Плоский конденсатор.
Итак, простейший конденсатор представляет из себя две плоские проводящие пластины, расположенные параллельно друг другу и разделенные слоем диэлектрика. Причем расстояние между пластинами должно быть намного меньше, чем, собственно, размеры пластин:
Такое устройство называется плоским конденсатором, а пластины – обкладками конденсатора. Стоит уточнить, что здесь мы рассматриваем уже заряженный конденсатор (сам процесс зарядки мы изучим чуть позже), то есть на обкладках сосредоточен определенный заряд. Причем наибольший интерес представляет тот случай, когда заряды пластин конденсатора одинаковы по модулю и противоположны по знаку (как на рисунке).
Советуем изучить — Динамическое торможение двигателя
А поскольку на обкладках сосредоточен заряд, между ними возникает электрическое поле. Поле плоского конденсатора, в основном, сосредоточено между пластинами, однако, в окружающем пространстве также возникает электрическое поле, которое называют полем рассеяния. Очень часто его влиянием в задачах пренебрегают, но забывать о нем не стоит.
Для определения величины этого поля рассмотрим еще одно схематическое изображение плоского конденсатора:
Каждая из обкладок конденсатора в отдельности создает электрическое поле:
- положительно заряженная пластина (+q) создает поле, напряженность которого равна E_{+}
- отрицательно заряженная пластина (-q) создает поле, напряженность которого равна E_{-}
Выражение для напряженности поля равномерно заряженной пластины выглядит следующим образом:
E = \frac{\sigma}{2\varepsilon_0\thinspace\varepsilon}
Здесь \sigma– это поверхностная плотность заряда: \sigma = \frac{q}{S}, а \varepsilon – диэлектрическая проницаемость диэлектрика, расположенного между обкладками конденсатора. Поскольку площадь пластин конденсатора у нас одинаковая, как и величина заряда, то и модули напряженности электрического поля, равны между собой:
E_+ = E_- = \frac{q}{2\varepsilon_0\thinspace\varepsilon S}
Но направления векторов разные – внутри конденсатора вектора направлены в одну сторону, а вне – в противоположные. Таким образом, внутри обкладок результирующее поле определяется следующим образом:
E = E_+ + E_- = \frac{q}{2\varepsilon_0\thinspace\varepsilon S} + \frac{q}{2\varepsilon_0\thinspace\varepsilon S} = \frac{q}{\varepsilon_0\thinspace\varepsilon S}
А какая же будет величина напряженности вне конденсатора? А все просто – слева и справа от обкладок поля пластин компенсируют друг друга и результирующая напряженность равна 0
Процессы зарядки и разрядки конденсаторов.
С устройством мы разобрались, теперь разберемся, что произойдет, если подключить к конденсатору источник постоянного тока. На принципиальных электрических схемах конденсатор обозначают следующим образом:
Итак, мы подключили обкладки конденсатора к полюсам источника постоянного тока. Что же будет происходить?
Свободные электроны с первой обкладки конденсатора
устремятся к положительному полюсу источника, в связи с чем на обкладке возникнет недостаток отрицательно заряженных частиц и она станет положительно заряженной. В то же время электроны с отрицательного полюса источника тока переместятся ко второй обкладке конденсатора, в результате чего на ней возникнет избыток электронов, соответственно, обкладка станет отрицательно заряженной. Таким образом, на обкладках конденсатора образуются заряды разного знака (как раз этот случай мы и рассматривали в первой части статьи), что приводит к появлению электрического поля, которое создаст между пластинами конденсатора определенную . Процесс зарядки будет продолжаться до тех пор, пока эта разность потенциалов не станет равна напряжению источника тока, после этого процесс зарядки закончится, и перемещение электронов по цепи прекратится.
Соединение конденсаторов: формулы
- Последовательное соединение
- Онлайн калькулятор
- Смешанное соединение
- Параллельное соединение
- Видео
В электронных и радиотехнических схемах широкое распространение получило параллельное и последовательное соединение конденсаторов. В первом случае соединение осуществляется без каких-либо общих узлов, а во втором варианте все элементы объединяются в два узла и не связаны с другими узлами, если это заранее не предусмотрено схемой.
Последовательное соединение
При последовательном соединении два и более конденсаторов соединяются в общую цепь таким образом, что каждый предыдущий конденсатор соединяется с последующим лишь в одной общей точке. Ток (i), осуществляющий зарядку последовательной цепи конденсаторов будет иметь одинаковое значение для каждого элемента, поскольку он проходит только по единственно возможному пути. Это положение подтверждается формулой: i = ic1 = ic2 = ic3 = ic4.
В связи с одинаковым значением тока, протекающего через конденсаторы с последовательным соединением, величина заряда, накопленного каждым из них, будет одинаковой, независимо от емкости. Такое становится возможным, поскольку заряд, приходящий с обкладки предыдущего конденсатора, накапливается на обкладке последующего элемента цепи. Поэтому величина заряда у последовательно соединенных конденсаторов будет выглядеть следующим образом: Qобщ= Q1 = Q2 = Q3.
Если рассмотреть три конденсатора С1, С2 и С3, соединенные в последовательную цепь, то выясняется, что средний конденсатор С2 при постоянном токе оказывается электрически изолированным от общей цепи. В конечном итоге величина эффективной площади обкладок будет уменьшена до площади обкладок конденсатора с самыми минимальными размерами. Полное заполнение обкладок электрическим зарядом, делает невозможным дальнейшее прохождение по нему тока. В результате, движение тока прекращается во всей цепи, соответственно прекращается и зарядка всех остальных конденсаторов.
Общее расстояние между обкладками при последовательном соединении представляет собой сумму расстояний между обкладками каждого элемента. В результате соединения в последовательную цепь, формируется единый большой конденсатор, площадь обкладок которого соответствует обкладкам элемента с минимальной емкостью. Расстояние между обкладками оказывается равным сумме всех расстояний, имеющихся в цепи.
Падение напряжения на каждый конденсатор будет разным, в зависимости от емкости. Данное положение определяется формулой: С = Q/V, в которой емкость обратно пропорциональна напряжению. Таким образом, с уменьшением емкости конденсатора на него падает более высокое напряжение. Суммарная емкость всех конденсаторов вычисляется по формуле: 1/Cобщ = 1/C1 + 1/C2 + 1/C3.
Главная особенность такой схемы заключается в прохождении электрической энергии только в одном направлении. Поэтому в каждом конденсаторе значение тока будет одинаковым. Каждый накопитель в последовательной цепи накапливает равное количество энергии, независимо от емкости. То есть емкость может воспроизводиться за счет энергии, присутствующей в соседнем накопителе.
Онлайн калькулятор, для расчета емкости конденсаторов соединенных последовательно в электрической цепи.
Параллельное соединение конденсаторов
Параллельным считается такое соединение, при котором конденсаторы соединяются между собой двумя контактами. Таким образом в одной точке может соединяться сразу несколько элементов.
Данный вид соединения позволяет сформировать единый конденсатор с большими размерами, площадь обкладок которого будет равна сумме площадей обкладок каждого, отдельно взятого конденсатора. В связи с тем, что емкость конденсаторов находится в прямой пропорциональной зависимости с площадью обкладок, общая емкость составить суммарное количество всех емкостей конденсаторов, соединенных параллельно. То есть, Собщ = С1 + С2 + С3.
Поскольку разность потенциалов возникает лишь в двух точках, то на все конденсаторы, соединенные параллельно, будет падать одинаковое напряжение. Сила тока в каждом из них будет отличаться, в зависимости от емкости и значения напряжения. Таким образом, последовательное и параллельное соединение, применяемое в различных схемах, позволяет выполнять регулировку различных параметров на тех или иных участках. За счет этого получаются необходимые результаты работы всей системы в целом.
electric-220.ru
Во всех электронных устройствах используются конденсаторы. При их конструировании или изготовлении своими руками параметры устройств рассчитываются по специальным формулам.
Конденсатор или аккумулятор
Использование таких изделий вместо АКБ ограничено незначительной емкостью серийных электролитических моделей. Ситуация изменилась с появлением ионисторов, которые отличаются увеличенной емкостью (до десятков тыс. фарад). Ниже перечислены особенности, которые следует учесть при сравнении конденсаторов и аккумуляторных батарей.
Преимущества ионисторов:
- длительное сохранение хороших рабочих параметров;
- широкий температурный диапазон (от -40°C до + 60°C);
- надежность;
- простота обращения;
- разумная стоимость.
Недостатки:
- быстрый самостоятельный разряд (15-25% за 24 часа);
- сравнительно небольшой запас энергии (1-1,5 мА на 1 Ф).
Для правильного применения конденсаторов требуется точный предварительный расчет. Как накопители энергии, эти элементы применяют в комплекте с солнечными батареями. В таких наборах при непрерывной эксплуатации обозначенные потери можно признать приемлемыми. Если придется отключить источник питания на длительный срок, предпочтительным выглядит использование АКБ.
Относительная диэлектрическая проницаемость
Не менее значимым фактором, влияющим на емкость конденсатора, является такое свойство материала между обкладками как относительная диэлектрическая проницаемость
. Это безразмерная физическая величина, которая показывает во сколько раз сила взаимодействия двух свободных зарядов в диэлектрике меньше, чем в вакууме. Материалы с более высокой диэлектрической проницаемостью позволяют обеспечить большую емкость. Объясняется это эффектом поляризации
– смещением электронов атомов диэлектрика в сторону положительно заряженной пластины конденсатора.
Ниже приведены примеры значений диэлектрической проницаемости для некоторых изоляционных материалов, используемых в конденсаторах.
Воздух – 1.0005
Бумага – от 2.5 до 3.5
Стекло – от 3 до 10
Слюда – от 5 до 7
Порошки оксидов металлов – от 6 до 20
Энергия электрического поля: конденсатор
Конденсаторы обладают способностью накапливать электрический заряд и, следовательно, электрическую энергию. Они являются частью многих устройств: двигателей, радио- и телевизионных схем, систем освещения автомобилей и многого другого.
Конденсаторы состоят из двух проводов, разделенных небольшим расстоянием. Каждому из них дается заряд одинаковой величины и противоположного знака, что создает электрическое поле в пространстве между обоими проводниками. Геометрия может меняться, как и у плоскопараллельных пластинчатых конденсаторов.
Энергия, хранящаяся в конденсаторе, возникает в результате работы, которая была проделана для его зарядки, что послужило созданию внутри него электрического поля. Введение диэлектрического материала между пластинами увеличивает емкость конденсатора и, следовательно, энергию, которую он может хранить.
Конденсатор емкостью C, первоначально разряженный, который заряжается батареей, которая выдает напряжение V, до достижения заряда Q, сохраняет энергию U, определяемую следующим образом:
U = ½ (Q2/ C) = ½ QV = ½ CV2
Разряд конденсатора
После того как конденсатор зарядился, отключим источник питания и подключим нагрузку R. Так как конденсатор уже заряжен, он сам превратился в источник питания. Нагрузка R образовала проход между пластинами. Отрицательно заряженные электроны, накопленные на одной пластине, согласно силе притяжения между разноименными зарядами, двинутся в сторону положительно заряженных ионов на другой пластине.
В момент подключения R, напряжение на конденсаторе то же, что и после окончания переходного периода зарядки. Начальный ток по закону Ома будет равняться напряжению на обкладках, разделенном на сопротивление нагрузки.
Как только в цепи пойдет ток, конденсатор начнет разряжаться. По мере потери заряда, напряжение начнет падать. Следовательно, ток тоже упадет. По мере понижения значений напряжения и тока, будет снижаться их скорость падения.
Время зарядки и разрядки конденсатора зависит от двух параметров – емкости конденсатора C и общего сопротивления в цепи R. Чем больше емкость конденсатора, тем большее количество заряда должно пройти по цепи, и тем больше времени потребует процесс зарядки/разрядки ( ток определяется как количество заряда, прошедшего по проводнику за единицу времени). Чем больше сопротивление R, тем меньше ток. Соответственно, больше времени потребуется на зарядку.
Продукт RC (сопротивление, умноженное на емкость) формирует временную константу ?
(тау). За один? конденсатор заряжается или разряжается на 63%. За пять? конденсатор заряжается или разряжается полностью.
Советуем изучить — Мощность трехфазной цепи при несимметричной нагрузке
Устройство и принцип работы
В простейшем варианте конструкция состоит из двух электродов в форме проводящих пластин (называемых обкладками), разделённых диэлектриком, толщина которого ничтожно мала по сравнению с размерами обкладок. Практически применяемые радиоэлектронные компоненты содержат много слоёв диэлектрика и электродов. В качестве обозначения конденсатора на схеме используются два параллельных отрезка с пространством между ними. Они символизируют металлические пластины обкладок физического прибора, электрически разделённые между собой.
Многие считают Майкла Фарадея автором изобретения, но на самом деле это не так. Но он сделал главное — продемонстрировал первые практические примеры и способы использования этого прибора для хранения электрического заряда в своих экспериментах. Благодаря Фарадею человечество получило способ измерять возможность накапливать заряд. Эта величина называется ёмкостью и измеряется в Фарадах.
https://youtube.com/watch?v=tuVEW69oXuw
Работу конденсатора можно проиллюстрировать на примере событий, проходящих во вспышке цифровой фотокамеры за отрезок времени между нажатием кнопки и тем моментом, когда вспышка погаснет. Основой электронной схемы этого осветительного устройства является конденсатор, в котором происходит следующее:
- Зарядка. После нажатия кнопки поток электронов приходит в конденсатор и останавливается на одной из его пластин благодаря диэлектрику. Этот поток называется зарядным током.
- Накопление. Поскольку под действием электродвижущей силы всё больше и больше электронов будут поступать на обкладку и распределяться по ней, отрицательный заряд обкладки может расти до момента, пока накопленный потенциал не будет отталкивать поступающий избыточный поток электронов. Вторая пластина из-за дефицита электронов приобретает положительный заряд, по модулю равный отрицательному на первой. Зарядный ток будет протекать до тех пор, пока напряжение на обеих пластинах не сравняется с приложенным. Сила или скорость тока зарядки будет находиться на максимальном уровне в момент, когда пластины полностью разряжены, и приблизится к нулю в момент, когда напряжение на обкладках и источнике будут равны.
- Сохранение. Поскольку обкладки заряжены противоположно, ионы и электроны будут притягиваться друг к другу, но не смогут соединиться из-за диэлектрической прослойки, создавая электростатическое поле. Благодаря этому полю конденсатор удерживает и сохраняет заряд.
- Разряд. Если в цепи появляется возможность для электронов протечь другим путём, то напряжение, накопленное между положительными и отрицательными зарядами обкладок, мгновенно реализуется в электрический ток, импульс которого в лампе вспышки преобразуется в световую энергию.
Советуем изучить — Логические модули LOGO! для промышленной автоматизации
Что такое электрическое поле
Однажды Бенджамин Франклин, чей портрет можно увидеть на стодолларовой купюре, запускал воздушного змея во время дождя с грозой. Столь странное занятие он выбрал не просто так, а с целью исследования природы молнии. Заметив, что на промокшем шнуре волоски поднялись вверх (т. е. он наэлектризовался), Франклин хотел прикоснуться к металлическому ключу. Но стоило ему приблизить палец, раздался характерный треск и появились искры. Сработало электрическое поле.
Это случилось в середине XVIII века, но еще целое столетие ученые не могли толком объяснить, как именно заряженные тела взаимодействуют друг с другом, не соприкасаясь. Майкл Фарадей первым выяснил, что между ними есть некое промежуточное звено. Его выводы подтвердил Джеймс Максвелл, который установил, что для воздействия одного такого объекта на другой нужно время, а значит, они взаимодействуют через «посредника».
В современной физике электрическое поле — это некая материя, которая возникает между заряженными телами и обусловливает их взаимодействие. Если речь идет о неподвижных объектах, поле называют электростатическим. |
Объекты, несущие одноименные заряды, будут отталкиваться, а тела с разноименными зарядами — притягиваться.
Энергия электрического и магнитного полей
Для электрического и магнитного полей их энергия пропорциональна квадрату напряжённости поля. Строго говоря, термин «энергия электромагнитного поля» является не вполне корректным. Вместо него в физике обычно используют понятие плотности энергии электромагнитного поля (в определённой точке пространства). Общая энергия поля равняется интегралу плотности энергии по всему пространству.
Плотность энергии электромагнитного поля является суммой плотностей энергий электрического и магнитного полей.
В системе СИ:
- u=E⋅D2+B⋅H2.{\displaystyle u={\frac {\mathbf {E} \cdot \mathbf {D} }{2}}+{\frac {\mathbf {B} \cdot \mathbf {H} }{2}}.}
В вакууме (а также в веществе при рассмотрении микрополей):
- u=εE22+B22μ=εE2+c2B22=E2c2+B22μ,{\displaystyle u={\varepsilon _{0}E^{2} \over 2}+{B^{2} \over {2\mu _{0}}}=\varepsilon _{0}{\frac {E^{2}+c^{2}B^{2}}{2}}={\frac {E^{2}/c^{2}+B^{2}}{2\mu _{0}}},}
где E — напряжённость электрического поля, B — магнитная индукция, D — электрическая индукция, H — напряжённость магнитного поля, с — скорость света, ε{\displaystyle \varepsilon _{0}} — электрическая постоянная и μ{\displaystyle \mu _{0}} — магнитная постоянная. Иногда для констант ε{\displaystyle \varepsilon _{0}} и μ{\displaystyle \mu _{0}} — используют термины диэлектрическая проницаемость и магнитная проницаемость вакуума, — которые являются крайне неудачными, и сейчас почти не употребляются.
В системе СГС:
- u=E⋅D+B⋅H8π.{\displaystyle u={\frac {\mathbf {E} \cdot \mathbf {D} +\mathbf {B} \cdot \mathbf {H} }{8\pi }}.}
Поле заряженного конденсатора
Рассмотрим плоский конденсатор, состоящий из двух пластин. При заряде на этих пластинах (обкладках) накапливаются заряды разных знаков. Число носителей заряда на обкладках конденсатора одинаково, и они свободно распределяются по обкладкам. Следовательно, распределение заряда на обкладках будет равномерным и равным. Силовые линии электрического поля выходят из положительных зарядов, и приходят в отрицательные. Значит, их распределение будет равномерным. Таким образом, поле заряженного конденсатора можно считать однородным:
Рис. 1. Электрическое поле внутри плоского конденсатора.
Определение заряда
Определить, заряжен ли проводник, можно специальным измерительным прибором. К примеру, сделать это можно при помощи индикаторной отвертки. При разряде избыточные виды электронов, имеющих левую пластину, будут перемещены через некоторое время по проводам к правой части пластины, то есть они будут смещены к местам, где их недостаточно.
Вам это будет интересно Особенности сопротивления проводников
Обратите внимание! Когда число электронов будет одинаковым, то разряд прекратится и проводная энергия вместе с сопротивлением исчезнет. Использование измерительного оборудования для определения конденсаторного заряда
Использование измерительного оборудования для определения конденсаторного заряда
Формула и уравнения
Электромагнитные волны — это поперечные волны, в которых электрическое поле А ТАКЖЕ и магнитное поле B они перпендикулярны друг другу, а направление распространения волны перпендикулярно полям.
Все волны характеризуются своей частотой. Именно широкий диапазон частот электромагнитных волн дает им универсальность при преобразовании их энергии, которая пропорциональна частоте.
На рисунке 2 изображена электромагнитная волна, в ней электрическое поле. А ТАКЖЕ синим цветом, колеблется в плоскости зы, магнитное поле B красным он делает это в самолете ху, а скорость волны направлена по оси + ив соответствии с отображаемой системой координат.
Если на пути обеих волн расположена поверхность, скажем, плоскость площади К и толщина dy, так что он перпендикулярен скорости волны, поток электромагнитной энергии на единицу площади, обозначаемыйДа, описывается через пойнтинг вектор:
S = (1 /μили) А ТАКЖЕ× B
μили — проницаемость вакуума (μили = 4π .10-7 Тесла. метр / ампер), константа, связанная с легкостью, с которой среда заставляет двигаться электромагнитную волну.
Вектор Пойнтинга был введен английским астрофизиком Джоном Генри Пойнтингом в 1884 году, пионером в изучении энергии электрических и магнитных полей.
Определение заряда
Определить, заряжен ли проводник, можно специальным измерительным прибором. К примеру, сделать это можно при помощи индикаторной отвертки. При разряде избыточные виды электронов, имеющих левую пластину, будут перемещены через некоторое время по проводам к правой части пластины, то есть они будут смещены к местам, где их недостаточно.
Обратите внимание! Когда число электронов будет одинаковым, то разряд прекратится и проводная энергия вместе с сопротивлением исчезнет. Использование измерительного оборудования для определения конденсаторного заряда. Использование измерительного оборудования для определения конденсаторного заряда
Использование измерительного оборудования для определения конденсаторного заряда
Чему будет равен максимальный заряд конденсатора
Колебательный контур, состоящий из катушки индуктивности и конденсатора, настроен на длину волны м . Если максимальный ток в цепи I=0,02 А, то максимальный заряд конденсатора равен ———————————————————————————————————————- где: — скорость распространения электромагнитного поля (на сколько я понял в данном случае в вакууме) — индуктивность контура — ёмкость контура
где: I-максимальная сила тока в контуре w — циклическая частота q — амплитудное значение заряда
из формулы 1) можно найти зная можно найти «q — амплитудное значение заряда» «q — амплитудное значение заряда» это и будет «максимальным зарядом конденсатора» ?
Чему равен модуль Юнга Магнитофонная лента имеет толщину d=5 мкм и ширину b=5 мм. Если к ленте длиной L=0.7 м подвесить.
Чему равен наибольший потенциал Чему равен наибольший потенциал, приобретаемый отрицательно заряженной металлической пластинкой .
Чему равен период колебаний частицы? Прошу распишите как решать эти задаче никак не могу их решить Задача 1 Частица, совершающая.
Чему равен радиус диска, если период его колебаний 2 с? на гвозде, вбитом в стену, висит диск так, что точка подвеса находится на расстоянии 1/6 радиуса от.
Источник
Значение диэлектрика
Кроме общего размера обкладок и расстояния между ними, существует ещё один параметр, влияющий на ёмкость — используемый тип изолятора. Фактор, по которому определяется способность диэлектрика повышать ёмкость конденсатора в сравнении с вакуумом, называется диэлектрической проницаемостью и описывается для разных материалов постоянной величиной от 1 и до бесконечности (теоретически):
- вакуум: 1,0000;
- воздух: 1,0006;
- бумага: 2,5—3,5;
- стекло: 3—10;
- оксиды металлов 6—20;
- электротехническая керамика: до 80.
Кроме конденсаторов с твёрдым диэлектриком (керамических, бумажных, плёночных) существуют также электролитические. В последних используют алюминиевые или танталовые пластины с оксидным изолирующим слоем в качестве одного электрода и раствор электролита в качестве другого.
Энергия, которую способны накопить большинство конденсаторов, обычно невелика — не больше сотен джоулей. К тому же она не сохраняется долго из-за неизбежной утечки заряда. Поэтому конденсаторы не могут заменить, например, аккумуляторные батареи в качестве источника питания. И хотя они способны эффективно выполнять только одну работу (сохранение заряда), их применение весьма многообразно в электрических цепях. Конденсаторы используются как фильтры, для сглаживания сетевого напряжения, в качестве устройств синхронизации и для других целей.
Напряженность поля точечного заряда
У электрического поля, создаваемого точечным зарядом, есть одна особенность — ввиду малой величины самого заряда оно очень слабо влияет на другие наэлектризованные тела. Именно поэтому такие «точки» используют для исследований.
Но прежде чем рассказать, от чего зависит напряженность электрического поля точечного заряда, рассмотрим подробнее, как взаимодействуют эти заряды.
Закон Кулона
Предположим, в вакууме есть два точечных заряженных тела, которые статично расположены на некотором расстоянии друг от друга. В зависимости от одноименности или разноименности они могут притягиваться либо отталкиваться. В любом случае на эти объекты воздействуют силы, направленные по соединяющей их прямой.
Закон Кулона Модули сил, действующих на точечные заряды в вакууме, пропорциональны произведению данных зарядов и обратно пропорциональны квадрату расстояния между ними. |
Силу электрического поля в конкретной точке можно найти по формуле: где q1 и q2 — модули точечных зарядов, r — расстояние между ними.
В формуле участвует коэффициент пропорциональности k, который был определен опытным путем и представляет собой постоянную величину. Он обозначает, с какой силой взаимодействуют два тела с зарядом 1 Кл, расположенные на расстоянии 1 м.
Важно!
Сила взаимодействия двух точечных зарядов остается прежней при появлении сколь угодно большого количества других зарядов в данном поле.
Учитывая все вышесказанное, напряжение электрического поля точечного заряда в некой точке, удаленной от заряда на расстояние r, можно вычислить по формуле:
Итак, мы выяснили, что называется напряженностью электрического поля и от чего зависит эта величина. Теперь посмотрим, как она изображается графическим способом.