Градуировочная таблица резервуара: необходимые сведения о ней

Погрешность измерений термопарой. Расчёт неопределенности результатов измерения температуры

Основные нормативные документы, касающиеся неопределенности измерений:

Руководство по оцениванию неопределенности в измерении (документ принят Международной Организацией по Стандартизации, Женева, 1993).ГОСТ Р 54500.1-2011 Неопределенность измерения. Часть 1. Введение в руководства по неопределенности измеренияГОСТ Р 54500.3-2011 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измеренияEA-4/02 Выражение неопределенности измерения при калибровке.

Бюджет неопределенности измерений

На неопределенность результатов измерений температуры термопарами влияют многие факторы, основные из них это:

  1. неопределенность измерения термо-ЭДС регистрирующим прибором;
  2. класс допуска термопары;
  3. неопределенность калибровки термопары, т.е. определения её индивидуальной статистической характеристики (ИСХ);
  4. термоэлектрическая характеристика удлинительной линии, соединяющей термопару с регистрирующим прибором;
  5. изменение дифференциальной чувствительности (коэффициента Зеебека) термопары во времени (дрейф) и по длине, обусловленное возникновением и развитием термоэлектрической неоднородности (ТЭН).

Характеристики источников неопределенности измерения температуры термоэлектрическим преобразователем представлены в таблице 2. Бюджет неопределенности составлен в соответствии указанными выше нормативными документами. Для пояснения вкладов каждого из источников в суммарную неопределенность полезно привести выдержку из РМГ-43, касающуюся неопределенностей типа B:

Наиболее распространенный способ формализации неполного знания о значении величины заключается в постулировании равномерного закона распределения возможных значений этой величины в указанных (нижней и верхней) границах . При этом стандартную неопределенность, вычисляемую по

типу В – uB(xi), определяют по формуле   ,  а для симметричных границ (±bi) – по формуле  » (где xi – оценка i-й входной величины).»

Таблица 2. Бюджет неопределенности измерений

Источник неопределенности

Обозначение

Тип и вид распределения неопределенности

Вклад в суммарную неопределённость

Случайные эффекты при измерении

uСКО

тип А, нормальное распределение

uСКО

Расширенная неопределенность (k=2, 95%) регистрирующего прибора

uприбора

тип В, равномерное симметричное распределение

Разрешающая способность прибора

uр.с.

тип В, равномерное асимметричное распределение

Расширенная неопределенность (k=2, 95%) компенсации температуры опорных спаев

uопор

тип В, равномерное симметричноераспределение

Нестабильность прибора за межповерочный интервал (МПИ)

uдрейф_приб

тип В, равномерное симметричноераспределение

Расширенная неопределенность (k=2, 95%) влияние температуры окружающей среды на измерительный прибор

uокр_приб

тип В, равномерное симметричноераспределение

Расширенная неопределенность (k=3, 99,7%) класса допуска удлинительных проводов

uпровода

тип В, равномерное симметричноераспределение

Расширенная неопределённость индивидуальной статической характеристики ТП

uДТ

uДТ = uИСХ  в случае индивидуальной градуировки датчикаuДТ = uКД  в случае поверки ТП на соответствие классу допуска

Расширенная неопределенность (k=3, 99,7%) калибровки ТП

uИСХ

тип В, нормальное распределение

Расширенная неопределенность класса допуска ТП

uКД

тип B, равномерное симметричноераспределение

Расширенная неопределенность (k=3, 99,7%) влияние температуры окружающей среды на датчик температура

uокр_ДТ

тип В, равномерное симметричноераспределение

Нестабильность ТП за межповерочный интервал (МПИ)

uдрейф

тип В, равномерное симметричноераспределение

Неоднородность ТП

uТЭН

тип В, равномерное симметричноераспределение

Тепловой контакт со средой

uПЕЧЬ

тип В, равномерное симметричноераспределение

Самонагрев датчиков серии ТС

UНагр

тип В, равномерное асимметричное распределение

Расширенная неопределенность измерения температуры, °C

Расширенная неопределенность измерения uТ определяется по формулам:

 /1/

при измерении термопарами с индивидуальной градуировкой

или    /2/

при измерении термопарами без индивидуальной градуировки.

Проверка, ремонт и замена термопары

Рассмотрим неисправности на примере термопары датчика газового котла, в таких приборах она также называется сенсором пламени. По ходу раскроем некоторые нюансы по эксплуатации термоэлектрических детекторов, как они устроены, из чего состоит такой прибор.

Признаки поломки:

  • затухание фитиля, в момент, когда одновременно отпускают кнопку зажигания;
  • огонек остается, но после розжига главной горелки подача топлива снова перекрывается, котел гаснет вообще.

Причины:

  • электроды, горячий спай покрылись сажей, прогреваются не достаточно. Поэтому напряжение на цепи падает ниже критического минимума, нужного для сработки прибора;
  • прогар защитной капсулы ТП;
  • нарушены контакты на точке спаев, обрыв проволоки;
  • отошли крепежные гайки;
  • перекос рабочего стержня и, как следствие, плохой прогрев запальником;
  • сломался датчик тяги или его электроцепь оборвана.

Починка, восстановление

Термопары чувствительные к любым повреждениям и загрязнениям: эти факторы могут уменьшить выдаваемое датчиком напряжение ниже критической границы. Характерная частая причина плохой работы — нагар, сажа на рабочем (нагреваемом) сегменте. Для восстановления достаточно произвести чистку мягкой щеткой, ваткой со спиртом

Важно не допустить царапин, механических повреждений. После очистки надо провести проверку мультиметром

Часто причиной неисправностей являются окислившиеся контакты, их можно зачистить мелкозернистой (нулевкой) наждачкой, но без чрезмерных усилий

Таким образом, если есть нагар, сажа, окисления, отошедшие или оборванные контакты, крепежи и подобное, то ТП возможно отремонтировать. Но если обнаружены глубокие черные вмятины, прогары (дыры), то такой элемент обычно не восстанавливается. Теоретически можно соорудить новый защитный кожух, попробовать наново спаять концы, если они разошлись, но нет гарантии, что такая починка будет качественная. А от неэффективной работы есть риск значительного ухудшения ресурса обслуживаемого прибора, вероятность аварийных ситуаций увеличивается. Почти всегда сенсоры с такими критическими перечисленными поломками заменяют на новые без раздумий.

Запасные элементы продаются в спецмагазинах, точках сервисного обслуживания. Подобрать не составит труда — достаточно выбрать аналогичный или подходящий по параметрам детектор для конкретной модели оборудования. Замена элементарная — отщелкнуть старую ТП и подключить (воткнуть) в посадочные места новую.

Сложность может быть лишь в том, что прибор придется разбирать, снимать крышки, узлы с горелками и так далее.

Кабельные термопары

В своем производстве, «ПК»Тесей» использует кабельные термопары. Она представляет собой гибкую металлическую трубку с размещёнными внутри нее одной, двумя или тремя парами термоэлектродов, расположенными параллельно друг другу. Пространство вокруг термоэлектродов заполнено уплотненной мелкодисперсной минеральной изоляцией. Термоэлектроды кабельной термопары со стороны рабочего торца попарно сварены между собой, образуя один, два или три рабочих спая. Рабочий торец заглушен с помощью сварки, либо имеет открытый спай. Свободные концы термоэлектродов подключаются к клеммам головки датчика температуры или к удлиняющим проводам. Высокая плотность изоляции кабельной термопары позволяет навивать её на цилиндр радиусом, равным пятикратному диаметру кабеля, без изменения технических характеристик термопары. Например, термопару диаметром 3 мм можно навить на трубу диаметром 30 мм. При этом не происходит замыкания электродов между собой или с оболочкой. Надежная изоляция обусловлена технологией изготовления тер-мопарного кабеля. Из окиси магния или алюминия методом сухого прессования изготавливают двухканальные бусы, в которые вставляют термоэлектроды, сборку помещают в трубу диаметром около 20 мм и многократно протягивают через фильеры, проводя промежуточный отжиг в среде водорода или аргона.

Главные преимущества кабельных термопар.

  • широкий диапазон рабочих температур. Это самый высокотемпературный из контактных датчиков;
  • малый показатель тепловой инерции, позволяющий применять их для регистрации быстропротекающих процессов;
  • универсальность применения для различных условий эксплуатации, хорошая технологичность, малая материалоемкость;
  • способность выдерживать большие рабочие давления;
  • изготовление на их основе термопреобразователей в защитных чехлах блочно-модульного исполнения, обеспечивающих дополнительную защиту термоэлектродов от воздействия рабочей среды и создающих возможность оперативной замены термочувствительного элемента.

Датчик температуры выполненный на основе термопарного кабеля удобен в эксплуатации, его конструкцияпозволяет изгибать кабель, монтировать в труднодоступных местах, в кабельных каналах, при этом длина ТП может достигать нескольких сотен метров. Термопары можно приваривать, припаивать или просто прижимать к поверхности для измерения ее температуры.

Общие советы по выбору термопар из неблагородных металлов

  • ниже нуля – тип Т
  • комнатные температуры – тип К, Т
  • до 300 °С – тип К
  • от 300 до 600°С – тип N
  • выше 600 °С – тип К или N

Подключение термопары.

Рабочий конец термопары погружается в среду, температуру которой требуется измерить. Свободные концы подключаются ко вторичному прибору. Для подключения термопары к модулю ввода используют специальные термопарные провода, выполненные из того же материала, что и сама термопара. Для этой цели можно использовать и обычные медные провода, однако в этом случае необходим выносной датчик температуры холодного спая, который должен измерять температуру в месте контакта термопары с медными проводами.

Рисунок 4. Схема подключения термопары

Схема подключения термопар к клеммам головки для одной (Рис.5) и двух пар (Рис.6) термоэлектродов.

Рисунок5

Рисунок6

Схемы включения ТСМ/ТСП

Существует три варианта подключения:

2-х проводное (см. А на рис. 7), этот наиболее простой способ используется в тех случаях, когда точность результатов не критична. Дополнительную погрешность создает номинальное сопротивление проводников, которыми подключается датчик

Обратим внимание, что для классов точности A и AA данная схема включения неприемлема. Рисунок 7

Двухпроводная, трехпроводная и четырехпроводная схема включения термометра сопротивления

3-х проводное (В). Такой вариант обладает более высокой точностью, чем 2-х проводная схема вариант подключения. Это происходит за счет того, что появляется возможность измерить сопротивление монтажных проводов, чтобы учесть их воздействие.

4-х проводное. Этот вариант позволяет полностью исключить воздействие сопротивления монтажных проводов на результаты измерений.

В измерительных приборах ТС, как правило, включен по мостовой схеме.

Пример подключения по мостовой схеме вторичного прибора (pt100) для измерения температуры воздуха

Обратим внимание, что под rл.с. в электрической схеме подразумевается сопротивление линий связи, то есть проводов, которыми подключен датчик

Схема подключений

Для того, чтобы узнать значение сопротивления его надо измерить. Сделать это можно с помощью включения его в измерительную цепь. Для этого используют 3 типа схем, которые отличаются между собой количеством проводов и достигаемой точностью измерений:

  • 2-проводная цепь. Содержит минимальное количество проводов, а значит, самый дешевый вариант. Однако, при выборе данной схемы достичь оптимальной точности измерений не получится — к сопротивлению термометра будет прибавляться сопротивление используемых проводов, которые и будут вносить погрешность, зависимую от длины проводов. В промышленности такая схема применяется редко. Используется лишь для измерений, где не важна особая точность, а датчик находится в непосредственной близости от вторичного преобразователя. 2-проводная схема изображена на левом рисунке.
  • 3-проводная цепь. В отличии от предыдущего варианта здесь добавляется дополнительный провод, накоротко соединённый с одним из двух других измерительных. Его основная цель — возможность получить сопротивление подключенных проводов и вычесть это значение (компенсировать) из измеренного значения от датчика. Вторичный прибор, кроме основного измерения, дополнительно измеряет сопротивление между замкнутыми проводами, получая тем самым значение сопротивления проводов подключения от датчика до барьера или вторичника. Так как провода замкнуты, то это значение должно быть равно нулю, но по факту из-за большой длины проводов, это значение может достигать нескольких Ом. Далее эта погрешность вычитается из измеренного значения, получая более точные показания, за счёт компенсации сопротивления проводов. Такое подключение применяется в большинстве случаев, поскольку является компромиссом между необходимой точностью и приемлемой ценой. 3-х проводная схема изображена на центральном рисунке.
  • 4-проводная цепь. Цель такая же, что и при использовании трехпроводной схемы, но компенсация погрешности идёт обоих измерительных проводов. В трехпроводной схеме значение сопротивления обоих измерительных проводов принимается за одинаковое значение, но по факту оно может незначительно отличаться. За счет добавления ещё одного четвёртого провода в четырехпроводной схеме (закороченного со вторым измерительным проводом), удается получить отдельно его значение сопротивления и почти полностью компенсировать всё сопротивление от проводов. Однако, данная цепь является более дорогой, так как требуется четвёртый проводник и поэтому реализуется или на предприятиях с достаточным финансированием, или при измерении параметров, где нужна большая точность. 4-х проводную схему подключений вы можете увидеть на правом рисунке.

Виды и их характеристика

Основное различие между термометрами – устройство датчика. Они сделаны из разных материалов, отличаются толщиной чувствительного элемента и имеют различную стоимость.

Металлические

Они бывают платиновые, никелевые и медные. Рассмотрим подробнее элементы их этих металлов.

Платина. Самый дорогой материал, из нее изготавливаются самые точные лабораторные и эталонные приборы. Достоинства – очень высокая точность и широкий диапазон измерений, стабильность работы, практически линейная зависимость электропроводности от температуры (номинальная статическая характеристика, НСХ). Недостаток – высокая стоимость, хотя сейчас развитие технологий уменьшает количество платины, а значит, и цену. Все плюсы при этом сохраняются. Приборы с датчиком из платины обозначаются как ТСП (Термометр Сопротивления с платиновым датчиком).

Также существуют различные конструкции чувствительного элемента.

Проволочный. Чувствительный элемент – проволока, намотанная на каркас из металла, керамики, кварца, слюды или пластмассы. Во избежание потерь на индукцию намотка бифилярная (это когда провод складывается вдвое и только затем наматывается). Между витками есть мелкодисперсный наполнитель из Al2O3, который нужен для дополнительной изоляции витков и амортизации при колебаниях. Катушка заключена в металлический корпус и загерметизирована.

Полупроводниковые

Обычно они изготавливаются из германия и кремния. В качестве легирующей добавки выступает сурьма. Также есть кобальто-марганцевые (КМТ) и медно-марганцевые (ММТ) приборы, работающие в пределах от -90 до +180 градусов. Благодаря большому внутреннему сопротивлению датчика проводимостью соединителей можно пренебречь. Чувствительный элемент расположен в защитном корпусе.

Преимущества – высокое быстродействие, возможность работы в сверхнизких температурах – от -270 градусов по Цельсию. Точность и стабильность измерений большие. Недостатки – нелинейная характеристика НСХ и невоспроизводимость градуировочной характеристики.

Благодаря нелинейной зависимости «температура-сопротивление» такие устройства скачкообразно меняют проводимость при определенной температуре. Это называется релейным эффектом и позволяет использовать данные приборы в системах сигнализации. Датчики по-разному крепятся на поверхность. Варианты креплений делятся на:

  • ввинчивающиеся;
  • поверхностные;
  • вставные;
  • с присоединительными проводами;
  • с байонетными соединениями (это осевое перемещение и поворот, как в боксах для дисков).

Расшифровка обозначений термометров сопротивления не составит труда. Обычно латиницей или кириллицей указывается его тип, далее цифрами – сопротивление в Ом при температуре 0 градусов Цельсия. Например, Pt100 – термометр платиновый, сопротивление термопреобразователя – 100 Ом при 0 градусов. Также есть несколько общепринятых сокращений:

  • ТПТ – технический платиновый термометр;
  • ТСПН – термометр, предназначенный для регистрации низких температур;
  • ЭТС – эталонные термометры сопротивления, которые используются для калибровки других датчиков.

Чем отличается термосопротивление от термопары?

Схема термопары, ее конструкция, а также принцип работы существенно отличается от термометра сопротивления, расскажем об этом простыми словами. У устройства pt100, а также других датчиков, принцип действия основан на сопоставимости между изменением температуры металла и его сопротивлением.

Принцип термопары построен на различных свойствах двух металлов собранных в единую биметаллическую конструкцию. Устройство, подключение, назначение термопары, а также описание погрешности этих приборов будет рассмотрено в отдельной статье.

Сейчас достаточно понимать, что термопара и ТСП, например pt100, это совершенно разные приборы, отличающиеся принципом работы.

Конструкция

Обычные чувствительные элементы RTD, изготовленные из платины, меди или никеля, имеют повторяемое соотношение сопротивления к температуре (R против T) и диапазон рабочих температур. Отношение Rs к T определяется как величина изменения сопротивления датчика на градус преобразования температуры. Относительное изменение сопротивления (температурный коэффициент сопротивления) изменяется незначительно в пределах полезного диапазона датчика.

Платина была предложена сэром Уильямом Сименсом в качестве элемента для резистивного температурного детектора на лекции Бейкера в 1871 году: это благородный металл и имеет наиболее стабильное соотношение сопротивление-температура в наибольшем диапазоне температур.

Никелевые элементы имеют ограниченный температурный диапазон, потому что величина изменения сопротивления на градус преобразования температуры становится очень нелинейной при температурах выше 300 ° C (572 ° F). Медь имеет очень линейное отношение сопротивления к температуре, однако она окисляется при умеренных температурах и не может использоваться при нагреве выше 150 ° C (302 ° F).

Медные устройства и их параметры

Термопреобразователь сопротивления (медный) подходит только для газообразной среды. По параметру погрешности модификации довольно сильно отличаются. В первую очередь нужно рассмотреть термопреобразователи с допуском серии А. Используются они при температуре даже -50 градусов. Однако чувствительность у них не слишком хорошая. Данный параметр в среднем не превышает 34 мк. Все это говорит о том, что при температуре меньше 0 градусов погрешность в среднем равняется 0.5 градусов.

Показатель тепловой инерции в свою очередь доходит до 10 с. В данном случае максимальная возможная температура для моделей равняется 230 градусов. Допускаемый предел отклонений при этом доходит до 0.12 Т. Если говорить про конструктивные особенности, то клеммные головки у моделей данного типа отсутствуют. Герметик во многих конфигурациях используется с порошком. Непосредственно изоляторы часто применяются кремниевого типа. Если рассматривать термопреобразователи с допуском серии В, то они имеют чувствительность на уровне 40 мк. Все это говорит о том, что при температуре меньше 0 градусов погрешность может доходить до 0.45 градусов.

Рассматривая конструктивные особенности модификаций, важно отметить, что множество моделей оснащены клеммными коробками. В данном случае герметик стандартно применяется с порошком

Непосредственно зажимы устанавливаются в передней части корпуса. Защитная арматура чаще всего применяется с маркировкой 15Х.

Чем отличается платиновый термометр сопротивления (ТСП) от аналогов

Чтобы понять чем обусловлена высокая популярность такого вида приборов, стоит пару слов сказать о принципе действия всех вариантов. Термометры сопротивления предназначены для подключения к измерительному оборудованию и для непосредственного замера уровня тепловой энергии. Считывание показаний осуществляется за счет изменений чувствительного элемента. Им является проволока или пленка из металла с известной зависимостью уровня электрического сопротивления от количества тепла.

Согласно действующим стандартам для изготовления чувствительного элемента может использоваться никель, медь и платина. Последний материал наилучшим образом подходит для решения производственных задач. Так, платиновый термометр сопротивления (ТСП) проявляет высокие показания стабильности и надежности при температуре до 600 градусов Цельсия.

Почему термопреобразователи сопротивления (ТС) стоит покупать именно у нас

Рассматриваемые приборы заслужили высокую востребованность неслучайно. Их популярность объясняется тем, что термопреобразователь сопротивления (ТС) обладает отличной взаимозаменяемостью, а также высокой линейностью. Это значит, что при необходимости установки нового прибора, повторная калибровка оборудования не потребуется.

Обратившись к нашим специалистам, вы можете с легкостью купить комплект термопреобразователей, каждый из которых будет отвечать высоким требованиям качества, стабильности и надежности работы. НПП «Прома» обладает широкой географией поставок термопреобразователей и на протяжении последних 20 лет с успехом обслуживает ведущие отечественные заводы. Заказывая продукцию у нас, вы получите лучшее предложение по соотношению качества и стоимости. Мы уверены в надежности предлагаемых изделий, так как работаем с ними в собственном конструкторском бюро, а также производим их на новейшем технологичном оборудовании.

Разновидности датчиков температуры ТСМ

Компания выпускает модификации термопреобразователей с медным ЧЭ от ТСМ035 до ТСМ165. Изделия применяются для постоянного замера температуры:

  • твердых;
  • газообразных;
  • жидких;
  • агрессивных;
  • неагрессивных сред.

Датчики имеют простую конструкцию, невысокую стоимость изготовления. При этом изделия качественные и надежные. Обладают приемлемой эксплуатационной долговечностью.

Основные техпараметры датчика температуры ТСМ

Термопреобразователи характеризуются следующими техническими параметрами:

  • диапазон T°С, от -50°С до +180°С.
  • класс допуска, A, B, C;
  • показатель тепловой инерции, от 1 до 180;
  • защитная арматура: латунь, сталь, медь М1.

Компания также выпускает датчики температуры ТСМУ имеющие унифицированный выходной сигнал. Цена на них выше, чем стандартных ТСМ.

Сферы применения

Одноканальные медные термопреобразователи используются для измерения температур в пищевой промышленности при производстве, стерилизации продукции. По взрывозащите такие датчики имеют обычное и специальное исполнение.

В системах вентиляции, электрощитовых, хранилищах, для контроля и регулировки температуры при технологических процессах используются ТСМ 302. Средний срок службы термопреобразователей сопротивления свыше 5 лет.

Также предлагаем Вам ознакомиться:

Компания НПП «Прома» является одним из ведущих производителей продукции для автоматизации промышленных производств в города России: Москва, Санкт-Петербург, Новосибирск, Екатеринбург, Нижний Новгород, Казань, Челябинск, Омск, Самара, Ростов-на-Дону, Уфа, Красноярск, Пермь, Воронеж, Волгоград, Краснодар, Рязань.

Медные датчики (ТСМ)

ТК медных измерительных приборов – 0,00428°С -1 , диапазон измеряемых температур немного уже, чем у никелевых аналогов (от -50,0°С до 150°С). К несомненным преимуществам медных измерителей следует отнести их относительно невысокую стоимость и наиболее близкую к линейной характеристику «температура-сопротивление». Но, узкий диапазон измеряемых температур и низкие параметры удельного сопротивления существенно ограничивают сферу применения термопреобразователей ТСМ.

Типовые конструкции платиновых термосопротивлений

Наиболее распространение получило исполнение ЧЭ в ПТС, называемое «свободной от напряжения спиралью», у зарубежных изготовителей оно проходит под термином «Strain free». Упрощенный вариант такой конструкции представлен ниже.

Конструктивное исполнение «Strain free»

Обозначения:

  • А – Выводы термоэлектрического элемента.
  • В – Защитный корпус.
  • С – Спираль из платиновой проволоки.
  • D – Мелкодисперсный наполнитель.
  • E – Глазурь, герметизирующая ЧЭ.

Как видно из рисунка, четыре спирали из платиновой проволоки, размещают в специальных каналах, которые потом заполняются мелкодисперсным наполнителем. В роли последнего выступает очищенный от примесей оксид алюминия (Al2O3). Наполнитель обеспечивает изоляцию между витками проволоки, а также играет роль амортизатора при вибрациях или когда происходит ее расширение, вследствие нагрева. Для герметизации отверстий в защитном корпусе применяется специальная глазурь.

На практике встречается много вариаций типового исполнения, различия могут быть в дизайне, герметизирующем материале и размерах основных компонентов.

Исполнение Hollow Annulus.

Данный вид конструкции относительно новый, она разрабатывалась для использования в атомной индустрии, а также на объектах особой важности. В других сферах датчики данного типа практически не применяются, основная причина этого высокая стоимость изделий

Отличительные особенности высокая надежность и стабильные характеристики. Приведем пример такой конструкции.

Пример исполнения «Hollow Annulus»

Обозначения:

  • А – Выводы с ЧЭ.
  • В – Изоляция выводов ЧЭ.
  • С – Изолирующий мелкодисперсный наполнитель.
  • D – Защитный корпус датчика.
  • E – Проволока из платины.
  • F – Металлическая трубка.

ЧЭ данной конструкции представляет собой металлическую трубку (полый цилиндр), покрытый слоем изоляции, сверху которой наматывается платиновая проволока. В качестве материала цилиндра используется сплав с температурным коэффициентом близким к платине. Изоляционное покрытие (Al2O3) наносится горячим напылением. Собранный ЧЭ помещается с защитный корпус, после чего его герметизируют.

Для данной конструкции характерна низкая инерционность, она может быть в диапазоне от 350,0 миллисекунд до 11,0 секунд, в зависимости от того используется погружаемый или монтированный ЧЭ.

Пленочное исполнение (Thin film).

Основное отличие от предыдущих видов заключается в том, что платина тонким слоем (толщиной в несколько микрон) напыляется на керамическое или пластиковое основание. На напыление наносится стеклянное, эпоксидное или пластиковое защитное покрытие.

Миниатюрный пленочный датчик

Это наиболее распространенный тип конструкции, основные достоинства которой заключаются в невысокой стоимости и небольших габаритах. Помимо этого пленочные датчики обладают низкой инерционностью и относительно высоким внутренним сопротивлением. Последнее практически полностью нивелирует воздействие сопротивления выводов на показания прибора (таблицы термосопротивлений можно найти в сети).

Что касается стабильности, то она уступает проволочным датчикам, но следует учитывать, что пленочная технология усовершенствуется год от года, и прогресс довольно ощутим.

Стеклянная изоляция спирали.

В некоторых дорогих ТС платиновую проволоку покрывают стеклянной изоляцией. Такое исполнение обеспечивает полную герметизацию ЧЭ и увеличивает влагостойкость, но сужает диапазон измеряемой температуры.

Градуировочная таблица резервуара

Основным инструментом для точного определения объема продукта находящегося в резервуаре является градуировочная таблица резервуара. В зависимости от объема, при определении количества хранимого продукта в градуировочной таблице допускаются относительные погрешности от фактического объема:±0.2% для объемов 100 – 3000 м³;±0.15% для объемов 3000 – 5000 м³;±0.1% для объемов 5000 – 50 000 м³.

Градуировочные таблицы к используемым резервуарам должны утверждаться руководством предприятия. Все измерения по размерам резервуара и его элементам конструкции производятся метрологической службой или комиссией созданной на предприятии. По полученным данным составляется акт, который утверждается главным инженером. Таблица отображает фактический объем хранимого продукта на основании показаний отметок уровня резервуара.Градуировочная таблица, акт проведенных измерений и поправки неровности днища хранятся на предприятии.Калибровку резервуара по данным таблицы выполняют специальные бригады из состава предприятий имеющих сертификат на выполнение таких работ.Градуировочная таблица составляется на 5 лет.

К основным способам поверки резервуаров относятся:• геометрический;• объемный.

Выбор способа поверки зависит от следующих факторов:• объема емкости;• доступности выполнения работ по поверке;• наличия измерительных приборов;• экономической целесообразности;• требуемой точности.

Геометрический метод поверки резервуараГрадуировка резервуаров геометрическим методом применяются к наземным резервуарам одностенной конструкции. К поземным и двустенным резервуарам она не применима, вследствие невозможности проведения необходимых замеров.Этот метод заключается в снятии всех геометрических размеров резервуара, его внутреннего оборудования и конструктивных элементов. Кроме этого проводят нивелировку днища для измерения выпуклостей и впадин. Измерениям также подлежат толщина стенок и деталей резервуара. Эти измерения производят с помощью рулетки, каретки, теодолита, нивелира, уровней, ультразвуковых и электронных измерительных приборов. После проведения соответствующих вычислений составляют таблицу данных.Геометрический метод калибровки используют при различном объеме емкостей, а для резервуаров большого объема (свыше 5000 м³) он является наиболее доступным и экономически обоснованным.

Объемный метод поверки резервуараПоверка резервуара объемным методом вполне применима для емкостей любого вида и конфигурации. Единственным ограничением является объем резервуара. Ее рекомендуется применять для емкостей объемом до 5000 м³, а для подземных и двустенных резервуаров это почти единственный вариант поверки.Этот метод является одним из основных для проведения градуировки резервуаров на АЗС. Кроме традиционного способа проведения поверочных работ на АЗС, для градуировки резервуаров широко используют передвижные лаборатории и программно-измерительные комплексы на автомобилях. Это оборудование позволяет производить высокоточную калибровку резервуаров в минимальные сроки.Традиционный объемный метод проведения градуировки резервуаром требует наличия следующих измерительных приборов и оборудования:• уровнемера и счетчика жидкости;• манометра;• спиртового термометра;• рулетки с грузом;• ареометра;• секундомера;• насоса с запорной арматурой, фильтром и регулятором расхода.При объемном методе учитываются погодные условия, температура воздуха и жидкости для поверки. Для выполнения измерения используют воду или светлые нефтепродукты. Эти работы выполняются при температуре воздуха плюс 5 — 35°С в сухую погоду. При использовании воды в качестве поверочной жидкости ее температура должна быть 2°С, а для нефтепродуктов эта величина составляет 0.5°С.

Объемная поверка проводится двумя способами:• статистическим.При этом способе поверочная жидкость закачивается в резервуар с контролем ее объема.• с использованием мерных емкостей.В этом случае для выполнения работ используются мерные емкости (мерники). Поверочную жидкость с мерника закачивают в резервуар насосом с последующим занесением результатов в таблицу закачанного объема и фиксации отметки этого уровня.

Современное оборудование проведения поверочных работ позволяет производить их с высокой точностью и за небольшие промежутки времени. В качестве примера такого оборудования является программно-аппаратный комплекс, где для поверочных работ применяют лазерный сканер Faro, проводящий измерения в формате 3D. Он имеет программное метрологическое обеспечение и способен выполнять поверочные работы для резервуаров любого типа, вида и объема.