Схема подключения магнитного реле

Виды контактных групп

Электромагнитные реле делят по способу работы контактов. Они могут быть:

  • Нормально замкнутыми (закрытыми, размыкающими). Сокращенно обозначаются НЗ, на импортных схемах NC.
  • Нормально разомкнутыми (открытыми, замыкающими). Обозначение — НО на наших — и NO на зарубежных.
  • Перекидными (переключающими). Перекидные отличаются внешне, так как имеют три пластины с контактами. У них обычно обознается только общий контакт — пишут «общ» или comon.

В общем-то, по названиям контактов ясно, как они работают. Нормально замкнутые контакты в исходном состоянии замкнуты, через них протекает ток. При сработке реле контакты размыкаются, цепь питания обрывается.

Нормально закрытый (замкнутый) контакт: что значит и принцип работы

Нормально открытые (понятнее — нормально разомкнутые) контакты, наоборот, в обычном состоянии разомкнуты. Когда реле срабатывает, контакт замыкается, в цепи возникает ток.

Электромагнитное реле с нормально открытым (разомкнутым) контактом

Наверное, уже понятно как работают переключающий контакт. В отличие от первых двух, переключающий состоит из трех пластин. По краям две неподвижные и подвижная в центре. Подвижный контакт часто называют общим. В нормальном положении подвижная пластина касается одного из контактов, ток протекает по этому пути (на рисунке снизу справа).

Принцип работы электромагнитного реле с переключающими контактами

При срабатывании реле, подвижный контакт изменяет положение благодаря упорной рамке (на рисунке это просто штырь, припаянный к подвижной пластине). А рамка прикреплена к якорю. После срабатывания реле, в первой цепи появляется разрыв, во второй начинает протекать ток.

Это все типы контактов — вроде не так много. Но в одном реле могут быть собраны все три вида, и количество групп каждого виды бывает разным. Их выбирают в зависимости от необходимости.

Как проверить электромагнитное реле

Работоспособность электромагнитного реле зависит от катушки. Поэтому в первую очередь проверяем обмотку. Ее прозванивают мультиметром. Сопротивление обмотки может быть как 20-40 Ом, так и несколько кОм. При измерении просто выбираем подходящий диапазон. Если есть данные о том, какая величина сопротивления должна быть — сравниваем. В противном случае довольствуемся тем, что нет короткого замыкания или обрыва (сопротивление стремится к бесконечности).

Проверить электромагнитное реле можно при помощи тестера/мультиметра

Второй момент — переключаются или нет контакты и насколько хорошо прилегают контактные площадки. Проверить это немного сложнее. К выводу одного из контактов можно подключить источник питания. Например — простую батарейку. При срабатывании реле потенциал должен появиться на другом контакте или исчезнуть. Это зависит от типа проверяемой контактной группы. Контролировать наличие питания также можно при помощи мультиметра, но его надо будет перевести в соответствующий режим (контроль напряжения проще).

https://youtube.com/watch?v=Wk_7TKyzrMw

Если мультиметра нет

Не всегда под рукой есть мультиметр, но батарейки есть почти всегда. Давайте рассмотрим пример. Есть какое-то реле в герметичном корпусе. Если знаете или нашли его тип, можно посмотреть характеристики по названию. Если данные не нашли или нет названия реле, смотрим на корпус. Обычно тут указывается вся важная информация. Напряжение питания и коммутируемые токи/напряжения есть обязательно.

Проверка обмотки электромагнитного реле

В данном случае имеем реле, которое работает от 12 V постоянного тока. Хорошо если есть такой источник питания, тогда используем его. Если нет, собираем несколько батареек (последовательно, то есть одну за одной), чтобы суммарно получить требуемое напряжение.

При последовательном соединении батареек их напряжение суммируем

Получив источник питания нужного номинала, подключаем его к выводам катушки. Как определить где выводы катушки? Обычно они подписаны. Во всяком случае, есть обозначения  «+» и «-» для подключения источников постоянного питания и знаки для переменного  типа таких «≈».  На соответствующие контакты подаем питание. Что происходит? Если катушка реле рабочая, слышен щелчок — это притянулся якорь. При снятии напряжения он слышен снова.

Проверяем контакты

Но щелчки — это одно. Это значит, что катушка работает, но надо еще контакты проверить. Возможно они окислились, цепь замыкается, но сильно падает напряжение. Может они стерлись и контакт плохой, может, наоборот, закипели и не размыкаются. В общем, для полноценной проверки электромагнитного реле необходимо еще проверить работоспособность контактных групп.

Проще всего объяснить на примере реле с одной группой. Они обычно стоят в автомобилях. Автолюбители называют их по числу выводов: 4 контактные или 5 контактные. В обоих случаях там всего одна группа. Просто четырех контактное реле содержит нормально замкнутый или нормально разомкнутый контакт, а пятиконтактное — переключающую группу (перекидные контакты).

Электромагнитное реле 4 и 5 контактное: расположение контактов, схема подключения

Как видите, питание подается в любом случае на выводы, которые подписаны 85 и 86. А к остальным подключается нагрузка. Для проверки 4-контактного реле можно собрать простейшую связку из маленькой лампочки и батарейки нужного номинала. Концы этой связки прикрутить к выводам контактов. В 4-контактном реле это выводы 30 и 87. Что получится? Если контакт на замыкание (нормально разомкнутый), при сработке реле лампочка должна загореться. Если группа на размыкание (нормально замкнутый) должна потухнуть.

В случае с 5-контактным реле схема будет чуть сложнее. Тут потребуется две связки из лампочки и батарейки. Используйте лампы разного формата, цвета или каким-то образом их разделите. При отсутствии питания на катушке у вас должна гореть одна лампочка. При срабатывании реле она гаснет, загорается другая.

https://youtube.com/watch?v=JmfRBokAMbo

Релейные элементы

Релейный элемент — минимальная совокупность деталей и связей между ними, имеющая релейную характеристику, то есть скачкообразно изменяющаяся при поступлении фиксированных воздействий на вход, воздействие на выходах, переходя от одного фиксированного воздействия к другому. У релейных многопозиционных элементов воспринимающие или исполнительные органы могут находиться более чем в двух состояниях. Примером такого устройства может служить шаговый искатель.

Релейные элементы характеризуются параметрами, относящиеся к входным и выходным воздействиям:

Петля гистерезиса

срабатывание — минимальное значение воздействия (на входе) при таком его возрастании, что релейный элемент изменяет свое состояние и одновременно воздействует на выходе в соответствии с релейной характеристикой;

отпускание — минимальное значение воздействия на входе при таком его уменьшении, что релейный элемент возвращается в свое первоначальное состояние.

В связи с не идеальностью релейной характеристики эти величины обычно не совпадают друг с другом (гистерезис). В ряде случаев релейный элемент может обладать свойствами фиксации, то есть оставаться в занятом им состоянии и после снятия воздействия на входе. В этом случае релейный элемент возвращается в первоначальное состояние обычно после подачи воздействия на другой его вход (или воздействие противоположного знака воздействия на тот же вход). Максимальное значение такого воздействия при его возрастании, вызывающее возвращение релейного элемента в первоначальное состояние, называется параметром возврата. Отношение параметра отпускания к параметру срабатывания называется коэффициентом отпускания. Характеристикой релейного элемента служит так же его быстродействие, определяемое временем срабатывания и временем отпускания или возврата. В ряде случаев важными характеристиками релейного элемента являются: потребление энергии, вес, занимаемый объём и т. п.

По виду физических явлений, используемых для действия релейных элементов, они делятся на механические и электрические. Которые в свою очередь могут быть контактные и бесконтактные.

Независимо от типа реле свойственно два положения: при отсутствии напряжения на катушке – невозбужденное состояние, а при подаче напряжения – возбужденное состояние. При переходе из состояния в состояние происходит явление переброса, т.е. изменения положения контактных групп.

Электрический

Основная статья: Электромагнитное реле

Чаще всего под термином «реле» подразумевается электрический релейный элемент — релейный элемент, действие которого основано на явлениях, вызванных протеканием электрического тока, изменением электрического поля или явлениями, связанными с электрической проводимостью. В рамках системы стандартизации термин «электрическое реле» используется исключительно для реле, выполняющего только одну операцию преобразования между его входными и выходными цепями.

Достоинства и недостатки

Реле электромагнитное имеет следующие преимущества над полупроводниковыми конкурентами:

  • коммутация больших нагрузок при малых габаритах;
  • гальваническая развязка между цепью управления и группой коммутации;
  • низкое тепловыделение на контактах и катушке;
  • небольшая цена.

Устройству присущи также недостатки:

  • медленное срабатывание;
  • относительно небольшой ресурс;
  • радиопомехи при переключении контактов;
  • сложность коммутации на постоянном токе высоковольтных и индуктивных нагрузок.

Рабочие напряжение и ток катушки не должны выходить за заданные пределы. При их низких значениях становится ненадежным контактирование, а при высоких — перегревается обмотка, увеличивается механическая нагрузка на детали и может произойти пробой изоляции.

Долговечность реле зависит от вида нагрузки и тока, частоты и количества коммутаций. Больше всего контакты изнашиваются при размыкании, образующем дугу.

Бесконтактные аппараты имеют преимущество, поскольку у них не появляется дуга. Но есть также масса других недостатков, что не дает возможности заменить реле.

Классификация и виды реле

Все реле классифицируются по различным признакам:

  • По области применения они разделяются на реле управления, защиты и автоматизации электрических систем.
  • По принципу работы они могут быть электромагнитными, магнитоэлектрическими, индукционными, полупроводниковыми и тепловыми.
  • В зависимости от поступающего параметра устройства разделяются на реле тока, мощности, частоты и напряжения.
  • По своему воздействию на управляющую часть они могут быть контактными и бесконтактными.

В зависимости от контролируемых величин, конструкции реле разделяются на несколько основных видов:

  • Электрические. С их помощью выполняется включение и выключение электрических цепей. Они незаменимы при работе c большими силовыми нагрузками.
  • Герконовые. В этих устройствах используется катушка с герконом, представляющим собой баллон с вакуумом. Иногда он наполняется определенным видом газа. Геркон размещается внутри электромагнита.
  • Электротепловые. В работе этих устройств используется принцип линейного расширения металлов.

Существуют и другие виды реле, например, реле времени, работающее по особым схемам с использованием специальных реактивных компонентов.

Параметры

Основными характеристиками реле являются:

  1. Чувствительность — переключение от подаваемого в обмотку сигнала определенной мощности, достаточной, чтобы происходило включение.
  2. Сопротивление обмотки.
  3. Напряжение (ток) срабатывания — минимальное пороговое значение параметра, при котором контакты переключаются.
  4. Напряжение (ток) отпускания.
  5. Время срабатывания.
  6. Рабочий ток (напряжение) — величина, при которой происходит гарантированное включение в процессе эксплуатации (значение указывается в заданных пределах).
  7. Время отпускания.
  8. Частота включений с нагрузкой на контактах.

УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ЭЛЕКТРОМАГНИТНОГО РЕЛЕ

Конструктивно электромагнитное реле представляет собой катушку выполняющую роль втягивающего устройства.

Она состоит из основания из немагнитного материала, на которое намотан медный провод, который, в зависимости от исполнения, может быть в изоляции из тканевых, синтетических материалов, но в большинстве случаев проводник покрывается диэлектрическим лаком.

При подаче напряжения на катушку происходит втягивание металлического сердечника, связанного с толкателем, который приводит в движение контакты.

В зависимости от назначения контактный блок реле может состоять из нормально открытых (разомкнутых) или нормально закрытых (замкнутых) контактов, в некоторых случаях блок контактов может совмещать в себе оба типа контактов.

Более подробно устройство реле можно понять если разбить его составляющие на блоки:

  • управляющий — служит для преобразования управляющего сигнала (в нашем случае из электрического — в магнитное поле);
  • блок промежуточных элементов — приводит в действие исполнительный механизм;
  • исполнительный блок — воздействует непосредственно на управляемую цепь. В качестве исполнительного блока можно рассматривать контактную группу устройства.

Также, при проектировании управляющих цепей с использованием электромагнитных реле необходимо учитывать, что ввиду того что чувствительным элементом является электромагнитная катушка, то ток в обмотке увеличивается или уменьшается не мгновенно, а в течении некоторого времени.

В связи с этим следует учитывать возможное время задержки срабатывания. Оно достаточно мало, но в некоторых ситуациях может оказывать влияние на работу других элементов схемы.

Электромагнитные реле можно классифицировать по следующим признакам:

области применения:

для цепей управления, защиты или сигнализации;

мощности управления:

малой мощности, управляющий сигнал ≤1 Вт, средней мощности, сигнал управления находится в пределах от 1 до 9 Вт, высокой мощности — мощность сигнала ≥10 Вт;

времени реакции на сигнал управления:

безынерционные время реакции ≤ 0,001 сек., быстродействующие — время реакции от 0,001 до 0,05 сек., замедленные время реакции от 0,05 до 1 сек., а также реле времени с регулируемой задержкой срабатывания.

характеру управляющего напряжения:

постоянного тока —нейтральные, поляризованные и переменного тока.

Отдельно стоит остановиться на особенностях реле постоянного тока. Как было выше сказано они подразделяются на нейтральные и поляризационные. Главное отличие этих двух групп заключается в том, что поляризационные устройства чувствительны к полярности приложенного напряжения, то есть подвижный сердечник меняет свое направление с правого на левое или наоборот в зависимости от полярности напряжения.

Электромагнитные реле постоянного тока делятся на:

  • двухпозиционные;
  • двухпозиционные с преобладанием;
  • трехпозиционные или реле с нечувствительной зоной.

Срабатывание же устройств нейтрального типа не зависит от полярности подаваемого напряжения. К недостаткам реле использующих, в качестве управляющего сигнала, постоянный ток можно отнести необходимость установки блоков питания, для подачи постоянного тока и высокая стоимость самого устройства.

Реле переменного тока этого лишены, но и у них есть свои недостатки такие как — необходимость доработки конструкции для устранения вибрации сердечника.

Рабочие параметры хуже, чем у устройств использующих линейную форму управляющего сигнала, а именно — хуже чувствительность, гораздо меньшее электрическое усилие. Но в тоже время они могут напрямую подключаться к электрической сети переменного тока.

Схема устройства электромагнитного реле

Схема устройства реле такова. Подвижный стальной якорь находится внутри статичной катушки индуктивности, при подаче напряжения на которую возникает электромагнитное поле, притягивающее якорь. Различной электроникой или механикой регулируется частота и продолжительность подачи напряжения на обмотку. Частота импульсов составляет до 3600 в час.

Более старое устройство мгновенного действия

Структура электромагнитного реле делится на три составных элемента:

  1. Первичный. Преобразует импульс, поступающий с системы управления в электромагнитную силу. Иными словами – обмотка катушки индуктивности.
  2. Промежуточный. Состоит из различных деталей. Его задача – приведение в работу самого исполнительного механизма. Проще говоря – это якорь или иной подвижный элемент, оснащенный возвратной пружиной и контактами.
  3. Исполнительный. Выполняет работу по передаче воздействия на силовое оборудование. Эту роль играет контактная группа силовой части.

Такие устройства устанавливаются вместе с остальной автоматикой в распределительном щите

Преимущества и недостатки использования ЭМР

Основными аргументами в пользу использования в схеме управления электрическими цепями электромагнитного реле становится:

  • стойкость к воздействию на сети импульсных перенапряжений;
  • способность электроизоляции выдерживать до 5 кВ между контактами и управляющей катушкой;
  • незначительное падение напряжения на контактах в замкнутом состоянии;
  • возможность коммутации нагрузок до 4 кВт при размере менее 10 см³;
  • низкие показатели тепловыделения;
  • наличие гальванической развязки между контактной группой и цепями управления;
  • сравнительно доступная стоимость.

Среди «минусов» такого технического решения стоит выделить ограниченный механический ресурс оборудования, высокое потребление тока, создание помех в момент срабатывания.

История создания

Первенство создания реле спорно. Некоторые утверждают, что впервые это устройство было сконструировано в 1830-1832 гг. русским ученым Шиллингом П.Л. и являлось основным элементом вызывающего механизма в разработанном им же варианте телеграфа.

Другие научные историки приписывают первенство изобретения известному физику Дж. Генри, который в 1835 г. разработал контактное реле во время усовершенствования созданного им в 1831 году телеграфного аппарата. Первый соленоид работал по принципу электромагнитной индукции и был некоммутационным устройством.

Первое реле Дж. Генри

Реле, в качестве самостоятельного устройства, впервые упоминается в патенте на телеграф, выданном Самуэлю Морозе.

Первое реле Морзе

Как видим, первой сферой применения этого коммутационного устройства был телеграф и только позднее с развитием техники он стал применяться в электрическом и электронном оборудовании.

Виды контактных групп

Электромагнитные реле делят по способу работы контактов. Они могут быть:

  • Нормально замкнутыми (закрытыми, размыкающими). Сокращенно обозначаются НЗ, на импортных схемах NC.
  • Нормально разомкнутыми (открытыми, замыкающими). Обозначение — НО на наших — и NO на зарубежных.
  • Перекидными (переключающими). Перекидные отличаются внешне, так как имеют три пластины с контактами. У них обычно обознается только общий контакт — пишут «общ» или comon.

В общем-то, по названиям контактов ясно, как они работают. Нормально замкнутые контакты в исходном состоянии замкнуты, через них протекает ток. При сработке реле контакты размыкаются, цепь питания обрывается.

Нормально закрытый (замкнутый) контакт: что значити принцип работы

Нормально открытые (понятнее — нормально разомкнутые) контакты, наоборот, в обычном состоянии разомкнуты. Когда реле срабатывает, контакт замыкается, в цепи возникает ток.

Электромагнитное реле с нормально открытым (разомкнутым) контактом

Наверное, уже понятно как работают переключающий контакт. В отличие от первых двух, переключающий состоит из трех пластин. По краям две неподвижные и подвижная в центре. Подвижный контакт часто называют общим. В нормальном положении подвижная пластина касается одного из контактов, ток протекает по этому пути (на рисунке снизу справа).

Принцип работы электромагнитного реле с переключающими контактами

При срабатывании реле, подвижный контакт изменяет положение благодаря упорной рамке (на рисунке это просто штырь, припаянный к подвижной пластине). А рамка прикреплена к якорю. После срабатывания реле, в первой цепи появляется разрыв, во второй начинает протекать ток.

Это все типы контактов — вроде не так много. Но в одном реле могут быть собраны все три вида, и количество групп каждого виды бывает разным. Их выбирают в зависимости от необходимости.

Бистабильное и моностабильное

Бистабильные реле становятся дешевле и доступнее, но многие разработчики пока не обращают на них внимания. В схемах с питанием от сети энергоэффективность не очень важна, но где требуется экономия энергии, они могут оказаться большим подспорьем. Для удержания якоря в одном положении не требуется приложения энергии. Потребление тока происходит при переключении контактов, которое длится несколько десятков миллисекунд, после чего его источник может быть отключен. Устройство будет оставаться в устойчивом состоянии столько, сколько надо, отсюда и название.

Типичные реле имеют только одно стабильное положение, а поддержание другого требует непрерывного протекания тока через катушку.

Бистабильные реле доступны как реле малой мощности, так и средней, для переключения устройств с питанием от сети с потреблением тока в несколько ампер. Практически каждая крупная компания занимающаяся производством реле, имеет их в своем предложении, поэтому выбор действительно велик.

Основные характеристики КУ

К основным характеристикам, на которые следует обратить внимание при выборе данного вида коммутационного устройства, относят:

  • чувствительность – срабатывание от подаваемого на обмотку тока определенной силы, достаточной для включения устройства;
  • сопротивление обмотки электромагнита;
  • напряжение (ток) срабатывания – минимально допустимое значение, достаточное для переключения контактов;
  • напряжение (ток) отпускания – значение параметра, при котором происходит отключение КУ;
  • время притягивания и отпускания якоря;
  • частота срабатывания с рабочей нагрузкой на контактах.

Е. Особенности реле переменного тока

В реле переменного тока воздействующая величина изменяется по закону гармонического сигнала, как следствие по этому же закону изменяется магнитный поток в сердечнике . Поэтому уравнение для мгновенного значения электромагнитного усилия принимает вид:

Учитывая, что действующее значение потока в зазоре при его синусоидальном изменении определится как получаем . Поскольку при переменном сигнале для магнитного потока необходимо обеспечить его максимальное значение, а среднее значение потока в реле переменного тока в два раза меньше его максимального значения, то для реле переменного тока потребуется в два раза большее сечение магнитопровода.

Изменение электромагнитного усилия в реле переменного тока в функции времени приведено на рис.27 а), а на рис. 27 б) показаны тяговые характеристики для реле тока и напряжения для средних значений электромагнитных усилий в зависимости от того, учитывается или нет рассеивание магнитного потока и активное сопротивление обмотки реле.

а) б)

Рис. 27. Электромагнитное усилие в реле переменного тока

а – в функции времени, б – тяговые характеристики, 1-2 и 1-4 без учета активных сопротивлений и потоков рассеивания, 3-2 и 3-4 – с учетом.

Из рисунка 27 а), в частности, следует, что реле переменного тока имеют пульсирующие электромагнитные усилия, что в некоторых случаях осложняет работу реле. Для уменьшения пульсаций часто осуществляют расщепление магнитного потока в зазоре на две равных составляющих, смещенных друг относительно друга на угол y. Смещение потоков производится за счет того, что сердечник якоря разделяется на две части, на одну из которых устанавливается короткозамкнутый виток, чем и достигается требуемый эффект. Принцип действия такого реле приведен на рис. 28.


Рис. 28. расщепление магнитного потока в реле переменного тока

Результирующее электромагнитное усилие при условии, что результирующий поток в правой части магнитопровода будет равен потоку в левой части

,

может быть определено по выражению

Если удается обеспечить фазовый сдвиг y = 90 эл. град, то уравнение упрощается и результат приведен на рис. 29.

Ж. Схемотехнические приемы изменения параметров реле

Контакты реле имеют ограниченную коммутирующую способность, при работе в цепях с большими постоянными времени (индуктивностями) особую проблему вызывает разрыв тока в этих цепях. Для предотвращения искрения и возможное сваривание контактов возникающей дугой могут применяться схемотехнические приемы.

Одной из мер является подключение параллельно катушке реле RC- цепи. В этом случае при отключении контакта S энергия, накопленная в индуктивностях реле, будет частично рассеяна на сопротивлении R1, частично сосредоточена на конденсаторе C. При этом уменьшается энергия на паразитной емкости размыкающих контактов S, напряжение на них не достигает величины пробоя воздушного промежутка, и искрение не возникает.

Рис. 30. Уменьшение искрообразования при коммутациях

Недостатком представленного на рис. 30 способа искрогашения является уменьшение времени срабатывания реле K, поскольку емкость С будет препятствовать нарастанию напряжения на катушке при включении реле.

Достаточно часто применяется включение параллельно катушке реле цепи, содержащей диод и резистор, иногда только диод. В этом случае диод не препятствует включению реле в расчетном режиме, а при отключении реле обеспечивает путь для тока, в результате чего энергия, накопленная в индуктивностях реле, будет рассеяна на резисторе R2 и активном сопротивлении катушки реле Rk. При этом способе искрогашения будет увеличиваться время возврата реле K в исходное состояние.

Кроме рассмотренных мер применяют схемы для изменения времени срабатывания и времени возврата реле,

Задание. Остальные способы схемотехнического изменения параметров реле найти самостоятельно