Двухполупериодный мостовой выпрямитель. схема. понятие. принцип работы

Содержание

Устройство и принцип работы

Диодный мост представляет собой электронную схему, собранную на основе выпрямительных диодов, который предназначен для преобразования подаваемого на него переменного тока в постоянный. Чаще всего в состав схемы включаются диоды Шоттки, но это не категоричное требование, поэтому в каком-либо конкретном случае может заменяться и другими моделями, подходящими по техническим параметрам. Схема моста из полупроводниковых диодов включает в себя четыре элемента для одной фазы. Диодный мостик может набираться как отдельными диодами, так и собираться единым блоком, в виде монолитного четырехполюсника.

Принцип работы диодного моста основывается на способности p – n перехода пропускать электрический ток только в одном направлении. Схема включения диодов в мост построена таким образом, чтобы для каждой полуволны создавался свой путь протекания электрического тока к подключенной нагрузке.

Рис. 1. Принцип работы диодного моста

Для пояснения выпрямления диодным мостом необходимо рассматривать работу схемы относительно формы напряжения на входе. Следует отметить, что кривая напряжения за один период имеет две полуволны – положительную и отрицательную. В свою очередь, каждая полуволна имеет процесс нарастания и убывания по отношению к максимальной точке амплитуды.

Поэтому работа выпрямительного устройства будет иметь такие этапы:

  • На вход выпрямительного моста, обозначенного буквами А и Б подается переменное напряжение 220В.
  • Каждая полуволна, подаваемая из электрической сети или от обмоток трансформатора, преобразуется в постоянную величину парой диодов, расположенных по диагонали.
  • Положительная полуволна будет проводиться парой диодов VD1 и VD4 и выдавать на выход моста полуволну в положительной области оси ординат.
  • Отрицательная полуволна будет выпрямляться парой диодов VD2 и VD3, с которых на том же выходе моста возникнет очередная полуволна в положительной области.

В связи с тем, что оба полупериода получают реализацию на выходе диодного моста, такое электронное устройство получило название двухполупериодного выпрямителя, также его называют схемой Гретца.

Обозначение на схеме и маркировка

На электрической схеме диодный мост может иметь различные варианты изображения. Чаще всего вы можете встретить такие обозначения:

Рис. 2. Обозначение на схеме

Первый вариант обозначения мостового выпрямителя используется, как правило, в тех ситуациях, когда электронный прибор представляет собой монолитную конструкцию, единую сборку. На схеме маркировка выполняется латинскими буквами VD, за которыми указывается порядковый номер.

Второй вариант наиболее распространен  для тех ситуаций, когда диодный мост состоит из отдельных полупроводниковых устройств, собранных в одну схему. Маркировка второго варианта, чаще всего, выполняется в виде ряда VD1 – VD4.

Следует также отметить, что вышеприведенное схематическое обозначение и маркировка хоть и имеет общепринятый характер, но может нарушаться при составлении схем.

Разновидности диодных мостов

В зависимости от количества фаз, которые подключаются к диодному мосту, различают однофазные и трехфазные модели. Первый вариант мы детально рассмотрели на примере схемы Гретца выше.

Трехфазные выпрямители, в свою очередь, разделяются на шести- и двенадцатипульсовые модели, хотя схема диодного моста у них идентична. Рассмотрим более детально работу диодного устройства для трехфазной схемы.

Рис. 3. Схема трехфазного диодного моста

Диодный мост, приведенный на рисунке выше, получил название схемы Ларионова. Конструктивно для каждой из фаз устанавливается сразу два диода в противоположном направлении друг относительно друга

Здесь важно отметить, что синусоида во всех трех фазах имеет смещение в 120° друг относительно друга, поэтому на выходах устройства при наложении результирующей диаграммы получится следующая картина:

Рис. 4. Напряжение выпрямленное трехфазным мостом

Как видите, в сравнении с однофазным выпрямителем на базе диодного моста картина получается более плавной, а скачки напряжения имеют значительно меньшую амплитуду.

Фильтрация постоянного напряжения

Сигнал на выходе, который мы получаем от двухполупериодного мостового выпрямителя, является по сути пульсирующим постоянным напряжением, которое вырастает до максимума, а затем снижается до нуля.

Для того чтобы избавиться от пульсаций, нам необходимо отфильтровать двухволновой сигнал. Один из способов сделать это — подключить сглаживающий конденсатор.

Первоначально конденсатор разряжен. На протяжении первой четверти цикла диоды D1 и D2 смещены в прямом направлении и из-за этого сглаживающий конденсатор начинает заряжаться. Процесс заряда длится до тех пор, пока напряжение с мостового выпрямителя не достигнет своего пикового значения. В этот момент напряжение на конденсаторе будет равно Vp.

После того, как напряжение с выпрямителя достигает своего пика, оно начинает уменьшаться. Как только напряжение снизиться ниже Vp соответствующая пара диодов (D1 и D2) не будет проводить.

Когда диоды выключены, конденсатор разряжается через нагрузку, пока не будет достигнут следующий пик. Когда наступает следующий пик, конденсатор заряжается уже через диоды D3 и D4  до пикового значения.

Свойства двухполупериодного выпрямителя

Основным свойством этих устройств является протекание электрического тока через нагрузку за оба полупериода в одном и том же направлении.

В приборах такого типа используются, в основном, мостовые или полумостовые схемы. В последнем случае однофазный ток выпрямляется с использованием специального трансформатора. В качестве вывода используется средняя точка вторичной обмотки, а количество элементов, выпрямляющих ток – в два раза меньше. В настоящее время полумостовая схема используется довольно редко из-за высокой металлоемкости и высокого активного внутреннего сопротивления, с большими потерями при нагревании трансформаторных обмоток.

Чаще всего используются двухполупериодные устройства, в схемах которых имеется сразу два вентиля. Электрический ток в нагрузке всегда протекает в одном и том же направлении. В результате, выпрямление тока происходит с участием двух полупериодов напряжения. Благодаря высокой частоте пульсаций, фильтрация выпрямляемого напряжения существенно облегчается.

Двухполупериодные выпрямители получили широкое распространение во многих радиоэлектронных устройствах, обеспечивая их нормальное питание. Возможность преобразования постоянного тока из одного напряжения в другое, дает возможность создавать в схемах питания различные напряжения при одном и том же источнике энергии.

Работа мостовой схемы

Разбираемся с электроизмерительными приборами

Устройство состоит из четырех полупроводниковых вентилей, объединенных в мост. В таком случае вторичная обмотка трансформирующего устройства объединяется с противоположными плечами диодного моста. Нагрузочные резисторы подключат посредством других плеч. При этом выходные характеристики значительно выше, чем у двухпериодных, из-за течения через прибор всей волны напряжений переменного тока.

Во время положительной полуволны сигнал движется от отрицательной части вторичной обмотки трансформирующего устройства через вентили и нагрузочный резистор к положительной части совокупности витков трансформирующего устройства. При негативной полуволне процесс происходит в обратном порядке.

Однофазные выпрямители

Основными схемами однофазных выпрямителей являются однополупериодная и двухполупериодная (мостовая или со средней точкой).

Однофазная однополупериодная схема является самой простейшей схемой выпрямителя.

Трансформатор преобразовывает сетевое напряжение первичной обмотки Uc в напряжение вторичной обмотки U2. Так как диод Д имеет одностороннюю проводимость, ток I2 будет протекать только при положительной полуволне вторичного напряжения, при отрицательной полуволне диод будет закрыт. Так как ток в нагрузке Rн протекает только в один полупериод, отсюда и название выпрямителя — однополупериодный.

К недостаткам однополупериодных выпрямителей следует отнести униполярный ток, который, проходя через вторичную обмотку, намагничивает сердечник трансформатора, изменяя его характеристики и уменьшая КПД, высокий уровень пульсаций и большое обратное напряжение на диоде.

Двухполупериодные схемы выпрямления уже значительно интересней. Из них наибольшую популярность приобрела мостовая схема включения диодов.

Схема состоит из трансформатора и четырех диодов,собранных мостом. Одна из диагоналей моста соединена с выводами вторичной обмотки трансформатора, вторая диагональ с нагрузкой. При положительном потенциале в точке a вторичной обмотки трансформатора ток пойдет по цепи точка a вторичной обмотки — A — диод Д1 — B — нагрузка Rн — D — диод Д3. К диодам Д2 и Д4 при этом приложено обратное напряжение, они заперты. При изменении направления Э.Д.С и тока во вторичной обмотке положительный потенциал появится уже в точке b вторичной обмотки трансформатора. Ток при этом пойдет по цепи b — C — диод Д2 — B — нагрузка Rн — D — диод Д4.

Таким образом ток в нагрузке не меняет своего направления. Кривые напряжения и тока на нагрузке повторяют (при прямом напряжении на диодах U np ≈ 0) по величине и форме выпрямленные полуволны напряжения и тока вторичной обмотки трансформатора. Они пульсируют от нуля до максимального значения.

Кроме мостовой схемы выпрямления может применяться двунаправленная схема.

Схема состоит из трансформатора со средней отпайкой на вторичной обмотке и двух диодов. Когда в точке a имеется положительный потенциал ток протекает по цепи a — диод Д1 — нагрузка Rн — отпайка вторичной обмотки. При положительном потенциале в точке b вторичной обмотки ток потечет по цепи b — диод Д2 — с — нагрузка Rн — отпайка вторичной обмотки.

На левом рисунке показана зависимость напряжения вторичной обмотки трансформатора от времени, на правом изменение тока нагрузки. Как следует из работы выпрямителя, направление тока в нагрузке неизменно. Вторичная обмотка трансформатора двухфазная и каждая фаза работает половину периода. Напряжение на нагрузке в любой момент равно мгновенному значению ЭДС фазы, работающей в данный момент.

К основным минусам данной схемы можно отнести необходимость делать отпайку вторичной обмотки трансформатора и большое обратное напряжение диода Uобр = 2U2м = 3,14U0, поэтому она не получила столь широкого распространения как мостовая схема.

Особенности трехфазного моста и варианты его построения

Мостовые схемы трехфазных выпрямителей имеют варианты исполнений, позволяющие улучшить параметры устройства. Усовершенствовать их удается за счет введения дополнительных вентильных элементов. В них устанавливают по 6, 9 или даже 12 выпрямительных диодов, включенных по схеме «звезда» или «треугольник».

Чем больше фаз (или пар диодов) используется в схеме выпрямителя, тем ниже уровень пульсаций выходного напряжения.

В качестве примера рассмотрим устройство с 12 выпрямительными диодами. Одна из групп в количестве 6-ти штук включается в этом случае по схеме «звезда» с общей нулевой точкой, а вторая – в треугольник (без земли). С учетом того, что выпрямители соединены последовательно, потенциалы на выходе системы суммируются, а частота пульсаций в нагрузке оказывается в 12 раз большей сетевого значения (50 Герц). После фильтрации поступающее к потребителю напряжение характеризуется более высоким качеством.

Проектирование

Расчет даже простого двухполупериодного преобразователя является непростой задачей. Существенно упростить ее можно используя специальное программное обеспечение. Мы рекомендуем остановить выбор на программе Electronics Workbench, которая позволяет выполнить схематическое моделирование аналоговых и цифровых электрических устройств.

Смоделировав в этой программе двухполупериодный выпрямитель можно получить наглядное представление о принципе его работы. Встроенные формулы позволяют рассчитать максимальное обратное напряжение для диодов, оптимальную емкость гасящего конденсатора и т.д.

Однополупериодный
выпрямитель или четвертьмост является
простейшим выпрямителем и включает в
себя один вентиль (диод или тиристор).

Допущения:
нагрузка чисто активная, вентиль —
идеальный электрический ключ.

Напряжение
со вторичной обмотки трансформатора
проходит через вентиль на нагрузку
только в положительные полупериоды
переменного напряжения. В отрицательные
полупериоды вентиль закрыт, всё падение
напряжения происходит на вентиле, а
напряжение на нагрузке Uн равно нулю.
Среднее значение переменного тока по
отношению к подведенному действующему
составит:

Эта
величина вдвое меньше, чем в полномостовом.
Важно отметить, что среднеквадратичное
(устар. эффективное, действующее) значение
напряжения на выходе однополупериодного
выпрямителя будет в корень из 2 меньше
подведенного действующего, а потребляемая
нагрузкой мощность в 2 раза меньше (для
синусоидальной формы сигнала). Отношение
среднего значения выпрямленного
напряжения Uн ср к действующему значению
входного переменного напряжения Uвх д
называется коэффициентом выпрямления
(Kвып)

Для рассматриваемой схемы
Kвып=0,45

Отношение
среднего значения выпрямленного
напряжения Uн ср к действующему значению
входного переменного напряжения Uвх д
называется коэффициентом выпрямления
(Kвып). Для рассматриваемой схемы
Kвып=0,45.

Максимальное
обратное напряжение на диоде Uобр max=Uвх
max
=πUн ср, т.е. более чем в три раза
превышает среднее выпрямленное напряжение
(это следует учитывать при выборе диода
для выпрямителя).

Коэффициент
пульсаций, равный отношению амплитуды
низшей (основной) гармоники пульсаций
к среднему значению выпрямленного
напряжения, для описываемой схемы
однополупериодного выпрямителя равен:

Kп=Uпульс
max01Uн ср=π2=1,57.

Однополупериодный преобразователь

Выпрямитель тока

Устройство включает:

  • Трансформирующий прибор;
  • Вентиль (полупроводниковый или электровакуумный диод);
  • Конденсатор, который сглаживает переходы отрицательной и положительной полуволны;
  • Резистор, выполняющий роль нагрузки.

Если подключить однополупериодный преобразователь к осциллографу, на графике будут видны сглаженные импульсы. Смягчение сигнала достигается за счет использования конденсатора. Во время отрицательного полупериода конденсатор отдает накопленный за время положительной полуволны электрический ток.

К минусам подобной конструкции относят низкий коэффициент полезного действия из-за высокого уровня колебаний. Поэтому однополупериодные преобразователи применяют исключительно в системах с низким потреблением.

Принцип работы выпрямителя

Структурная схема выпрямителя показана ниже:

Главною его частью является выпрямляющее устройство В, образованное из диодов, объединенных особым образом. Именно здесь и происходит преобразование переменного тока в пульсирующий постоянный. Переменное напряжение подается на выпрямляющее устройство через трансформатор Тр. В некоторых случаях трансформатора может и не быть (если напряжение силовой сети отвечает той, которая необходима для работы выпрямителя). Трансформатор(если он есть) в большинстве также имеет особенности в соединении его обмоток. Пульсирующий ток , как правило не является постоянным по величине в каждое мгновение времени, и когда необходимо иметь более сглаженное его значение, чем полученный после выпрямляющего устройства, применяют фильтры Ф. В случае необходимости выпрямитель дополняют стабилизатором напряжения  или тока Ст, который поддерживает их на постоянном уровне, если параметры силовой сети изменяется по разным причинам. Структурную схему завершает нагрузка Н, которая значительно влияет на работу всего устройства и поэтому считается составляющей частью всего преобразователя.

Собственно выпрямителем является та его часть, которая обведена на рисунке выше пунктиром и состоит из трансформатора и выпрямительного устройства.

В этом подразделе рассматриваются  выпрямители малой мощности, которые необходимы для обеспечения постоянным напряжением всяких устройств в областях управления, регулирования, усилителях тока, генераторах малой мощности и так далее. Как правило, они питаются от однофазного переменного напряжения 220 или 380 В частотою 50 Гц.

Полноволновой выпрямитель с нулевым выводом

Выпрямляющий прибор с двумя диодами конвертирует обе полуволны подающегося на него сигнала в импульсный постоянный ток. Чтобы преобразовать ток, применяется трансформирующий прибор, у которого вторичная обмотка разделяется на две половины. Центральный участок присоединен к земле.

Принцип работы:

  1. При положительном полуцикле на одной части витков трансформатора возникает плюс, на второй – минус. Вентиль, который подключают к положительной части, проводит ток. Второй диод закрыт. Проходя через резистор, ток попадает на центральную точку;
  2. При отрицательном полуцикле состояние обмоток меняется. Второй диод проводит ток.

В итоге электричество пропускается во время обеих полуволн, и КПД достигает 90%.