Среднее значение эдс индукции формула

Индуцированная ЭДС

Гальванометр использовал Фарадей, чтобы продемонстрировать способность магнитных полей создавать токи. Если переключатель закрыт, то магнитное поле скапливается в катушке на верхушке железного кольца и транспортируется на нижнее кольцо. Гальванометр применяют для выявления тока, индуцированного в отдельной катушке на дне.

Аппарат Фарадея показывает умение магнитного поля создавать ток. Перемены из-за верхней катушки индуцируют ЭДС, а также и ток в нижней катушке. При открытии/закрытии переключателя гальванометр регистрирует противоположное направление токов. Если контакт выключен или открыт, то ток не проходит сквозь аппарат

В экспериментах ученый заметил, что при закрытом выключателе гальванометр находит ток, перемещающийся в одном направлении на дне катушки. А вот при открытом, ток меняет направление. Если же оставить выключатель в одном положении на долгое время (открытый или закрытый), то ток прекращает перемещаться. Перемена в магнитном поле формирует ток.

Главной также остается электродвижущая сила (ЭДС), которая к нему и приводит. Ток – результат ЭДС, созданной переменой магнитного поля. Причем на нее не влияет присутствие траектории прохождения тока.

ЭДС гальванического элемента

Гальванический элемент – это источник тока, создающий его из химической энергии. Рассмотрим элемент Даниэля-Якоби, представляющий собой цинковую и медную пластины в соответствующих растворах сульфатов, соединённые между собой электролитом. Если соединить пластины металлическим стержнем, начнётся перераспределение зарядов: свободные электроны будут перемещаться к электроду с менее отрицательным зарядом (медной пластине). То есть возникнет электрический ток. Его работа будет максимальной в том случае, когда процессы на электродах (окисление и восстановление вследствие изменения числа электронов) будут протекать бесконечно медленно.

ЭДС гальванического элемента – максимальная разность потенциалов, возможная в такой ситуации.

Виды электромеханических устройств

Статор — понятие и принцип действия

Используют ротор в таких электромеханических устройствах, как двигатели, работающие на постоянном и переменном электрическом токе, генераторы.

Агрегаты, работающие на переменном токе

К таким агрегатам относятся различные электродвигатели. Наиболее распространенная модель данного устройства состоит из следующих частей:

  • Алюминиевый или чугунный ребристый корпус с монтажной коробкой для подключения обмоток статора и ротора;
  • Статор – неподвижная часть в виде полого цилиндра, расположенная внутри корпуса. Обмотка статора состоит из 3 пар расположенных друг напротив друга намотанных в пазы корпуса катушек из медного изолированного провода
  • Цельнометаллический цилиндрический ротор с валом и пазами, в которые впаяны обладающие высокой токопроводящей способностью алюминиевые стержни.

Двигатель, запитываемый от переменного тока

Вращается ротор на двух опорных подшипниках, запрессованных на его валу. Охлаждение работающего на больших оборотах электродвигателя происходит, благодаря крыльчатке – небольшому вентилятору, состоящему из множества лопастей и расположенному на одном из концов вала ротора. Также эффективному охлаждению работающего агрегата способствует ребристая структура алюминиевого корпуса.

Принцип работы подобного двигателя заключается в следующем:

  1. При подключении тока к агрегату он попеременно проходит через одну из трех пар катушек статора.
  2. При протекании по парам статорных катушек электрического тока они создают магнитное поле, силовые линии которого пересекают ротор.
  3. Попеременно запитываемые пары катушек создают подвижное магнитное поле, которое по закону электромагнитной индукции провоцирует появление в неподвижных металлических стержнях ротора электрического тока.
  4. Индуцированный ток в роторе приводит к появлению силы, выталкивающей его из магнитного поля статора. Так как частота подачи тока на катушки статора в среднем составляет порядка 30 импульсов в секунду, появившаяся в роторе выталкивающая сила приводит к его вращению с большой скоростью.

Важно! В зависимости от одновременности вращения ротора и порождающего это движение магнитного поля электрический двигатель переменного тока может быть синхронный (ротор агрегата вращается синхронно с магнитным полем статора) и асинхронный (вращение якоря не синхронизировано с движением магнитного поля статора). Первый вид отличается высокой мощностью и надежностью, в то время как второй характеризуется большим разнообразием конструкций и областей применения

Машины постоянного тока

Наиболее распространенный электродвигатель постоянного тока щеточного вида представляет собой электрический агрегат, состоящий из:

  • Чугунного корпуса с ребрами охлаждения и специальным монтажным коробом для подключения обмоток агрегата;
  • Вала из прочной инструментальной стали с двумя подшипниками;
  • Якоря, состоящего из сердечника (набора пластин из специальной электротехнической стали), якорной обмотки (размещенных в пазах сердечника катушек из медного провода);
  • Индуктора, состоящего из полюсов возбуждения с намотанными на них катушками из медного провода;
  • Коллектора – расположенных на валу медных пластин, к которым подключаются выводы катушек якорной обмотки;
  • Подпружиненных графитовых или металлографитовых щеток (щеточной группы).

Охлаждается такой двигатель, как и аналог, работающий от переменного тока, – расположенной на валу крыльчаткой.

Двигатель, работающий от постоянного тока

Важно! В отличие от электродвигателя переменного тока частотой вращения ротора в таком силовом агрегате управляет специальный блок, который при помощи установленного на валу датчика Холла определяет положение ротора и его скорость. Работает подобный агрегат следующим образом:

Работает подобный агрегат следующим образом:

  1. На обмотку возбуждения подается напряжение, создавая тем самым постоянное магнитное поле;
  2. Через щетки и коллектор напряжение подается на катушки сердечника якоря – возникающее при этом магнитное поле отталкивается от такого же, образованного индуктором, вследствие чего двигатель начинает вращаться («запускается»);
  3. Впоследствии при вращении через щетки запитываются остальные катушки якорной обмотки, что приводит к равномерному вращению якоря с определённой скоростью.

Останавливают вращение такого агрегата прекращением подачи напряжения на щеточную группу.

Помимо описанных выше электромоторов, к машинам, работающим на постоянном токе, относится также роторный стартер – устройство, необходимое для запуска бензиновых и дизельных автомобильных двигателей внутреннего сгорания.

Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре.

Собственный Φ, пронизывающий контур или катушку с током, пропорционален силе тока I

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукциииндуктивностью катушки. Единица индуктивности в СИ называется генри (Гн). Индуктивность контура или катушки равна или 1 Гн, если при силе постоянного тока 1 А собственный поток равен 1 Вб

В качестве примера рассчитаем индуктивность длинного соленоида, имеющего N витков, площадь сечения S и длину l. Магнитное поле соленоида определяется формулой (см. § 1.17)

где I – ток в соленоиде, n = N / e – число витков на единицу длины соленоида.

Магнитный поток, пронизывающий все N витков соленоида, равен

Следовательно, индуктивность соленоида равна

где V = Sl – объем соленоида, в котором сосредоточено магнитное поле. Полученный результат не учитывает краевых эффектов, поэтому он приближенно справедлив только для достаточно длинных катушек. Если соленоид заполнен веществом с μ, то при заданном токе I индукция магнитного поля возрастает по модулю в μ раз (см. § 1.17); поэтому индуктивность катушки с сердечником также увеличивается в μ раз:

ЭДС самоиндукции, возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы (рис. 1.21.1). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Рисунок 1.21.1.
Магнитная энергия катушки. При размыкании ключа K лампа ярко вспыхивает.

Из закона сохранения энергии следует, что вся энергия, запасенная в катушке, выделится в виде джоулева тепла. Если обозначить через R полное сопротивление цепи, то за время Δt выделится количество теплоты ΔQ = I2RΔt.

Ток в цепи равен

Выражение для ΔQ можно записать в виде

В этом выражении ΔI < 0; ток в цепи постепенно убывает от первоначального значения I до нуля. Полное количество теплоты, выделившейся в цепи, можно получить, выполнив операцию интегрирования в пределах от I до 0. Это дает

Эту формулу можно получить графическим методом, изобразив на графике зависимость магнитного потока Φ(I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, равное первоначальному запасу энергии магнитного поля, определяется площадью изображенного на рис. 1.21.2 треугольника.

Рисунок 1.21.2.
Вычисление энергии магнитного поля.

Таким образом, энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна

Применим полученное выражение для энергии катушки к длинному соленоиду с магнитным сердечником. Используя приведенные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, можно получить:

где V – объем соленоида. Это выражение показывает, что магнитная энергия локализована не в витках катушки, по которым протекает ток, а рассредоточена по всему объему, в котором создано магнитное поле. Физическая величина

равная энергии магнитного поля в единице объема, называется объемной плотностью магнитной энергии. Дж. Максвелл показал, что выражение для объемной плотности магнитной энергии, выведенное здесь для случая длинного соленоида, справедливо для любых магнитных полей.

Магнитный поток

Магнитный поток – составляющая магнитного поля. Выступает пропорциональным количеству линий поля, пронизывающих поверхность. Высчитывается по формуле:

ΦB = B ⋅ A = BAcosθ (В – величина магнитного поля, А – площадь поверхности, а θ – угол между линиями магнитного поля и перпендикуляром).

Давайте взглянем на магнитный поток для бесконечно малого элемента участка dA, где будем считать поле постоянным:

Все точки на поверхности обладают единым направлением – поверхностная нормаль. Магнитный поток сквозь точку выступает составляющей магнитного поля вдоль нормального направления

B = B ⋅ dA

Теперь общую поверхность А можно разделить на бесконечно малые элементы, а полный магнитный поток выступит интегралом поверхности:

ΦB = ∬A B ⋅ dA.

Магнитный поток, индукция и закон Фарадея
  • Индуцированная ЭДС и магнитный поток
  • Закон индукции Фарадея и закон Ленца
  • Движение ЭДС
  • Противо-ЭДС, вихревые токи и магнитное демпфирование
  • Изменение магнитного потока приводит к электрическому полю
  • Электрогенераторы
  • Электродвигатель
  • Индуктивность
  • Количественная интерпретация движущей ЭДС
  • Механическая работа и электрическая энергия
  • Энергия в магнитном поле
  • Трансформаторы
Цепи переменного тока
  • Самоиндукция
  • Схемы RL
  • Последовательная RLC: на больших и малых частотах; Схема фазора
  • Резисторы в цепях переменного тока
  • Конденсаторы в цепях переменного тока: емкостное сопротивление и фазовые диаграммы
  • Индукторы в цепях переменного тока: индуктивное сопротивление и фазовые диаграммы
  • Резонанс в схемах RLC
  • Мощность
Применение индукционных и электромагнитных волн
  • Звуковые системы, компьютерная память, сейсмограф, ВКЗЗ
  • Антенна
Магнитные поля и прогноз Максвелла
  • Сохраненная энергия в  магнитном поле
  • Прогнозы Максвелла и подтверждение Герца

5.9. ПОТЕРИ И КПД АСИНХРОННОГО ДВИГАТЕЛЯ

В обмотку статора из сети поступает мощность P1. Часть этой мощности идет на потери в стали
Pсl, а также потери в обмотке статора Рэ1:

Оставшаяся мощность посредством магнитного потока передается на ротор и называется электромагнитной мощностью:

Часть электромагнитной мощности затрачивается на покрытие электрических потерь в обмотке ротора:

Оставшаяся мощность преобразуется в механическую, получившую название полной механической мощности:

Р2‘=Рэмэ2

Воспользовавшись ранее полученной формулой

запишем выражение полной механической мощности:

тогда

или

Рэ2=SРэм,

т.е. мощность электрических потерь пропорциональна скольжению.

Мощность на валу двигателя P2 меньше полной механической мощности Р2’ на величину
механических Рмех и добавочных Рдоб потерь:

Р22’-(Рмех.доб.).

Таким образом:

Р21-SP,

где

SP=Pсlэ1э2мех.доб.

Коэффициент полезного действия
есть отношение мощности на валу P2 к потребляемой мощности P1:

Магнитный поток

Известно, что пропускание тока через проводник сопровождается формированием электромагнитного поля. На этом принципе основана работа динамиков, запорных устройств, приводов реле, других приспособлений. Изменением параметров источника питания получают необходимые силовые усилия для перемещения (удержания) совмещенных деталей, обладающих ферромагнитными свойствами.

Однако действительно и обратное утверждение. Если между полюсами постоянного магнита перемещать рамку из проводящего материала по соответствующему замкнутому контуру, начнется перемещение заряженных частиц. Подключив соответствующие приборы, можно регистрировать изменение тока (напряжения). В ходе элементарного эксперимента можно выяснить увеличение эффекта в следующих ситуациях:

  • перпендикулярное расположение проводника/силовых линий;
  • ускорение перемещений.

На картинке выше показано, как определять направление тока в проводнике с помощью простого правила.

«Электромагнитная индукция»

Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.

Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока.

Вихревые токи, или токи Фуко

Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко.

Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.

Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.

Электромагнитное поле

Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.

Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.

Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.

Классическая электродинамика — одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.

Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.

Электромагнитная индукция в схемах и таблицах

(Явление электромагнитной индукции, опыты Фарадея, правило Ленца, закон электромагнитной индукции, вихревое электрическое поле, самоиндукция, индуктивность, энергия магнитного поля тока)

Дополнительные материалы по теме:

Конспект урока по физике в 11 классе «Электромагнитная индукция».

Следующая тема: «».

Что такое электродвижущая сила

Подробно этот вопрос мы рассмотрели в отдельной статье: https://samelectrik.ru/chto-takoe-eds-obyasnenie-prostymi-slovami.html

Под ЭДС понимается физическая величина, характеризующая работу каких-либо сторонних сил, находящихся в источниках питания постоянного или переменного тока. При этом, если имеется замкнутый контур, то можно сказать, что ЭДС равна работе сил по перемещению положительного заряда к отрицательному по замкнутой цепи. Или простыми словами, ЭДС источника тока представляет работу, необходимую для перемещения единичного заряда между полюсами.

При этом если источник тока имеющего бесконечную мощность, а внутреннее сопротивление будет отсутствовать (позиция А на рисунке), то ЭДС можно рассчитать по закону Ома для участка цепи, т.к. напряжение и электродвижущая сила в этом случае равны.

I=U/R,

где U – напряжение, а в рассмотренном примере — ЭДС.

Однако, реальный источник питания имеет конечное внутреннее сопротивление. Поэтому такой расчет нельзя применять на практике. В этом случае для определения ЭДС пользуются формулой для полной цепи.

I=E/(R+r),

где E (также обозначается как «ԑ») — ЭДС; R – сопротивление нагрузки, r – внутреннее сопротивление источника электропитания, I – ток в цепи.

Однако, эта формула не учитывает сопротивление проводников цепи. При этом необходимо понимать, что внутри источника постоянного тока и во внешней цепи, ток течет в разных направлениях. Разница заключается в том, что внутри элемента он течет от минуса к плюсу, то во внешней цепи от плюса к минусу.

Это наглядно представлено на ниже приведенном рисунке:

При этом электродвижущая сила измеряется вольтметром, в случае, когда нет нагрузки, т.е. источник питания работает в режиме холостого хода.

Чтобы найти ЭДС через напряжение и сопротивление нагрузки нужно найти внутреннее сопротивление источника питания, для этого измеряют напряжение дважды при разных токах нагрузки, после чего находят внутреннее сопротивление. Ниже приведен порядок вычисления по формулам, далее R1, R2 — сопротивление нагрузки для первого и второго измерения соответственно, остальные величины аналогично, U1, U2 – напряжения источника на его зажимах под нагрузкой.

Итак, нам известен ток, тогда он равен:

I1=E/(R1+r)

I2=E/(R2+r)

При этом:

R1=U1/I1

R2=U2/I2

Если подставить в первые уравнения, то:

I1=E/( (U1/I1)+r)

I2=E/( (U2/I2)+r)

Теперь разделим левые и правые части друг на друга:

(I1/I2)= [E/( (U1/I1)+r)]/[E/( (U2/I2)+r)]

После вычисления относительно сопротивления источника тока получим:

r=(U1-U2)/(I1-I2)

Внутреннее сопротивление r:

r= (U1+U2)/I,

где U1, U2 — напряжение на зажимах источника при разном токе нагрузки, I — ток в цепи.

Тогда ЭДС равно:

E=I*(R+r) или E=U1+I1*r

Устройство асинхронного электродвигателя

В его конструкцию входят следующие элементы:

  • Статор цилиндрической формы, собранный из стальных листов. Сердечник статора имеет пазы, в которые уложены обмотки. Их оси сдвинуты на 120 градусов по отношению друг к другу.
  • Ротор (короткозамкнутый или фазный). Первый вариант представляет собой сердечник с алюминиевыми стержнями, накоротко замкнутыми торцевыми кольцами (беличья клетка). Второй вариант состоит из трехфазной обмотки, чаще всего соединенной «звездой».
  • Конструктивные детали – вал, подшипники, лапы, подшипниковые щиты, крыльчатка и кожух вентилятора, коробка выводов — обеспечивающие вращение, охлаждение и защиту механизма.

Схему асинхронного двигателя с указанием его деталей легко найти в интернете или в пособиях.

Принцип работы асинхронного двигателя

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом. Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу. По сути они являются токами короткого замыкания, разогревающими металл. В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.

В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.

Пошагово процесс выглядит следующим образом:

  1. При запуске двигателя магнитное поле статора пересекается с контуром ротора и индуцирует электродвижущую силу.
  2. В накоротко замкнутом роторе возникает переменный ток.
  3. Два магнитных поля (статора и ротора) создают крутящий момент.
  4. Крутящийся ротор пытается «догнать» поле статора.
  5. В тот момент, когда частоты вращения магнитного поля статора и ротора совпадут, электромагнитные процессы в роторе затухают и крутящий момент становится равным нулю.
  6. Магнитное поле статора возбуждает контур ротора, который к этому моменту снова отстает.

То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.

Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.

Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».

На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.

Преимущества асинхронных двигателей

Благодаря тому, что устройство и принцип работы асинхронного электродвигателя достаточно просты, он обладает массой преимуществ и широко применяется во всех сферах народного хозяйства и в быту. Двигатели этого типа характеризуются:

  • Надежностью и долговечностью. Отсутствие контакта между подвижными и неподвижными деталями сводит к минимуму возможность износа и поломок.
  • Низкой стоимостью. Они доступны (не зря 90% от всех выпускающихся в мире двигателей именно асинхронные).
  • Простотой эксплуатации. Для того чтобы использовать их, не обязательно иметь специальные знания и навыки.
  • Универсальностью. Их можно установить практически на любое оборудование.

Изобретение асинхронного электродвигателя было значимым вкладом в развитие науки, промышленности и сельского хозяйства. С ним наша жизнь стала более комфортной.

Заключение

Давайте подведем итоги и еще раз кратко напомним, что такое ЭДС и в каких единицах СИ выражается эта величина.

  1. ЭДС характеризует работу сторонних сил (химических или физических) неэлектрического происхождения в электрической цепи. Эта сила выполняет работу по переносу электрических зарядов ней.
  2. ЭДС, как и напряжение измеряется в Вольтах.
  3. Отличия ЭДС от напряжения состоят в том, что первое измеряется без нагрузки, а второе с нагрузкой, при этом учитывается и оказывает влияние внутреннее сопротивление источника питания.

И наконец, для закрепления пройденного материала, советую посмотреть еще одно хорошее видео на эту тему:

Материалы по теме:

  • Чем отличается переменный ток от постоянного
  • Что такое электрический заряд
  • Как понизить постоянное и переменное напряжение

Опубликовано:
20.07.2019
Обновлено: 20.07.2019