Все виды градусников для измерения температуры тела

Содержание

Что это такое и для чего нужны?

Уже по самому названию понятно, что назначение термометра – измерение температуры. Такие устройства могут применяться в самых различных сферах и областях. И те «градусники», которые висят за окном либо находятся в домашней аптечке – это лишь небольшая часть от всего их многообразия. Для определения фактической температуры могут использоваться самые разные физические принципы. При этом требования к погрешности измерений четко установлены в ГОСТ.

Измерение погоды, а также характеристика микроклимата комнаты или служебного, рабочего помещения – чаще всего это считают сферой применения таких приборов. Но термометры нужны еще и для измерения температуры воды.

Термометры также используют и на кухнях. Там приходится измерять не только температуру жидкости, но и температуру продуктов (чаще всего мяса, рыбы, выпечки). Тут нельзя не упомянуть особые винные градусники и термометры в газовых/электрических плитах, в холодильниках. Выглядит такая измерительная аппаратура несколько иначе, чем уличные термометры.

Необычно смотрятся также многие медицинские термометры для детей

Причина нестандартного вида состоит в том, что необходимо отвлечь внимание детей, избавить их от тягостных мыслей о сугубо медицинской процедуре

В разных странах термометры могут иметь различные единицы измерения, но за редким исключением сейчас используют шкалу Цельсия либо Фаренгейта. Эти устройства могут применяться в нефтяной и металлургической, пищевой и металлообрабатывающей, радиотехнической отраслях. Термометры нужны и в сельском хозяйстве, чтобы определять готовность почвы к севу. Также эти измерительные приборы нужны:

  • в авиации и автомобильном транспорте;
  • на железной дороге и в речном, морском флоте;
  • в рефрижераторах;
  • в исследованиях по биологии и аналитической химии;
  • в ветеринарии;
  • в химической промышленности.

Какие приборы существуют?

Ассортимент термометров необходим, поскольку их подбирают с учетом назначения:

  • медицинские. Также их называют термометрами, прибор для измерения температуры тела имеет небольшой диапазон. Укажет показатели от +29,5 до +42 градусов. Бывают ушные, в виде кнопки, в виде соски, цифровые и стандартные – из стекла. Ртутные дают точные показатели, но их нужно держать 5-10 минут. Цифровые выводят данные на экран, требуют около 30-60 секунд на измерения. Соски и кнопки используются для детей;
  • бытовые. Чем измеряют температуру воздуха? Бытовые градусники измеряют показатели в помещениях и на улице. При стеклянной оболочке используется ртуть или спирт. Домашние отражают данные от +0 до +50, личные от -50 до +50;
  • промышленные. Чаще всего это оснащенные устройства механической категории, для указания на шкалу используется стрелка. Нужны для получения показателей в системах, например, водных или газовых магистралях. Отличаются показателями, размерами, исполнением;
  • кухонные. Измеряют показатели пищевых продуктов, делятся на жидкостные, механические и электрические.

Ртутный термометр

Ртуть. Ртутный термометр

В наше время, когда цифровые и электронные технологии активно развиваются, и входят во все сферы человеческой деятельности, играя все большую роль и становясь все более незаменимыми для каждого из нас, есть обычные предметы и вещи из нашего повседневного обихода, которые еще долго будут нам служить и приносить пользу.

К таким предметам, можно отнести всем известный «градусник», или как правильнее его называть – ртутный медицинский термометр.

Даже после появления большого количества моделей электронных градусников, ртутный термометр не утратил свою популярность и является наиболее распространенным прибором для измерения температуры человеческого тела.

История

Часть специалистов полагает, что термометр изобрел Галилей. Сохранившиеся его труды не содержат описания подобного устройства. Однако в сочинениях ближайших последователей Галилея такая информация есть. Что любопытно, при создании термоскопа знаменитый ученый отталкивался от аналогичного по устройству прибора, созданного еще в Древней Греции, но для совершенно других целей. Термоскопы только показывают, что степень нагрева изменяется; из-за отсутствия шкалы они непригодны для практических измерений.

В 1657 году во Флоренции появляется более продуманное устройство. Его конструкция позволяла давать количественную оценку температуре. Но все равно это был еще очень примитивный термометр.

Все ранние термометры содержали воздушную трубку, окруженную водяным столбиком. Потому избежать воздействия атмосферного давления было невозможно. Жидкостный термометр, по некоторым данным, появился в 1667 году. Такие устройства изготавливались строго вручную, позволяли измерять только температуру воздуха. Шкала в каждом случае разрабатывалась индивидуально, и результаты замеров оказывались потому несопоставимы.

Фаренгейт, в честь которого недаром названа одна из популярных шкал термометрии, создал термометр современного вида в 1723 году. Именно он понял, что спирт недостаточно совершенен как измерительный реагент при том уровне техники, и перешел к использованию ртути. За нулевую отметку англичанин взял температуру плавления смеси снега с нашатырным спиртом или пищевой солью. Точку плавления воды он взял за 32 градуса, а температуру тела здорового человека принял за 96 градусов.

Созданные Фаренгейтом термометры делались очень тщательно, о чем свидетельствуют все сохранившиеся экземпляры. Позднее Андерс Цельсий обнаружил, что температура плавления льда не меняется при изменении давления. А вот зависимость температуры кипения воды от давления была прослежена им с большой точностью. В 1736 году Реомюр ввел шкалу из 80 градусов, которая долго использовалась во Франции. Существовали и другие, сейчас уже вышедшие из употребления или применяемые очень ограниченно, температурные шкалы.

В научной сфере активно применяют термометры со шкалой Кельвина. Пересчет градусов Цельсия в градусы Кельвина очень прост: надо только прибавить 273,15.

Как правильно использовать ртутный термометр?

Перед каждым измерением температуры тела, необходимо проверить градусник, тщательно его осмотрев. Если показания на ртутном столбике превышают 35 C, необходимо стряхнуть термометр.

Встряхивание градусника делается следующим образом:

  • Возьмите верхнюю часть термометра в кулак так, чтобы головка термометра надежно упиралась в вашу ладонь, резервуар с ртутью смотрел вниз, а середина термометра оказалась между большим и указательными пальцами
  • Несколько раз отрывистым движением в локтевом суставе с силой опустить руку вниз, делая при этом резкую остановку руки, так что бы происходило реальное встряхивание «градусника».
  • После измерения температуры ртутный термометр необходимо дезинфицировать, при этом ни в коем случае не мойте ртутный термометр горячей водой. От воздействия горячей воды он может утратить свою точность или вообще испортится или даже треснуть.

Как работают термометры, отличия различных моделей

Оборудование известно более четырех сотен лет, однако все еще вносятся корректировки, в результате чего создаются инновационные виды термометров. Они функционируют на основе реакций, не используемых ранее.


Термометр для измерения температуры воды

Основные виды:

  1. Жидкостные. Стандартные градусники реагируют на изменение температуры расширением жидкости. Измерение температуры представляет собой процесс сжатия содержимого от холода и его расширение при повышении показателей. Температура определяется по шкале с учетом расположения жидкости. Обычно погрешность в пределах 0,1 градуса. Минусом является риск повреждения от удара и падения.
  2. Газовые. Рабочий принцип аналогичен жидкостным, однако внутри колбы находится инертный газ. Использование газа позволяет охватить больший перечень показателей. Термометры покажут данные в пределах от +271 до + 1000 градусов. Обычно их применяют с целью измерения показаний для горячих веществ.
  3. Электрические. Их действие базируется на изменениях показателей сопротивления установленного проводящего элемента при разной температуре. Увеличивается прогрев металла, что отражается в его сопротивляемости при перемещении тока. Возможности электрических приборов зависят от выбранного металла. Дорогие модели с платиной показывают данные от -200 до +750 градусов, доступные приборы делают из меди (от -50 до +180 градусов).
  4. Механические. Для получения данных они учитывают деформации спирали из металла, их дополняют стрелкой, поэтому есть сходство со стрелочными часами. Отличаются прочностью и могут размещаться на панелях приборов.
  5. Волоконно-оптические. Какие бывают термометры с высокой чувствительностью? Эта категория оборудования имеет отклонения до 0,1 градуса и измеряет показатели до +400 градусов. Для работы используется натянутое оптоволокно, оно реагирует на изменения сжатием или расширением. Поскольку сквозь него проходит луч света, выполняется его преломление и фиксация оптическим датчиком. Он сопоставляет преломление и температуру среды.
  6. Термоэлектрические. Оснащены 2 проводниками для физического измерения температуры (эффект Зеебека). Точность высокая – 0,01 градуса, а диапазон от -100 до +2500 градусов. Актуальны при необходимости получения высоких показателей, чаще от 1000 градусов.
  7. Инфракрасные. Эта категория оборудования изобретена недавно и обеспечивает диапазон от +100 до +3000 градусов. Обеспечена возможность измерений без контакта со средой. Оборудование направляет инфракрасный луч на измеряемую поверхность, отражая показатели на экране. Недочетом этой категории устройств является отсутствие предельной точности, поэтому возможны ошибки на несколько градусов. Используются для проверки нагрева заготовок из металла, корпуса двигателей и так далее. Также они могут вывести показатели открытого пламени.

Устройство стеклянного термометра

Устроен уличный стеклянный термометр следующим образом. В стеклянной трубке установлена шкала с делениями, к которой закреплена стеклянная трубка с очень маленьким, калиброванным по размеру, внутренним отверстием (капиллярная трубка), к которой приварен маленький стеклянный резервуар, наполненный спиртом. При нагреве воздуха спирт расширяется, при понижении температуры – уменьшается в объеме (сжимается). Это мы и наблюдаем в капиллярной трубке в виде движения вверх или вниз цветного столбика. Спирт – прозрачный, и для того, чтобы столбик был лучше виден, в него добавляют краситель, обычно красного цвета.

Обзор видов

По предназначению

Домашний медицинский термометр обычно содержит ртуть. А вот метеорологическая практика чаще всего требует использования спирта. Дело в том, что ртуть замерзает при -38 градусах. Механические термометры обычно используют биметаллическую ленту, хотя бывает и устройство на базе металлической спирали. Но в бытовой сфере такая техника вовсе не применяется, потому что из-за высокой точности она в основном нужна в автоматизированных технических системах.

Термометры для системы отопления, то есть для котла и отопительного контура, позволяют избежать перегрева или чрезмерного охлаждения. В этом сегменте используют:

  • биметаллические устройства с погружной гильзой;

  • биметаллические термометры с накладной пружиной;

  • жидкостные устройства (быстро реагирующие на изменение температуры, но не слишком удобные и стоящие весьма дорого).

Термометры для измерения температуры воздуха в быту, как и профессиональные, обычно используют ртутную шкалу. Это наиболее дешевый и практичный вариант. И наружный термометр, который можно увидеть на стене или окне любого дома, чаще всего будет именно жидкостного типа. Говоря про бытовые термометры, нужно указать, что отдельные модели могут быть рассчитаны на деревянные окна, а другие – на эксплуатацию на окнах ПВХ. Также надо помнить, что «градусники» могут быть отдельно рассчитаны на измерение температуры:

  • воды;

  • чая (кофе);

  • пива;

  • вина;

  • погребов;

  • морозильных камер.

Водяной термометр может использоваться:

  • в банях;

  • в ванных комнатах;

  • в дачном хозяйстве;

  • в кухне.

По принципу действия

Газовый измеритель температуры способен замерять значения, близкие к абсолютному нулю. Потому его активно используют в физике и криогенной технике. Проблема только в одном: подобные устройства очень сложны, и в рядовой лаборатории их использовать тяжело. Электрические термометры работают, как уже говорилось, на основе линейной зависимости сопротивления проводников от температуры. Измерения на основе полупроводниковых элементов могли бы быть еще точнее, однако тогда возникает сложность с градуировкой шкалой.

Оптические термометры (они же пирометры) определяют температуру по интенсивности свечения по его спектру. Иногда используются и другие параметры. Оптические системы работают без прямого контакта с определенным телом. Они сумеют замерить температуры от 100 до 3000 градусов, при этом отклонение составит не более 2-5 градусов. Волоконно-оптический и термоэлектрический типы термометров дают наиболее правильные показания без существенных ошибок.

Но разница между термометрами не сводится к перечисленным градациям. Есть еще несколько разновидностей такой техники. Контактный термометр – это цифровой прибор, который точнее пирометра. Дело в том, что на результат измерений не влияют излучательные характеристики поверхности.

Накладной термоизмерительный прибор активно используется при контроле состояния малых трубопроводов. Такие устройства нужны:

  • в отоплении;

  • в канализационном хозяйстве;

  • в системе вентиляции;

  • в кондиционирующих установках;

  • в санитарных приборах.

Накладная техника отличается:

  • отсутствием необходимости врезать термометр в трубу;

  • легкой перестановкой (если первоначальная установка была ошибочна или требуется что-то изменить);

  • легкой заменой;

  • минимальными затратами при монтаже;

  • отсутствием необходимости контролировать утечку масла;

  • зависимостью точности замера от правильности установки;

  • нарушением нормальной работы при сдвиге термометра;

  • недостаточной популярностью и непривычностью таких устройств.

Термометр с часами (иногда именуется термометром-часами) хорош уже тем, что заменяет два разных устройства. Такая техника облегчает отслеживание временной последовательности при измерениях. Иногда встречаются и вовсе неординарные устройства:

  • в виде пистолета;

  • в виде пчелы;

  • в виде различных зданий;

  • в других необычных исполнениях.

Какие приборы самые точные?

Если говорить о термометрах, измеряющих температуру человеческого тела, то, как показывает практика, самыми точными являются ртутные модели. Чуть отстают от них электронные градусники — эти образцы дают значения, сильно приближенные к реальным.

А вот инфракрасные тесты провалили – их погрешность бывает довольно существенной.

Для проведения замеров температуры воздуха и в качестве кухонных моделей с самой лучшей стороны себя показали электронные модели, в которых присутствует платина. Такие издания имеют стильный вид, понятный интерфейс и низкую погрешность. Однако и у них есть недостатки — при неправильном креплении такого градусника точность показания может быть искажена.

Так, при измерении показания на улице не стоит размещать градусник в месте, куда попадают прямые солнечные лучи

Кроме того, важно защищать их от дождя, снега и других погодных условий. Зимой на изделиях не должно образовываться наледи, градусник не должен попадать в снег

Избегайте соприкосновения градусника с металлом.

О том, какие бывают термометры, смотрите в видео.

Получение объективных результатов

Наиболее объективные и правильные результаты можно получить, замеряя температуру в прямой кишке. Именно там температура максимально близка к температуре внутренних органов. Данный способ измерения рекомендовано использовать при патологиях прямой кишки, нарушениях системы пищеварения. Кроме того, такая методика измерения используется женщинами при планировании беременности с целью определения дня овуляции. Наиболее точные показания можно получить, соблюдая некоторые простые правила:

  1. Перед введением кончика термометра в прямую кишку его следует смазать маслом или вазелином.
  2. Взрослому человеку следует принять положение лежа на боку, маленькому ребенку – лежа на животе.
  3. Включить градусник, дождаться старта измерения.
  4. Ввести термометр ректально, не более чем на 3 см, удерживая его в таком положении пальцами.
  5. Плотно сжать ягодичные мышцы до момента получения результата. Это позволит предотвратить проникновение холодного воздуха.
  6. Как правило, процедура измерения занимает 1-2 минуты.

При ректальном измерении температуры человеку следует сохранять принятое положение, избегая движений. Кроме того, запрещено резкое введение прибора в прямую кишку.

После окончания измерения термометр извлекают, оценивают результат, обрабатывают дезинфицирующим раствором.

Как пользоваться термометром электронным инфракрасным?

Как правильно дезинфицировать термометр

В медицинских учреждениях градусники каждому пациенту выдают уже обработанные, а после использования помещают в отдельный контейнер. Дома также лучше иметь не один медицинский термометр. Если болеет сразу вся семья, не нужно будет ждать своей очереди, а после использования продезинфицировать все градусники одновременно.

Алгоритм дезинфекции зависит от того, какой тип измерительного прибора применяется: ртутный, электронный или инфракрасный.

Ртутный

Дезинфицировать ртутный градусник следует предельно аккуратно

Корпус выполнен, как правило, из стекла, любое неосторожное действие приведет к его повреждению и вытеканию ртути

По СанПиНу должны быть соблюдены следующие правила:

  1. Подготовить контейнер из пластика или непрозрачного стекла.
  2. На дно тары положить хлопковую салфетку, чтобы не разбить градусник.
  3. Заполнить контейнер дезинфицирующим раствором. С этой целью чаще всего используют 2%-ный раствор хлорамина, 1%-ный раствор хлоргексидина или 3%-ный раствор перекиси водорода.
  4. Использованный градусник аккуратно помещают в контейнер с раствором для дезинфекции и закрывают крышкой.
  5. Время обработки зависит от используемого средства. Как правило, хватает 1-3 часов.
  6. По истечении времени градусник так же аккуратно вынимают и промывают прохладной проточной водой или протирают влажной медицинской салфеткой. Делать все это лучше в перчатках.
  7. Обработанные термометры раскладывают на сухом хлопковом полотенце до полного высыхания, затем убирают в заранее простерилизованный контейнер.
  8. Раствор меняют от 2 до 5 раз в сутки в зависимости от количества принимаемых пациентов.

Таким образом, в поликлиниках пациент получает полностью стерильный градусник, поэтому риск заразиться какой-либо инфекцией сводится к нулю. Дома также желательно иметь контейнеры с раствором для дезинфекции и сухой контейнер, в котором будут храниться уже чистые градусники.

Электронный

Корпус электротермометров (цифровых градусников) выполнен из пластика, они более прочные и безопасные, не требуют такой тщательной обработки, как ртутные. Такие термометры нельзя замачивать, так как попадание жидкости приведет их к непригодности.

Электронные приборы бывают для измерения температуры в подмышечной впадине и термометры-соски для орального применения у маленьких детей. Как правильно дезинфицировать электронный градусник:

Стерильную салфетку смочить в растворе и протереть корпус, особое внимание уделяя металлическому наконечнику, в который встроен термоэлемент.
Обтереть чистой влажной салфеткой для удаления раствора, положить на сухую ткань.
После измерения температуры инструмент складывают в отдельный контейнер, чтобы позже провести дезинфекцию всех приборов одновременно.

Важно! Ни электронные, ни ртутные медицинские термометры нельзя мыть под горячей или даже теплой водой. Первые от такой обработки выйдут из строя, у вторых лопнет стеклянный корпус и вытечет ртуть, что крайне опасно

Для промывания используется прохладная проточная вода.

Инфракрасный

Это одна из разновидностей электронных градусников, ставших особенно популярными в последнее время. Различают непосредственно термометры (например, лобные) и пирометры (инфракрасный ушной, инфракрасный термометр для лба).

Первые, как правило, одноразовые, после использования сразу утилизируются. Вторые – для бесконтактного применения, используются чаще всего в местах массового скопления людей (в детских садах и школах, торговых, развлекательных центрах, прочих заведениях). Для стерилизации таких термометров достаточно протирать их корпус 2-5 раз в день любым из растворов для дезинфекции.

Как подготовить инфракрасный термометр к использованию?

Все модели ИК-градусников являются электронными приборами, которые перед использованием необходимо правильно подготовить.

Условия эксплуатации

В первую очередь следует обратить внимание на условия использования инфракрасного термометра, о которых сказано в инструкции каждой модели. Обычно нормальными условиями для работы ИК-термометров считается комнатная температура окружающей среды, примерно 10-30 градусов Цельсия и влажность до 85 %

Обычно нормальными условиями для работы ИК-термометров считается комнатная температура окружающей среды, примерно 10-30 градусов Цельсия и влажность до 85 %.

Состояние инфракрасного термометра

Сам прибор должен иметь температуру, соответствующую требуемым рекомендациям, указанным в инструкции к конкретной модели, как правило, это та же комнатная температура с влажностью не более 80%.

Это нужно, чтобы его нагрев или охлаждение пришли в нормальное рабочее состояние.

Также необходимо следить за чистотой прибора, любое загрязнение оптической системы приводит к искажению результатов.

Только после этого можно использовать инфракрасный термометр по назначению.

В противном случае показания измерений будут иметь большие отклонения.

Перед использованием ИК-градусника желательно проверить наличие в нем элементов питания.

При повреждениях электронного прибора следует обратиться в сервисный центр, адреса которых можно узнать тут

Как хранить инфракрасный термометр?

ИК-термометр это тонкий электронный прибор, который необходимо содержать в чистоте, исключать любые физические и механические воздействия (вибрацию, прямые солнечные лучи, влага, пыль, удары, падения) на них, которые могут повредить устройство.

Чтобы правильно пользоваться инфракрасным термометром, также нужно знать как и хранить.

Хранение этих современных гаджетов следует производить в соответствии с рекомендациями, прописанными в инструкции к конкретной модели, к таковым относятся:

  • температура окружающей среды: 10-50 градусов Цельсия;
  • влажность: 20-80%;
  • место недоступное для маленьких детей.

Проще говоря, хранить ИК-термометр нужно в сухом, проветриваемом помещении, исключая попадание на прибор прямых солнечных лучей.

При длительном хранении инфракрасного термометра желательно извлечь из него элементы питания.

Также следите за тем, чтобы на прибор и тем более внутрь его не попадала никакая жидкость.

Лучше всего хранить инфракрасный термометр в покупной коробке, в которой он будет хорошо защищен от внешних неблагоприятных воздействий.

Сотрудники организаций также должны знать, как правильно пользоваться инфракрасным термометром, для этого надо периодически проводить поверку прибора.

Измерители нагретости

Концепция измерения температуры является достаточно новой. Термоскоп – по существу, измеритель нагретости без шкалы  был предшественником современного термометра. Были несколько изобретателей, работающих на термоскопе  в 1593 году, но наиболее известным является Галилео Галилей, итальянский изобретатель, который также улучшил (но не изобрел) термоскоп.

Термоскоп может показать различия в нагретости, что позволяет наблюдателям знать, если что-то становилось теплее или холоднее. Тем не менее, термоскоп не может обеспечить точную температуру в градусах. В 1612 году итальянский изобретатель Санторио добавил свою числовую шкалу на термоскоп и она была использована, чтобы измерять температуру человека. Но по-прежнему не хватало стандартизированной шкалы и точности.

Изобретение термометра  принадлежит немецкому физику Габриелю Фаренгейту который совместно с  датским астрономом Олаф Кристенсен Рёмером разработал измеритель на  основе и с использованием спирта.

В 1724 году они ввели шкалу стандартной температуры, которая носит его имя  Фаренгейта, масштаба который был использован для записи изменений нагретости в точной форме. Его шкала разделена на 180 градусов между точками замерзания и кипения воды. 32° F  замерзания воды и 212 ° F кипения воды, 0° F была основана на нагретости равной смеси воды, льда и соли. Также за основу этой знаковой системы взята температура человеческого тела. Первоначально, нормальная нагретость человеческого тело была 100° F, но с тех пор была скорректирована до 98,6 ° F. Равная смесь воды, льда и хлорида аммония использована для установки в 0° F.

Фаренгейт демонстрировал термометр на спиртовой основе в 1709 году до открытия ртутного аналога, который оказался более точным.

В 1714  Фаренгейт  разработал первый современный термометр – ртутный термометр с более точными измерениями. Известно, что ртуть расширяется или сжимается при повышении физической величины нагретости или падает. Это можно считать первым современным ртутным термометром со стандартизированной шкалой.

Безопасны ли инфракрасные термометры?

Инфракрасные термометры не представляют никакой опасности для человека и даже для маленьких детей.

Безопасность в использовании бесконтактных термометров обеспечивается принципом его действия.

Прибор сканирует поверхность тела человека, от которого идет тепловое излучение.

Таким образом, ИК-градусники никак не воздействуют на организм, а лишь улавливают его тепло, трансформируют полученный сигнал в электронный вид, результат которого отображается на экране.

Кроме того, о безопасности приборов сказано в инструкциях, которые идут к каждой модели устройства.

Гипотетически условная опасность может заключаться в неточности измерений, которые обычно не превышают 1-2 градусов Цельсия.

Данная погрешность не является критичной, а потому по большому счету, даже при ее наличии ни никакого вреда от этого не будет.

Чтобы исключить недостоверные показания прибора, его следует периодически проверять и калибровать.

Более того, бесконтактное измерение температуры обеспечивает защиту здоровых людей.

Когда здоровый человек не прикасается к больному у него меньше рисков заразиться.

Кроме того, можно замерить температуру маленького ребенка, когда он спит, чтобы не беспокоить его сон.

Устройство и принцип действия

Основу структуры пирометра составляет детектор инфракрасного излучения. Данные преобразуются посредством встроенной электронной системы и отображаются на дисплее.

Типовой пирометр по форме напоминает пистолет с небольшим дисплеем. Компактная панель управления, наводка лазером и высокая точность при близком взаимодействии с объектом объясняют востребованность инструмента среди работников инженерных и технических сфер.

Основными рабочими элементами пирометра считают линзу, приёмник, а также дисплей, на который выводится результат измерения. Принцип действия пирометра следующий: от изучаемого объекта исходит инфракрасное излучение и посредством линзы оно фокусируется и отправляется в приемник (термобатарея, полупроводник, термопара).

Если используется термопара, в момент нагрева приемника меняется напряжение. Сопротивление — в случае использования полупроводников. Эти изменения преобразуются в показания температуры.

Для того, чтобы провести измерение, необходимо просто навести пирометр на объект, привести его в действие и отметить полученный результат. Используя специальную кнопку, вы можете регулировать формат измерения температуры — по шкале Цельсия или Фаренгейта.

С использованием Arduino

Есть много схем описывающих цифровой термометр с использованием микроконтроллера Ардуино. Все они однообразно берут измеренную температуру от датчика и отображают ее на дисплее, который имеет достаточно небольшой размер. То есть, на улице такую систему конечно использовать можно, но требуется отображающий экран помещать поближе к людям или вообще монтировать его внутри помещений.

Чем хорош микроконтроллер, что шкалой может выступать не только цифровой индикатор. Хотя и последний имеет право на жизнь, для считывания показаний в тех местах, где не видно уличный информатор. Что касается последнего, — в его роли можно использовать длинную самодельную линейку (в роли которой способна выступать и обычная доска любых габаритов), с нанесенной разметкой и перемещаемой сервоприводом стрелкой, демонстрирующей текущие значения температуры.

Механизм

Общая конструкция механизма выглядит следующим образом:

Нижний и верхний конец шкалы определяется физическим положением установленных выключателей, которые замыкает собой подвижный указатель, при достижении предела размеченной длины. Требуется последнее только для стартовой калибровки механизма при первом запуске системы.

Чтобы на точность представленного измерителя не влияли внешние погодные факторы (подвижная струна и направляющая удлиняются в жару и сокращаются при холоде), рекомендуется верхний ролик и поддерживающую проволоку закреплять на жестких пружинах «в натяг».

Схема

Несколько замечаний по схеме. Для числового вывода информации о температуре используется цифровой индикатор TM1637. Дополнительно, описанный ранее механизм, отображает значение на «аналоговой» шкале с помощью биполярного тактового двигателя М1. S1 — блокирующий выключатель, устанавливаемый сверху шкалы, S2 — снизу.

Однократное нажатие кнопки S3 переключает Ардуино в поиск положения нулевой температуры (при этом загорится светодиод LED1). «Стрелка», указывающая градусы, передвинется на требуемый уровень, для последующей отметки места начала измерений. Далее, пользуясь установленным максимумом и минимумом, с помощью линейки, размечают остальную шкалу ниже и выше нуля.

Повторное нажатие S3 переключит устройство в стандартный режим работы. Светодиод погаснет, а стрелка передвинется на позицию, соответствующую текущей температуре.

Питание на ULN2003A подается от иного источника, чем тот, который поддерживает работу самого микроконтроллера. Последнее сделано во избежание «наводок» паразитными токами двигателя на общую схему.

Управляющий скетч

Для работы с TM1637 понадобиться библиотека Groove 4Digital Display, ее адрес:

https://github.com/Seeed-Studio/Grove_4Digital_Display

Скетч можно скачать здесь: https://cloud.mail.ru/public/4gRK/ri7sjm19N

Точность

Округления до целой части в скетче, привели к снижению точности показаний до ближайшего градуса на аналоговой шкале. На числовом индикаторе, подобной проблемы не наблюдается — он отображает полученную температуру корректно.

Преимущества и недостатки

Преимущества электронных термометров таковы.

  • Безопасность – из-за отсутствия ядовитых веществ можно не беспокоиться, что ребенок уронит прибор, а опасный наполнитель (ртуть в старых моделях градусников) выльется.
  • Высокая точность – погрешность составляет до 0,1°С.
  • Скорость – результат известен через одну минуту после начала измерения.
  • Комфортность использования – дисплей имеет приятную подсветку с крупным шрифтом, некоторые модели термометров имеют функцию запоминания предыдущих результатов.

Недостатки у электронных термометров также есть.

  • Высокая стоимость прибора.
  • Термометры-пустышки могут быть неэффективными и давать неверные и неточные значения из-за того, что капля с датчиком недостаточно хорошо и продолжительно соприкасалась с языком ребенка.
  • Отдельные модели инфракрасных термометров довольно громоздкие и не дают высокоточные результаты.

Изобретатели первых термометров

Точно сказать, кто именно изобрел термометр, уже вряд ли возможно. И дело не только в том, что сохранилось мало источников. Причина еще серьезнее: часто под термометрами понимают совсем разные приборы. Не сразу удалось добиться высокого качества и отличного уровня измерений. На 100% достоверно известно только одно: честь изобретения устройства для измерения температуры приписывается как минимум 8 людям.

Среди них, к примеру, английский алхимик и участник многих тайных обществ Роберт Фладд. «Конкурирует» с ним французский гидротехник, разработчик паровых машин, пневматических устройств, а также по совместительству и архитектор Саломон де Каус. Еще надо указать, что история создания термометра запутывается из-за того, что над ним одновременно работали многие специалисты. Одни старались измерять температуру воды, другие — температуру воздуха, а третьи создавали медицинское оборудование.

Самым известным человеком, с которым связано происхождение термометрии, является Галилей. По его собственным трудам этого не скажешь: там никаких описаний подобной техники нет. Однако последователи итальянского ученого упоминают, что в 1597 году он продемонстрировал им термоскоп. По другим источникам получается разброс от 1592 до 1600 года. Эффект расширения тел при нагреве использовался и раньше. Новация в изобретении Галилея состояла в том, что это расширение указывало на изменение температуры. Правда, хоть на какую-нибудь количественную характеристику тут рассчитывать не приходилось.

Выглядела эта оригинальная разработка как шарик из стекла, к которому припаивали стеклянную трубку. Внутри находился воздух. Об использовании воды, спирта или ртути знаменитый итальянец почему-то не подумал. Некоторые эксперты полагают, что на том уровне техники это было еще невозможно.

Соотечественник Галилея — Санторио — создал термометр для измерения температуры человеческого тела. Но и здесь проявилось несовершенство технологий. Сотрудник университета Падуи смог сделать только громоздкое устройство, которое удалось поставить лишь во дворе дома. Этот градусник выглядел как шар с удлиненной извилистой трубкой. Он уже предвосхищал типичные черты позднейших термометров: появились деления и окрашенная жидкость в трубке. Аппарат датируется 1626 годом.

В 1657 году появился усовершенствованный вариант термоскопа Галилея. Одной из добавок стала шкала, которую делали из бусин. Стоит учитывать, что все ранние изобретатели создавали термометры воздушного типа. Поэтому показания приборов сильно зависели не только от реальной температуры, но и от давления атмосферного столба. В 1667 году появились градусники на основе воды. Это решение уже меньше страдало от перепадов давления, однако жидкость застывала, и поэтому вскоре перешли к использованию винного спирта.

Окончательно «победить» воздействие атмосферного давления удалось Эванджелиста Торричелли. Он придумал такую систему:

  • наполнять термометр ртутью;
  • переворачивать его;
  • доливать слегка окрашенный спирт;
  • запаивать трубку сверху.

Но просто возникновения идеи термометра было недостаточно. Проблемой на ранней стадии было то, что не удавалось найти правильные точки отсчета. Сначала полагали, что надо ориентироваться на субъективные ощущения «очень холодно» и «крайне жарко». Позднее стали искать другие ориентиры: кипение воды, таяние льда, растапливание сливочного масла. Именно в процессе поиска точек отсчета начался следующий этап создания приборов.