Коротко

Содержание

Что может служить ИК-передатчиком?

Чаще всего, для передачи, используются специальные светодиоды или лазеры. Для наших задач, то есть передачи по воздуху на короткие расстояния, используются ИК-светодиоды, то есть те, которые излучают инфракрасный свет. Они дешевы, компактны и просты в использовании.

Передающие (ИК) диоды работают так же, как и обычные светодиоды, которые мы рассмотрели в наших ранних статьях. Единственное отличие — это «кристалл», излучающий свет. Конечно, все это делается для того, чтобы у него была правильная длина волны. К тому же, благодаря свойствам человеческого глаза, работа этого диода для нас невидима.

ИК-светодиоды чаще всего выпускаются в двух вариантах: с прозрачной или темной (черный / темно-синий) линзой. Цвет линзы совершенно не имеет значения, темная линза не является препятствием для инфракрасного излучения. Кроме того, как и обычные светодиоды, они выпускаются в корпусах разного диаметра, например 3 и 5 мм.

Различные цвета линз ИК-светодиодов

Конкретная информация об ИК-диоде содержится в документации производителя, которую можно найти по символу диода — к сожалению, он нигде не отмечен на корпусе. Обозначение стоит поискать на сайте продавца, хотя оно не всегда указано.

В случае светодиодов этого типа стоит проверить такие параметры, как:

  • длина излучаемой волны,
  • максимальная продолжительная мощность,
  • максимальный продолжительный ток (порядка нескольких десятков миллиампер),
  • максимальный ток в импульсе (даже более 2 ампер),
  • рабочее напряжение,
  • угол освещения,
  • размер корпуса.

Практическое использование передающих диодов отличается от светодиодов тем, что они обычно имеют импульсное питание. Передача происходит миганием с частотой несколько десятков килогерцовых импульсов с заполнением всего на несколько процентов. Проще говоря, вместо того, чтобы постоянно гореть, мы мигаем диодом очень быстро — таким образом, чтобы время свечения было намного короче, чем при выключенном диоде.

Конечно, речь идет об автоматически генерируемом сигнале, который очень и очень быстро «мигает» светодиодом (например, 36 000 раз в секунду) — мы разберемся с этим позже в этой статье. 

Благодаря этому, этот элемент не успеет перегреться при питании от более высокого тока. На практике мы получаем короткие, но очень сильные световые импульсы, которых достаточно для передачи данных на расстояние. Вот почему пульт от телевизора имеет такой хороший диапазон — сильный луч света легко отражается, например, от стен и потолка и попадает в приемник.

Пример управления ИК-диодом

Параметры примерного ИК-диода могут выглядеть так:

  • длина волны: 940 нм,
  • максимальная продолжительная мощность: 100 мВт,
  • максимальный продолжительный ток: 20 мА,
  • прямое напряжение: 1,6 В,
  • угол луча: 20 °,
  • размер корпуса: 5 мм.

Исходя из информации в статье описывающей, что такое мощность, можно быстро подсчитать, что подключение диода к источнику постоянного питания позволит току проходить через него не более чем:

I макс = P макс / U f = 100 мВт / 1,6 В = 62,5 мА

Однако это теоретические значения, потому что в этом случае 100 мВт — это максимальная мощность, которая может излучаться на этом диоде (с учетом, например, прочности ножек, структуры диода и его соединений). Он не обязательно должен совпадать с другими максимальными параметрами диода. Вы всегда должны внимательно изучать каталожные заметки о том или ином элементе.

Как мы уже упоминали, передающие диоды рассчитаны на импульсный режим работы, в отличие от рассмотренных ранее диодов, которые обычно работают в непрерывном режиме. Предположим, что рабочий цикл составляет 10%, что является обычным значением.

Это означает, что светодиод горит 10% времени и не горит 90% времени.

Тогда допустимый ток в импульсе будет:

I max_imp = P max / (U f ⋅ k f ) = 100 мВт / (1,6 В 10%) = 625 мА

Более сильный ток означает большую интенсивность света. Мы хотим, чтобы наш пульт от телевизора работал практически из любой точки комнаты.

Такие расчеты следует рассматривать как приблизительные, поскольку для точных расчетов, необходима вольт-амперная характеристика, которую немногие производители предоставляют в своей документации. Тем не менее, на практике, такой оценки очень часто бывает достаточно.

Применение

Силы, потраченные на ликвидацию проблем, описанных выше, уходят не напрасно. Светодиоды инфракрасного излучения отдельно не используются. Их применяют в составе других схем и оборудований, сфера использования которых все увеличивается. Именно поэтому нужны диоды, мощность которых становится больше, а цветовой спектр расширяется.

Наиболее распространено применение светодиодов для работы в темное время суток. Рассмотрим прибор ночного видения. Чем мощнее в нем будет светодиод, тем больше радиус возврата полноценного изображения. Но здесь еще можно применить импульсы, чего не скажешь про видеокамеру, в которой используется непрекращающаяся подсветка инфракрасным потоком.

Высококлассные продукты цифровой техники диктуют спрос на рынке. Они используются человеком каждый день. В 2007 г. опция ночной съемки была большой редкостью, а сейчас она – неотъемлемая часть техники. Все это благодаря развитию инфракрасных светодиодов.

Применение инфракрасного излучения в аграрной промышленности

Модернизация — ремонт

На закате СССР появились и были очень популярны отечественные полупроводниковые телевизоры серии «УСЦТ». Некоторые из них и сейчас в строю. Особенно долговечными были телевизоры с размером экрана 51 см по диагонали (кинескоп был весьма надежным). Конечно, они уже совсем не отвечают современным требованиям, но как «дачный вариант» еще вполне пригодны.

Как сделать простой ИК пульт для телевизора

Как-то, от нечего делать, появилось желание усовершенствовать старенькую, уже давно «дачную» «Радугу- 51ТЦ315», дополнив её системой дистанционного управления. Сейчас уже приобрести «родной» модуль невозможно, поэтому было решено сделать упрощенную однокомандную систему, позволяющую хотя бы переключать программы «по кольцу». Микроконроллеры и спец, микросхемы сразу были отвергнуты по причине нерентабельности, и система была сделана из того, что имелось в наличии.

А именно, интегральный таймер 555, ИК светодиод LD271, интегральный фотоприемник TSOP4838, счетчик К561ИЕ9 и плюс еще по- мелочи. Схема ИК пульта управления показана на сайте . Он представляет собой генератор импульсов частотой 38 кГц, на выходе которого включен через ключ инфракрасный светодиод. Генератор построен на основе микросхемы «555», так называемого «интегрального таймера». Частота генерации зависит от цепи C1-R1, при налаживании подбором резистора R1 нужно установить на выходе микросхемы (вывод 3) частоту 38 кГц.

Прямоугольные импульсы частотой 38 кГц поступают на базу транзистора VT1 через резистор R2. Диоды VD1 и VD2 вместе с резистором R3 образуют схему контроля тока через ИК-светодиод HL1. При повышенном токе напряжение на R3 увеличивается, соответственно увеличивается и напряжение на эмиттере VT1. И когда напряжение на эмиттере приближается по величине к напряжению падения на диодах VD1 и VD2 происходит снижение напряжения на базе VT1 относительно эмиттера, и прикрывание транзистора.

Сфера применения

Сегодня ИК-светодиод можно встретить почти всюду.

В бытовой технике. Пульты для дистанционного  управления (ПДУ), лазерные принтеры, компьютерные «мыши», CD проигрыватели и т. д.

В системах охраны. Организация невидимого тревожного заграждения, невидимая подсветка объектов для камер ночного видеонаблюдения.

Организация светодиодного заграждения (направление невидимого ИК излучения показано условно)

В военной сфере. Невидимые невооруженным глазом лазерные ИК-прицелы, системы наведения управляемых ракет, дальномеры, прожекторы для приборов ночного видения.

В медицине. Пульсометры, тонометры, термометры, приборы для лечения и профилактики кожных и простудных заболеваний, сканеры, приборы лазерной хирургии и многое другое.

В промышленном оборудовании. Датчики движения и подсчета, дефектоскопы, дальномеры, ИК-уровни и отвесы, устройства передачи информации по оптическим линиям связи, источники для накачки мощных твердотельных лазеров.

Параметры разработанных ИК-диодов и модулей

Параметры ИК-диодов и модулей приведены в таблице.

Таблица. Радиометрические и электрические параметры ИК-диодов и модулей МИК-4

Тип диодов

Мощность излучения (Ре), мВт

Сила  излучения (Je), Вт/ср

Угол  излучения  (2 × θ0,5), рад.

Прямое напряжение (Uпр), В

Длина волны излучения (λmax), нм

Не менее

Тип. значение

Тип. значение

Не более

Прямой ток (Iпр) 600 мА

У-190Б-1

350

450

6,5

8,0

2,2

850 ±15

Прямой ток (Iпр) 700 мА

У-176Б-1

550

680

18,0

5,5

2,2

850 ±15

У-176В-1

500

600

18,0

5,5

2,0

940 ±15

МИК-4Б

2000

2500

60,0

6,0

6,5

850 ±15

МИК-4В

1800

2000

60,0

6,0

6,2

940 ±15

Как видно, мощность излучения диода типа У-176Б-1 достигает 680 мВт при токе 700 мА, что соответствует внешнему квантовому выходу излучения  ŋвн= 66% (λmax = (850 ±15) нм). Диод У-176В-1  (λmax = (940 ±15) нм) имеет мощность излучения 600 мВт, что соответствует ŋвн= 65%.

Мощность излучения диода У-190Б-1 составляет 430 мВт при токе 600 мА, что соответствует ŋвн= 50%.

Полученные значения внешнего квантового выхода излучения (до 66%) весьма высоки.

Сила излучения диодов У-176 достигает 18 Вт/ср при токе 700 мА при угле излучения 2 × Θ0,5 = 5,5°

В импульсном электрическом режиме при токе в импульсе 3 А, длительности импульса 1 мкс и скважности 10 сила излучения достигает 70 Вт/ср

Сила излучения диодов У-190Б-1 составляет 6,5 Вт/ср при токе 600 мА при угле излучения 2 × Θ0,5 = 8°. В импульсном электрическом режиме при токе в импульсе 1,5 А сила излучения достигает 16 Вт/ср.

Полученные значения силы излучения также весьма высоки, что позволяет использовать ИК-диоды на значительном расстоянии от фотоприемников.

Зависимость мощности излучения и силы излучения от прямого тока в импульсном режиме для ИК-диода типа У-176 приведена на рис. 4. Видно, что зависимость близка к линейной.

Рис. 4. Зависимость мощности излучения и силы излучения ИК-диода У-176 от прямого тока в импульсном режиме

Рассматриваемые ИК-диоды имеют время нарастания и спада импульса излучения по уровням 0,1–0,9 в диапазоне 20–50 нс.

С целью повышения мощности излучения и силы излучения разработан модуль МИК-4 (рис. 5), содержащий 4 ИК-диода типа У-176. Как показано в таблице, мощность излучения модуля МИК-4Б (λmax = (850 ±15) нм)  достигает 2,5 Вт, а сила излучения 60 Вт/ср  при угле излучения 2 × Θ0,5 = 6° и прямом токе 700 мА. Мощность излучения модуля МИК-4В (λmax= (940±15) нм) несколько ниже и составляет 2 Вт.

Рис. 5. Внешний вид модуля МИК-4

В импульсном электрическом режиме при токе в импульсе 3 А (средний ток не более 0,3 А) сила излучения модулей МИК-4 достигает 200 Вт/ср. Зависимость мощности излучения и силы излучения модулей МИК-4 от прямого тока в импульсном режиме приведена на рис. 6. Видно, что зависимость близка к линейной. Размеры модуля МИК-4: диаметр 65 мм, высота 57 мм.

Рис. 6. Зависимость мощности излучения и силы излучения модуля МИК-4 от прямого тока в импульсном режиме

Таким образом, представлены результаты разработки высокоэффективных (ŋвн до 66%) узконаправленных (2 × Θ0,5 до 5,5°) ИК-диодов и модулей с силой излучения до 60 Вт/ср на постоянном токе и до 200 Вт/ср  в импульсном режиме.

Авторы благодарят И. Т. Рассохина за помощь в работе.

Интегрированные инфракрасные приемники

В продаже есть две основные группы элементов, чувствительных к инфракрасным лучам: фотодиоды и фототранзисторы. Интересно то, что оба этих элемента обычно выглядят так же, как обычные светодиоды. Так что будьте осторожны, не перепутайте их, так как визуально отличить их практически невозможно.

Однако использование этих основных элементов, при реализации тракта передачи, довольно затруднительно из-за помех со стороны окружающей среды. Поэтому производители электронных компонентов создали так называемые интегрированные инфракрасные приемники. Семейство приемников TSOP — это элементы, с которыми сталкивался почти каждый инженер- электронщик. Один из них находится в микросхеме TSOP31236.

TSOP31236 — инфракрасный приемник

Интегрированные инфракрасные приемники имеют специальные, полностью закрытые непрозрачные корпуса, но инфракрасное излучение без проблем проникает через такой корпус. Это одна из обработок, которые делают этот элемент устойчивым к помехам.

Внутри этого инфракрасного приемника находится довольно сложная схема, отвечающая за прием, фильтрацию и декодирование сигнала. Ниже приведена блок-схема из технической документации, показывающая (более или менее), что содержится в этом элементе.

Блок-схема TSOP31236

К счастью, нам не нужно вдаваться в подробности его структуры — любознательный найдет описание этих блоков позже в этой статье. Теперь стоит отметить, что внутри у нас есть приемный диод (который обозначен стрелками, ведущими к диоду, а не снаружи, как в случае светоизлучающих диодов), транзистор и ряд «схем», которые декодируют сигнал и проверяет его правильность.

Основные характеристики

Рассмотрим технические характеристики ИК-подсветки:

  • длина волны (λ),
  • тип излучателя,
  • рефлектор (отражатель),
  • выходная мощность,
  • угол излучения,
  • рабочая дальность,
  • режимы,
  • питание,
  • время работы,
  • рабочая температура,
  • крепление,
  • габариты,
  • материал,
  • цвет,
  • вес.

На рис. 4 показаны основные детали камеры видеонаблюдения с внутренней инфракрасной подсветкой.

Рис. 4. Видеокамера для видеонаблюдения с ИК-подсветкой 

Для надёжной работы задан начальный диапазон частоты инфракрасного спектра, то есть после частоты красного цвета. Чёткой границы нет. Выбрано 4 диапазона:

  • 730–750 нм,
  • 830–850 нм,
  • 870–880 нм,
  • 930–950 нм.

В качестве источника излучения применяются ИК-светодиоды и лазерные инфракрасные диоды. Светодиоды излучают спектр частот, то есть создают мягкое излучение, а лазерные дают более жёсткое излучение. Выпускаются лазерные излучатели с внутренней оптической системой. Такие излучатели формируют узкий луч.

Рефлектор предназначен для образования светового пучка. Геометрический размер его представляет собой равнобедренный треугольник с вершиной у источника света. Угол раскрыва определяется на уровне 0,5 по оси. Средний угол раскрыва составляет 40–80 градусов (угловых)

Важно понимать, что с увеличением угла расхождения лучей расстояние подсветки уменьшается, а мощность прожектора в основном определяет не дальность, а площадь освещения. На рис. 5 показаны внешние подсветки разного вида

В дорогих моделях есть подстройка светового пятна. Рефлектор может быть как металлическим, так и пластмассовым и соответствовать требуемой жаропрочности. Инфракрасные диоды при работе нагреваются. Чем больше их мощность, тем больше нагрев. Поверхность рефлектора бывает текстурированная или гладкая. Спереди от рефлектора находится линза, которая защищает рефлектор и инфракрасный диод от окружающей среды. Изготавливается из стекла или пластмассы.

Мощность излучателей используется от милливатт до десятков ватт.

В пункте «режим» указаны возможные варианты работы. Например, в подсветке типа «хамелеон» возможны варианты:

  • строб;
  • маячок;
  • SOS;
  • регулировка излучения: высокое, среднее, низкое, минимальное;
  • дистанционное управление.

Для крепления ИК-фонарика к приборам ночного видения используют разнообразные типы приспособлений. Самые распространённые из них — рельсовые планки Weaver и Picatinny, переходники для штативного гнезда с резьбой ¼, стринги для шлема или головы, универсальное крепление под стрелковое оружие. Разница между планками будет в ширине прорези. У планки Вивера = 0,180″, а у Пикатинни = 0,206″, а между центрами – 0,394″ и глубина — 0,118″.

К корпусу предъявляются жёсткие требования. Он должен быть лёгким, ударопрочным, водонепроницаемым. Выдерживать отдачу ружья. В основном выполняется из анодированного высококачественного алюминиевого сплава, так как он работает в жёстких погодных условиях.

Преимущества и недостатки

К достоинствам можно отнести:

  • ИК-излучение безопасно для человека и окружающей среды.
  • Обеспечивает незаметное освещение охраняемого объекта.
  • Использование внешней подсветки улучшает качество изображения. Её можно располагать в любом удобном месте. Решает проблемы встроенной подсветки. Можно подбирать правильный угол освещения, выбирать прибор по мощности, дальности действия и площади покрытия.

К недостаткам относится изображение, которое получается чёрно-белым на цветной камере. Гладкие объекты (поверхность озёр или рек, стеклянные окна, кафель или глянцевая краска, снег, яркость заднего плана) отражают ИК-лучи и создают засвеченные пятна на изображении. Затрудняют видеоизображение также пыль, дождь, туман, летающие насекомые.

Особенности диодов, работающих в инфракрасном диапазоне

Инфракрасные светодиоды (сокращенно называются ИК диоды) — это полупроводниковые элементы электронных схем, которые при прохождении через них тока излучают свет, находящийся в инфракрасном диапазоне.

Мощные светодиоды (например, лазерный вид) инфракрасного спектрального диапазона производятся на базе квантоворазмерных гетероструктур. Здесь применяется лазер FP-типа. В результате чего мощность светодиодов стартует с отметки 10мВ, а ограничивающим порогом служит 1000мВ. Корпуса для данного рода изделий подходят как 3-pin-типа, так и HHL. Излучение в результате этого оказывается в спектре от 1300 до 1550нм.

Структура ИК-диода

В результате такой структуры лазерный мощный диод служит отличным источником излучения, благодаря чему его часто используют в волоконно-оптической системе передачи информации, а также во многих других сферах, о которых речь пойдет немного ниже.
Лазерный инфракрасный тип диода является источником мощного и концентрированного лазерного излучения. В его работе применяется, соответственно, лазерный принцип работы.
Мощные диоды (лазерный тип) имеют следующие технические характеристики:

Графическое отображение телесного угла в 1 ср

  • такие светодиоды способны генерировать волны, находящиеся в диапазоне 0,74- 2000 мкм. Этот диапазон служит той гранью, когда излучение и свет имеют условное деление;
  • мощности генерируемого излучения. Этот параметр отражает количество энергии в единицу времени. Такая мощность дополнительно привязывается к габаритам излучателя. Данный параметр измеряется в Вт с единицы имеющейся площади;
  • интенсивность излучаемого потока в рамке сегмента объемного угла. Это достаточно условная характеристика. Она связана с тем, что с помощью оптических систем испускаемое диодом излучение собирается и потом направляется в требуемую сторону. Данный параметр измеряется в ВТ на стерадианы (Вт/ср).

В некоторых ситуациях, когда нет необходимости в наличии постоянного потока энергии, а достаточны импульсные сигналы, вышеописанное строение и характеристики позволяют увеличить мощность энергии, излучаемой элементом радиосхемы, в несколько раз.

Схема приемного блока на ИК-излучении

Импульсы ИК-света, следующие с частотой 38 кГц излучаются инфракрасным светодиодом HL1. Управление одной кнопкой S1, которая подает на схему пульта питание. Пока кнопка нажата пультом излучаются инфракрасные импульсы. Схема приемного блока показана на рисунке 2. Он устанавливается внутрь телевизора, на него подается питание + 12V от источника питания телевизора, а катоды диодов VD2-VD9 соединяются с контактами кнопок модуля выбора программ УСУ-1-10. ИК-импульсы, излучаемые пультом, принимаются интегральным фотоприемником HF1 типа TSOP4838.

Данный фотоприемник широко применяется в системах дистанционного управления различной бытовой электронной аппаратурой. При приеме сигнала на его выводе 1 присутствует логический ноль, а при отсутствии принимаемого сигнала единица. Таким образом, когда кнопка пульта нажата на его выходе ноль, а когда не нажата — единица. TSOP4838 должен питаться напряжением 4.5-5.5V. и не более. Но, для управления модулем выбора программ телевизора нужно на кнопки транзисторного 8-фазного триггера подавать напряжение 12V. Поэтому, на микросхему D1 подается напряжение 12V, а на фотоприемник HF1 напряжение 4.7-5V через параметрический стабилизатор на стабилитроне VD10 и резисторе R4.

Согласующим уровни логических единиц каскадом служит транзистор VT1. При этом он инвертирует логические уровни. Напряжение с коллектора VT1 через цепь R3-C2 поступает на счетный вход счетчика D1, рассчитанный на прием положительных импульсов. Цепь R3-C2 служит для подавления ошибок от дребезга контактов кнопки S1 пульта управления. Счетчик D1 К561ИЕ9 представляет собой трехразрядный двоичный счетчик, со схемой десятичного дешифратора на выходе.

Он может находиться в одном из восьми состояний от 0 до 7, при этом логическая единица имеется только на одном, соответствующем его состоянию, выходе. На остальных выходах — нули.При каждом нажатии — отпускании кнопки пульта счетчик переходит на одно состояние вверх, при этом переключается логическая единица по его выходам. Если отсчет начался с нуля, то через восемь нажатий кнопки, на девятое, счетчик вернется в нулевое положение. И далее, процесс переключения логической единицы по его выходам повторится. ИК-светодиод LD271 можно заменить любым ИК-светодиодом. применимым для пультов дистанционного управления бытовой аппаратурой. Фотоприемник TSOP4838 можно заменить любым полным или функциональным аналогом.

Микросхему К561ИЕ9 можно заменить на К176ИЕ9 или зарубежным аналогом. Можно использовать микросхему К561ИЕ8 (К176ИЕ8), при этом будет 10 выходов управления. Чтобы ограничить их до 8-и нужно выход за номером «8» соединить со входом «R» (при этом вход «R» не соединять с общим минусом, как это на схеме). Диоды 1N4148 можно заменить любыми аналогами, например. КД521, КД522. Пульт питается от «Кроны». Помещен в футляр от зубной щетки. Монтаж — объемный на выводах микросхемы А1.

Схема приемника тоже собрана объемным монтажом и приклеена клеем «БФ-4» к деревянному корпусу телевизора изнутри. Для глазка фотоприемника я использовал отверстие для разъема для подключения головных телефонов (отверстие в телевизоре было пустое, закрытое заглушкой, самого разъема не было). Подбором R1 (рис.1) нужно пульт настроить на частоту фотоприемника. Это видно по наибольшей дальности приема. Если схема заинтересовала, но старой «Радуги» нет, её можно использовать и для переключения чего-либо более современного. К выходам микросхемы D1 можно через резисторы подключить транзисторные ключи, с электромагнитными реле на коллекторах или светодиодами мощных оптопар.

Разновидности ИК излучающих диодов

  • мощности излучения или максимальному прямому току;
  • назначению;
  • форм-фактору.

Слаботочные ИК светодиоды предназначены для работы на токах не более 50 мА и характеризуются мощностью излучения до 100 мВт. Импортные образцы изготавливаются в овальном корпусе 3 и 5 мм, который в точности повторяет размеры обычного двухвыводного индикаторного светодиода. Цвет линзы – от прозрачного (water clear) до полупрозрачного голубого или жёлтого оттенка. ИК излучающие диоды российского производства до сих пор производят в миниатюрном корпусе: 3Л107А, АЛ118А. Приборы большой мощности выпускают как в DIP корпусе, так и по технологии smd. Например, SFH4715S от Osram в smd корпусе.

Что говорят о таких светодиодах практики?

Сервисные инженеры и ремонтники обращают внимание на прямую связь специфических  характеристик  этих приборов и возникающие проблемы. Большой мощный поток излучения требует много энергии и способствует повышенному выделению тепла

Любой сбой  в организации охлаждения снижает  эффективность работы прибора, вплоть до физического разрушения кристалла.

Для  работы ИК-диодов с узконаправленным потоком излучения  важно состояние оптических систем, формирующих угол направления излучения. Изменение их свойств, даже физическое загрязнение, может  уменьшить потенциал  прибора

При работе с импульсными системами  необходимо учитывать фактор, что мощность излучения не растет линейно и даже небольшое отклонение напряжения от заданных параметров  помешает светодиоду выдать максимальный результат .И разница будет составлять не проценты, а разы. Например, для ряда этих устройств, при непрерывном режиме декларируется 4 Вт/ср , а при импульсивном обозначается  до 100 Вт/ср

Поэтому практики советуют уделять пристальное внимание профилактике и минимальному сервисному обслуживанию при эксплуатации таких систем

Использование инфракрасных светодиодов будет расти постоянно, так как оборудование, работающее на их основе, все больше проникает в повседневную жизнь человека. Конкуренция заставит производителей делать эти устройства  надежнее, мощнее и дешевле.

https://youtube.com/watch?v=W8FGu3O9Sq4

Другие сферы применения

Кроме фонариков и прожекторов, инфракрасный свет используют для видеокамер при недостаточной освещённости помещений; кассы, офиса, банка, склада, кладовой

Как дежурное освещение при видеонаблюдении, где не нужно привлекать внимание к объекту. Когда свет не должен мешать людям в кинотеатрах, театрах, ночных клубах, на автостоянках и дорогах (не ослепляет водителей)

Инфракрасный свет широко применяется в таких областях:

  • медицина (улучшает обмен веществ, выводит избыточные жиры, добавляет двигательную энергию и др.);
  • животноводство;
  • тепловизоры;
  • военная техника (система наведения, локация);
  • электронная промышленность (дистанционное управление, оптическая связь);
  • обогрев помещений;
  • пищевая промышленность (сушка овощей, фруктов);
  • астрономия;
  • метеорология (измерение температуры объектов);
  • научные исследования.

Какими бывают

Как выглядит инфракрасный светодиод и можно ли его отличить от обычного? Вопрос довольно сложный, поскольку инфракрасные полупроводники имеют огромное количество форм-факторов – все зависит от их характеристик и назначения.

В компьютерных мышках и в пультах ДУ, к примеру, стоят обычные трехмиллиметровые приборы, в CD-приводах и лазерных принтерах – сверхминиатюрные в SMD или металлостеклянном корпусе. В ИК-прожекторах могут стоять как множество маломощных, так и несколько мощных инфракрасных светодиодов: обычных, диаметром до 10 мм или в SMD корпусе.

Цвет баллона тоже может быть различным – от прозрачного и металлического с прозрачным окном до матово-черного. Конечно, эти приборы можно отличить от светоизлучающих с красным и желтым баллонами – инфракрасные светодиоды не имеют таких цветов, но и только.

Что касается технических характеристик инфракрасных светодиодов, то основные из них следующие:

  1. Угол рассеивания. Чем этот параметр выше, тем меньше освещенности приходится на определенную поверхность объекта, но тем большую площадь он покрывает ИК-излучением. Измеряется в градусах телесного угла – стерадианах (Ω).
  2. Выходная мощность. Измеряется в ваттах (Вт) или милливаттах (мВт) и может колебаться от десятков милливатт до нескольких ватт.
  3. Рабочий ток. Ток, при котором гарантируются заявленные характеристики, включая наработку на отказ и выходную мощность излучения. Измеряется в амперах (миллиамперах).
  4. Прямое падение напряжения. Напряжение, которое падает на кристалле при номинальном токе. Зависит от материала кристалла и обычно не превышает 2 вольт.
  5. Обратное максимально допустимое напряжение. Напряжение обратной полярности, которое выдерживает кристалл без электрического повреждения. Для инфракрасных приборов обычно не превышает 1 вольта.
  6. Излучаемая длина волны. Если светодиод лазерный, то указывается одна длина волны, и это понятно. Если же это обычный инфракрасный светодиод, то нередко указывается диапазон излучаемых им волн, которые измеряются в нанометрах или микрометрах (нм или мкм).

Для чего нужен дополнительный резистор?

В свою очередь, резистор R1 (10 кОм) обеспечивает постоянный ток через выпрямительный диод, так что напряжение, подаваемое на приемник, не зависит в значительной степени от тока, потребляемого схемой. Ток, потребляемый этой схемой, сильно различается. Если светодиод не горит, TSOP31236 потребляет менее 1 мА. При включенном светодиоде потребление увеличивается на ~ 4 мА (немного, но все равно в 4 раза больше).

Диод D1 использовался в качестве редуктора напряжения питания, но для того, чтобы действовать в этой роли, через него должен протекать «значительный» ток, чтобы на нем могло образоваться напряжение ~ 0,7 В

Важно отметить, что он должен выполнять эту функцию должным образом (все время работы), даже когда TSOP ожидает ИК-сигнала, то есть при низком энергопотреблении

Что такое «значительный ток»? Это спорный вопрос. Он нигде не определен и зависит в основном от параметров кремниевого диода и температуры окружающей среды. Здесь мы предположили, что дополнительная нагрузка диода с током около 0,5 мА от резистора R1 будет постоянно обеспечивать «значительный ток». В результате на D1 всегда будет требоваться падение напряжения около 0,7 Вольт.

Без этого резистора схема тоже должна работать, но это более безопасное решение!

Особенности разрабатываемых конструкций

Для изготовления ИК-диодов использовались импортные кристаллы на основе p-n-гетероструктуры AlGaAs размером 1,07×1,07 мм и 0,7×0,7 мм. Мощность излучения кристаллов размером 1,07×1,07 мм  с λmax = (855 ±15) нм составляла, по данным поставщика, не менее 220–250 мВт при токе 350 мА, кристаллов с λmax = (940 ±15) —  не менее 160–190 мВт. Мощность излучения кристаллов размером 0,7×0,7 мм  с  λmax = (855 ±15) нм составляет не менее 160–190 мВт при токе 350 мА.

При конструировании ИК-диодов излучающий кристалл размещался в полимерном корпусе из эпоксидного компаунда с показателем преломления n = 1,56.

Для получения потока излучения в виде пучка почти параллельных лучей был применен асферический полимерный купол с уменьшенными потерями на сферическую аберрацию . Как показано в , оптимальная преломляющая асферическая поверхность имеет форму эллипса, второй фокус которого совпадает с положением излучающего кристалла.

Разработанные конструкции ИК-диодов типов У-176 и малогабаритного У-190Б-1 приведены на рис. 1.

Рис. 1. Конструкции ИК-диодов

Спектры излучения ИК-диодов показаны на рис. 2. Как видно из рассмотрения рисунка, полуширина полосы  с λmax = 858 нм составляет около 40 нм, а полосы с λmax = 950 нм — около 50 нм.

Рис. 2. Спектры излучения ИК-диодов: 1 — lmax = 850 нм; 2 — lmax = 950 нм

Диаграммы пространственного распределения мощности излучения ИК-диодов приведены на рис. 3. Видно, что угол излучения ИК-диодов типа У-176 составляет 2 × Θ0,5 = 5,5°, а диодов типа У-190Б-1 —  2 × Θ0,5 = 8°.

Рис. 3. Диаграммы пространственного распределения излучения:
1 — ИК-диод типа У-176;
2 — ИК-модуль типа МИК-4;
3 — ИК-диод типа У-190Б-1