьютер на 6 часов. Вы находите соответствующие графы в калькуляторе и заполняете их.
Получилось, что вам необходимо 8,37 квт час в день. Теперь вам необходимо рассчитать количество аккумуляторов.
Шаг 2
Выберете емкость аккумулятора (100 или 200 ампер в час) и его напряжение (12 или 24 Вольт). По умолчанию в меню программы стоит 100 ампер в час и 12 Вольт). Программа покажет вам количество аккумуляторов, которые необходимы для работы всех бытовых приборов в течении указанного времени. В нашем примере получается 6 аккумуляторов (100 ампер в час и 12 Вольт).
Далее вам необходимо зарядить ваши аккумуляторы солнечным светом от модулей.
Шаг 3
Выберете местоположение из списка городов. Если не нашли свой, выберете ближайший (в любом случае это приблизительный расчет) или пришлите запрос на нашу электронную почту.
Внимание!
Солнечные модули вырабатывают мало электроэнергии зимой (короткий день, низкая интенсивность солнечного света). Поэтому наш калькулятор делает два расчета на зимний и летний период.
Декабрь-январь. Рассчитывается количество модулей, которые обеспечивают работу в течении всего года исходя из самых плохих несолнечных месяцев.
Март-Октябрь. Рассчитывается количество модулей для периода с марта по октябрь. Это солнечные месяцы. Если вы будете приобретать оборудование исходя из этого расчета, то вам необходимо будет позаботиться о подзарядке аккумуляторов в зимний период времени.
В итоге мы получили приблизительную стоимость компонентов солнечной электростанции, которая не включает стоимость конструкции, проводов, доставку и монтаж станции. Дополнительные затраты вы можете просчитать самостоятельно или при проектировании.