Колебательный контур
Емкость и индуктивный элемент, соединенные в цепь, образуют колебательный контур с резко выраженными частотными свойствами и будут являться резонансной системой. В качестве системы используется конденсатор, изменяя емкость которого, можно производить коррекцию частотных свойств.
Последовательный и параллельный колебательные контуры
Если измерить резонансную частоту, используя известный конденсатор, то можно определить индуктивность катушки.
Индуктивность – важнейший элемент в разных областях электротехники. Для правильного применения нужно знать все параметры используемых элементов.
Устройство, которое позволяет определить параметры катушек индуктивности, в том числе добротность, может называться L-метр или Q-метр.
Q-метр для измерения добротности
Изменения в магнитосфере Земли
Характеристики земного МП меняются, в основном, вследствие того, что оно смещается относительно земного шара. Люди привыкли, что северный конец стрелы должен устремляться к северу. При обратной намагниченности диполя планеты ситуация будет противоположной. В обсерваториях фиксируются данные о состоянии МП планеты, и на их основе создаются геомагнитные карты. Они демонстрируют наличие отклонений в напряженности МП и положении силовых линий в некоторых уголках Земли. Эти явления называют магнитными аномалиями. Иногда их используют как индикаторы местоположения определенных ископаемых ресурсов.
Связь между индукцией и степенью напряженности поля широко используется в расчетах. Она позволяет вывести выражения для нахождения значения индукции в проводниках разных форм, сделанных из материалов с различными показателями магнитной проницаемости.
«Электромагнитная индукция»
Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.
Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока.
Вихревые токи, или токи Фуко
Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко.
Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.
Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.
Электромагнитное поле
Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.
Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.
Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.
Классическая электродинамика — одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.
Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.
Электромагнитная индукция в схемах и таблицах
(Явление электромагнитной индукции, опыты Фарадея, правило Ленца, закон электромагнитной индукции, вихревое электрическое поле, самоиндукция, индуктивность, энергия магнитного поля тока)
Дополнительные материалы по теме:
Конспект урока по физике в 11 классе «Электромагнитная индукция».
Следующая тема: «».
Индуктивность.Электродвижущая сила самоиндукции
• Электромагнетизм • |
- Магнитное поле тока, магнитная индукция, магнитный поток
- Электромагнитная сила
- Взаимодействие парал лельных проводов с токами
- Магнитная проницаемость
- Напряженность магнитного поля,магнитное напряжение
- Закон полного тока
- Магнитное поле катушки с током
- Ферромагнетики,их намагничивание и перемагничивание
- Ферромагнитные материалы
- Магнитная цепь и ее расчет
- Электромагниты
- Электромагнитная индукция
- Принцип работы электричес кого генератора
- Принцип работы электродви гателя
- Вихревые токи
- Индуктивность.Электродви жущая сила самоиндукции
- Энергия магнитного поля
- Взаимная индуктивность
- …
• Обзор сайта • |
- Электрооборудование до 1000 В
- Электрические аппараты
- Электрические машины
- Эксплуатация электро оборудования
- Электрооборудование электротехнологических установок
- Электрооборудование общепромышленных установок
- Электрооборудование подъемно-транспортных установок
- Электрооборудование металлообрабатывающих станков
- Электрооборудование выше 1000 В
- Электрические аппараты высокого напряжения
- Электротехника
- Электрическое поле
- Электрические цепи постоянного тока
- Электромагнетизм
- Электрические машины постоянного тока
- Основные понятия,отно сящиеся к переменным токам
- Цепи переменного тока
- Трехфазные цепи
- Электротехнические измерения и приборы
- Трансформаторы
- Электрические машины переменного тока
- Электромонтаж
- С чего начинается электро монтаж энергоснабжения электрооборудования и электропроводки
- Монтаж электропроводки
- Расчёт потребляемой мощ ности,сечения кабеля и номинала автоматического выключателя
- Электромонтажные работы и прокладка кабеля в жилых и нежилых помещениях
- Электромонтажные работы по расключению распаечных коробок и электрооборудова ния
- Электромонтаж и заземле ние розеток
- Электромонтаж уравнива ния потенциалов
- Электромонтаж контура заземления
- Электромонтаж модульного штыревого контура заземле ния
- Электромонтаж нагреватель ного кабеля для подогрева полов
- Электромонтажные работы по прокладке кабеля в зем ле
- Электричество в частном доме
- Проект электроснабжения
• Электротехника • |
- Электрическое поле
- Электрические цепи постоянного тока
- Электромагнетизм
- Электрические машины постоянного тока
- Основные понятия,отно сящиеся к переменным токам
- Цепи переменного тока
- Трехфазные цепи
- Электротехнические измерения и приборы
- Трансформаторы
- Электрические машины переменного тока
- …
ЭЛЕКТРОСПЕЦ
ЭЛЕКТРОСПЕЦ
При прохождении тока по цепи каждый контур или виток катушки пронизывается собственным магнитным потоком, который называется потоком самоиндукции ΦL. Сумма потоков самоиндукции всех витков контура или катушки называется потокосцеплением самоиндукции ΦL. При постоянной магнитной проницаемости среды магнитный поток и потокосцепление самоиндукции пропорциональны току. Отношение потокосцепления самоиндукции к току контура или катушки при неизменной магнитной проницаемости среды постоянно и называется индуктивностью:
Индуктивность характеризует связь потокосцепления самоиндукции с током контура. Единицей измерения индуктивности в системе СИ служит генри (Г):
Ом-секунда или генри — крупная единица, поэтому часто пользуются дольными единицами — миллигенри (1 мГ 1 • 10-3 Г) и микрогенри (1 мкГ =1 • 10-6 Г). Условное обозначение участка цепи, обладающего индуктивностью, показано на рис. 3.32.
Определим индуктивность кольцевой катушки. Потокосцепление кольцевой катушки (3-20)
а индуктивность её
Таким образом, индуктивность катушки зависит от размеров катушки, от числа витков и от магнитной проницаемости среды (сердечника):
Всякое изменение тока в цепи (в контуре) сопровождается изменением магнитного потока и потокосцепления самоиндукции, а следовательно, возникновением э. д. с., которая в этом случае называется э. д. с. самоиндукции. Явление возникновения э. д. с. в контуре вследствие изменения тока в этом контуре называется самоиндукцией. Величина э. д. с. самоиндукции определяется по (3-29):
Следовательно,э. д. с. самоиндукции пропорциональна индуктивности и скорости изменения тока в цепи. Направление э. д. с. самоиндукции определяется по закону Ленца. При увеличений тока, т. е. при di/dt > О, э. д. с. eL отрицательна и, следовательно, направлена встречно току; наоборот, при уменьшении тока, т. е. при di/dt < О э. д. с. eL положительна и, следовательно, направлена одинаково с током.
Расчёт магнитных цепей
Теория без практического приложения мало интересна радиолюбителям, поэтому приступим к практическому применению теории магнитных цепей. Практический расчёты магнитный цепей сводится к определению магнитодвижущей силы Em (или как вариант определению количества витков провода N при некотором токе I), которая создает заданную магнитную индукцию B (или магнитный поток Φ). Для данных расчётов необходимо знать геометрические размеры магнитной цепи и магнитную проницаемость материала.
Для начала рассчитаем неразветвлённую магнитную цепь, пример которой дан на рисунке ниже
Данная магнитная цепь состоит из трех частей l1, l2, l3 выполненных из различных материалов. Где участок l1 – литая сталь, l2 – электротехническая сталь, l3 – воздушный разрыв.
Необходимо рассчитать число витков N обмотки для создания магнитного потока Φ = 3,6 * 10-3 Вб, если сила тока протекающего по обмоткам составляет I = 2 A.
Так как магнитная цепь у нас неоднородная, то для начала необходимо рассчитать среднюю длину магнитных силовых линий l1, l2, l3, которая проходит по центру магнитной цепи, а также сечение магнитной цепи S.
Далее рассчитываем магнитную индукцию заданных участков l1, l2, l3
Найдём значение напряженности магнитного поля. Так как часть магнитопровода представлена ферромагнетиками, то магнитную индукцию для них находим с помощью графической зависимости магнитной индукции от напряженности магнитного поля
Зависимость индукции от напряженности магнитного поля электротехнической и листовой стали.
Так l1 – литая сталь, то при В1 = 1,5 Тл, напряженность магнитного поля Н1 ≈ 7 А/см = 700 А/м;
l2 – электротехническая сталь, про В2 = 1,5 Тл, напряженность магнитного поля Н2 ≈ 30 А/см = 3000 А/м;
l3 – воздушный разрыв, напряженность магнитного поля определяется как
где μ = 4π*10-7 – магнитная постоянная,
μrB – относительная магнитная проницаемость воздуха, μrB ≈ 1.
Теперь используя закон полного тока, в котором магнитную индукцию выразим через напряженность магнитного поля, можно рассчитать количество витков провода N
В итоге получаем количество витков N = 4083,5.
Кроме неразветвленных магнитных цепей часто встречаются разветвлённые магнитные цепи, пример которой представлен на рисунке ниже
В качестве примера рассчитаем количество витков провода N, который намотан на центральном стержне, при котором в крайних стержнях создается магнитная индукция B2 = 1,2 Тл. При этом сила тока, протекающая по виткам провода I = 1 А, а материал магнитопровода – электротехническая сталь.
Первоначально разобьем контур АБВГА на два участка l1 и l2, для который вычислим длину и поперечное сечение
Затем вычислим, какой магнитный поток необходимо создать в правом стержне
Согласно первому закону Кирхгофа для магнитных цепей магнитный поток центрального стержня Φ1 будет равен сумме потоков из крайних стержней. Ввиду того, что данная разветвлённая магнитная цепь является симметричной, то
Тогда магнитная индукция в центральном стержне составит
Теперь определим напряженность магнитного поля по графику зависимости от магнитной индукции:
при В1 = 1,6 Тл, напряженность составит Н1 = 44 А/см = 4400 А/м;
при В2 = 1,2 Тл, напряженность составит Н1 = 10 А/см = 1000 А/м;
В итоге можно рассчитать количество витков провода, необходимых по условию задачи
На сегодня всё, в следующей статье я расскажу о таком явлении как электромагнитная индукция и самоиндукция, а также важнейшем параметре электромагнитных элементов – индуктивности.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
Эксперименты Ампера
Такие же опыты повторял и Ампер. Правда, гальванометры, которыми пользовались оба ученых, были не такими, как у нас. Это были очень чувствительные к вибрациям приборы, поэтому их устанавливали в отдельной комнате. Ампер задвигал в катушку магнит и уходил в соседнюю комнату. Когда он шел, то не видел, что происходит с гальванометром, как прибор реагирует. Затем он вставлял магнит, возвращался в комнату с устройством, а стрелка показывала на отметку ноль. Ампер шел в лабораторию и вытаскивал магнит из катушки. Возвращался к гальванометру — стрелка опять показывала на ноль, физику никак не удавалось «поймать» индукцию проводника. Ампер разочаровывался снова и снова.
ссылки
- Собственная индуктивность. Circuits RL (2015): Восстановлено: tutorialesinternet.files.wordpress.com
- Chacón, F. Electrotecnia: Основы электротехники. Папский университет Комильяс ICAI-ICADE. 2003.
- Определение индуктивности (с.ф.). Получено от: definicionabc.com
- Индуктивность (с.ф.). Гавана, Куба Получено от: ecured.cu
- Взаимная индуктивность (с.ф.). Гавана, Куба Получено от: ecured.cu
- Индукторы и индуктивность (с.ф.). Получено от: physicapractica.com
- Olmo, M (s.f.). Связь индуктивностей. Получено от: hyperphysics.phy-astr.gsu.edu
- Что такое индуктивность? (2017). Восстановлено с: sectorelectricidad.com
- Википедия, Свободная энциклопедия (2018). Самоиндукции. Получено с: en.wikipedia.org
- Википедия, Свободная энциклопедия (2018). Индуктивность. Получено с: en.wikipedia.org
Логический дуализм
Еще один способ разобраться в индукции – обратиться к классике мировой литературы. Легендарный персонаж и весьма неординарная личность Шерлок Холмс пользовался дедуктивным методом, собирая из множества деталей общую картину преступления и попутно набрасывая портрет правонарушителя.
Благодаря дедуктивным умозаключениям сыщик мог вычислить профессию собеседника за считаные мгновения, опираясь на такие, казалось бы, мелочи, как наличие татуировок, потертостей на одежде и манере держаться. Это и были детали, общие для некоторых социальных групп.
А вот уже индуктивные суждения позволяли предположить – в частности, по сорту табака и земле на ботинках, – в какие места чаще всего ходил подозреваемый, ведь в других частях Лондона такого не наблюдалось.
Таким образом, Холмс оперировал обоими видами рассуждений в зависимости от ситуации – когда некоторые частные характеристики становились общими и наоборот. И хотя выводы могли оказаться ложными, они все равно помогали вести расследование. На этом зиждется взаимосвязь логических инструментов и их безусловная полезность при работе в связке.
Эмпиризм позволяет находить какие-то отдельные факты. Индукция помогает строить на этой базе предположения и логические цепочки. Размышления ложатся в основу обобщений, а затем свежеиспеченная гипотеза через дедукцию становится ключом к решению задач в большинстве частных случаев, дополняя и/или обновляя существующий практический опыт.
И цикл повторяется, пополняя багаж знаний о мире. Можно ли тогда считать знания, полученные посредством индуктивных построений, истиной в последней инстанции?
Магнитный поток
Для характеристики воздействия индукционного фона на контур из металла используют такую величину, как поток. Она является скалярной. В контексте этого необходимо узнать, индукция в чем измеряется. Она зависит от количества идущих через единицу сечения проводящего элемента силовых линий. В международной системе СИ за измерительную единицу принимается Тесла (Тл). Отсюда и название устройства, предназначенного для замеров – теслометра. 1 Тл – индукция, возникающая в полевом пространстве, в котором момент силы в 1 Н*м оказывает воздействие на контур площадью 1 квадратный метр, по которому течет ток в 1 ампер.
Сила Лоренца
Когда некоторый участок провода, по которому идет электроток, находится в полевом пространстве, на движущиеся заряды действует сила со стороны поля. Ее называют силой Лоренца, по фамилии впервые обнаружившего это явление ученого. На ее значение оказывают влияние величины тока, индукции и угла между векторами этих двух величин.
Важно! Максимальное значение Лоренцовой силы достигается, когда проводниковый элемент образует с полем прямой угол. Когда направления поля и тока параллельны друг другу, рассматриваемая сила отсутствует
Чтобы узнать вектор этой силы, можно воспользоваться правилом правой руки. Указательный палец нужно жестко зафиксировать в положении, показывающем вектор МП, а большой – отвести в сторону движения тока. В такой позиции средний палец при оттягивании под прямым углом к руке укажет в сторону приложения силы Лоренца.
Для расчета значения этой величины для некоторого заряда, перемещающегося перпендикулярно полю, используют выражение:
F=B*q*v (здесь v – скорость движения заряда).
Когда имеется угол между направлениями, формула принимает вид:
Если надо рассчитать индукцию в контуре, помещенном в однородное поле, используют равенство:
где М – момент амперовой силы, а S – площадь поверхности контурного элемента.
Магнитная индукция
Согласно прогрессивным научным представлениям об электрических явлениях, МП неразрывно связан с током и не может присутствовать без него. Невозможно предположить электроток без МП. В том числе в случае неизменного магнита связывают этот фон с молекулярными линиями.
Если в место, где находится МП, поставить иглу, она стремится заимствовать определённое состояние, которое фактически показывает ориентационные качества МП. Скоординированное направление в этой точке места должно учитывать пункт назначения, где установлена ось, — это свободноподвешенная бесконечно небольшая магнитная стрелка, середина которой выровнена с точкой начального места. При этом из 2 возможных направлений вдоль оси стрелки МП символически присваивается назначение от южного конца на север.
Можно получить более яркое представление о направленности поля, если имеется ряд линий, где оси всех стрелок будут относительно касательными. Эти части называются магнитными магистралями.
Набор рядов упоминается как МП. Если бесконечно уменьшать площадь контура, притягивая его к точке, можно прийти к выражению для бесконечно малой стадии d, T активно в контуре маленькой области s, где угол P имеет конкретное значение между нормальностью к плоскости и небольшого контура. В этом случае направлением поля будет точка места, где расположено малое очертание.
https://youtube.com/watch?v=_2NffLvTD9E
приложений
Магнитная индукция является основным принципом действия электрических трансформаторов, которые позволяют повышать и понижать уровни напряжения при постоянной мощности..
Циркуляция тока через первичную обмотку трансформатора индуцирует электродвижущую силу во вторичной обмотке, что, в свою очередь, приводит к циркуляции электрического тока.
Коэффициент трансформации устройства задается числом витков каждой обмотки, с помощью которого можно определить вторичное напряжение трансформатора..
Произведение напряжения и электрического тока (т. Е. Мощности) остается постоянным, за исключением некоторых технических потерь из-за внутренней неэффективности процесса.
Понятие самоиндукции
При протекании электрического тока по замкнутому контуру вокруг него формируется постоянно меняющееся магнитное поле, что способствует формированию электродвижущей силы.
Определение 3
Явление возникновения тока индукции в замкнутом контуре называют самоиндукцией.
Самоиндукция не дает току контура меняться. При появлении самоиндукции применяют другой способ подсоединения и использования электроцепи. В цепь включают резистор и катушку индуктивности с железной серцевиной. Еще включают электролампы при помощи последовательного соединения. В данной ситуации при постоянном токе сопротивление резистора совпадает с сопротивлением катушки, что способствует интенсивному свечению электролампочек.
Сложно разобраться самому?
Попробуй обратиться за помощью к преподавателям
Решение задач Контрольные работы Эссе
Эффект самоиндукции на сегодняшний день широко применяется в электротехнике.
Упрощенная формула расчета индуктивности:
\(L={F\over I}.\)
Зная индуктивность, можно вычислить ряд важных параметров электроцепи, например, ЭДС самоиндукции. Формула для ее расчета выглядит следующим образом:
\(E_i=- {LdI\over dt}.\)
Эта формула показывает зависимость электродвижущей силы от индукции. Данные величины будут иметь одинаковое значение, если ток за 1 секунду изменится на 1А.
Зная индуктивность можно также вычислить энергию магнитного поля:
\(W= {LI^2 \over 2}.\)
Определение
Потокосцепление численно равно сумме магнитных потоков, проходящих через каждый виток катушки, т.е. при количестве витков N
и одинаковом магнитном потоке в каждом витке потокосцепление можно определить как Ψ = N Φ 1 , {\displaystyle \Psi =N\Phi _{1},} где Φ 1 {\displaystyle \Phi _{1}} — магнитный поток одного витка .
В идеальном соленоиде все магнитные силовые линии проходят через каждый виток (т.е. не пересекают боковую поверхность соленоида), и, следовательно, магнитный поток каждого витка одинаков. Однако на практике магнитные потоки в витках катушки отличаются и величина потокосцепления определяется по формуле:
Ψ = ∑ i = 1 N Φ i , {\displaystyle \Psi =\sum _{i=1}^{N}{\Phi _{i}},}
где: N {\displaystyle N} — количество витков; i {\displaystyle i} — номер витка, с которым сцеплен поток Φ i . {\displaystyle \Phi _{i}.}
В случае, если катушка имеет ферромагнитный сердечник, потокосцепление можно определить по формуле:
Ψ = N Φ C , {\displaystyle \Psi =N\Phi _{C},}
где Φ C {\displaystyle \Phi _{C}} — магнитный поток через магнитопровод (сердечник) катушки.
Величина потокосцепления, помимо магнитного потока, имеет связь с током I
в индуктивности, определяющуюся выражением:
Ψ = I L , {\displaystyle \Psi =IL,}
где L {\displaystyle L} — индуктивность катушки .
Эта формула выражает принцип непрерывности во времени потокосцепления катушки индуктивности.
Почему Фарадею удалось сделать открытие
У Фарадея был помощник по фамилии Андерсон. Сорок лет он ассистировал Фарадею в лаборатории. Они работали вдвоем: Андерсон в одной комнате смотрел за показаниями гальванометра, а Фарадей в другой брал катушку и вставлял в нее магнит. Совершая это действие, Фарадей услышал через открытые двери слова Андерсона о том, что стрелка отклонилась. Когда он вынул магнит, то помощник сообщил, что стрелка отклонилась в другую сторону.
Затем Фарадей поменял полярность магнита и вставил его в катушку другим полюсом. Андерсон сказал, что стрелка гальванометра отклонилась в ту же сторону, что и в последний раз. Позже Фарадей объяснял это явление изменением вектора индукции. При вытаскивании магнита из катушки стрелка отклонилась в ту же сторону, что и в первый раз. Фарадей и Андерсон увидели, что движение магнита в катушке порождает в ней электрический ток.
Явление самоиндукции
Если в контуре проходит постоянный ток, то вокруг контура существует постоянное магнитное поле, и собственный магнитный поток, пронизывающий контур, не изменяется с течением времени.
Если же ток, проходящий в контуре, будет изменяться со временем, то соответственно изменяющийся собственный магнитный поток, и, согласно закону электромагнитной индукции, создает в контуре ЭДС.
Возникновение ЭДС индукции в контуре, которое вызвано изменением силы тока в этом контуре, называют явлением самоиндукции . Самоиндукция была открыта американским физиком Дж. Генри в 1832 г.
Появляющуюся при этом ЭДС — ЭДС самоиндукции Esi. ЭДС самоиндукции создает в контуре ток самоиндукции I
si.
Направление тока самоиндукции определяется по правилу Ленца: ток самоиндукции всегда направлен так, что он противодействует изменению основного тока. Если основной ток возрастает, то ток самоиндукции направлен против направления основного тока, если уменьшается, то направления основного тока и тока самоиндукции совпадают.
Используя закон электромагнитной индукции для контура индуктивностью L
и уравнение (1), получаем выражение для ЭДС самоиндукции: \(E_{si} =-\dfrac{\Delta \Phi }{\Delta t}=-L\cdot \dfrac{\Delta I}{\Delta t}.\)
ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока в контуре, взятой с противоположным знаком. Эту формулу можно применять только при равномерном изменении силы тока. При увеличении тока (ΔI > 0), ЭДС отрицательная (Esi 0), т.е. индукционный ток направлен в ту же сторону, что и ток источника.
Из полученной формулы следует, что
\(L=-E_{si} \cdot \dfrac{\Delta t}{\Delta I}.\)
Индуктивность – это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.
Явление самоиндукции можно наблюдать на простых опытах. На рисунке 1 показана схема параллельного включения двух одинаковых ламп. Одну из них подключают к источнику через резистор R
, а другую — последовательно с катушкойL . При замыкании ключа первая лампа вспыхивает практически сразу, а вторая — с заметным запозданием. Объясняется это тем, что на участке цепи с лампой1 нет индуктивности, поэтому тока самоиндукции не будет, и сила тока в этой лампе почти мгновенно достигает максимального значения. На участке с лампой2 при увеличении тока в цепи (от нуля до максимального) появляется ток самоиндукцииIsi , который препятствует быстрому увеличению тока в лампе. На рисунке 2 изображен примерный график изменения тока в лампе2 при замыкании цепи.
- Рис. 1
- Рис. 2
При размыкании ключа ток в лампе 2
также будет затухать медленно (рис. 3, а). Если индуктивность катушки достаточно велика, то сразу после размыкания ключа возможно даже некоторое увеличение тока (лампа2 вспыхивает сильнее), и только затем ток начинает уменьшаться (рис. 3, б).
- а
- б
Рис. 3 Явление самоиндукции создает искру в том месте, где происходит размыкание цепи. Если в цепи имеются мощные электромагниты, то искра может перейти в дуговой разряд и испортить выключатель. Для размыкания таких цепей на электростанциях пользуются специальными выключателями.
Индуктивность одновиткового контура и индуктивность катушки
Величина магнитного потока, пронизывающего одновитковый контур, связана с величиной тока следующим образом :
где L
— индуктивность витка. В случае катушки, состоящей из N витков предыдущее выражение модифицируется к виду:
где Ψ = ∑ i = 1 N Φ i ^>> — сумма магнитных потоков через все витки (это так называемый полный поток, называемый в электротехнике потокосцеплением
, именно он фигурирует в качестве магнитного потока вообще в случае для катушки в общем определении индуктивности и в теоретическом рассмотрении выше; однако для упрощения и удобства для многовитковых катушек в электротехнике пользуются отдельным понятием и отдельным обозначением), а L — уже индуктивность многовитковой катушки. Ψ называютпотокосцеплением или полным магнитным потоком . Коэффициент пропорциональности L иначе называетсякоэффициентом самоиндукции контура или просто индуктивностью .
Если поток, пронизывающий каждый из витков одинаков (что довольно часто можно считать верным для катушки в более или менее хорошем приближении), то Ψ = N Φ
. Соответственно, L N = L 1 N 2 =L_N^> (суммарный магнитный поток через каждый виток увеличивается вN раз — поскольку его создают теперьN единичных витков, и потокосцепление ещё вN раз, так как это поток черезN единичных витков). Но в реальных катушках магнитные поля в центре и на краях отличаются, поэтому используются более сложные формулы.