В чем отличие непрерывного сигнала от дискретного в электротехнике и быту?

Сигналы по типу физической природы

В зависимости от способа образования, виды сигналов бывают следующими.

  • Электрические (носитель информации — изменяющиеся во времени ток или напряжение в электрической цепи).
  • Магнитные.
  • Электромагнитные.
  • Тепловые.
  • Сигналы ионизирующих излучений.
  • Оптические/световые.
  • Акустические (звуковые).

Виды сигналов последние два также являются простейшими примерами коммуникационных технических операций, цель которых — оповещение об особенностях сложившейся ситуации.

Чаще всего их используют для предупреждения об опасности или неисправностях системы.

Нередко звуковые и оптические разновидности используются в качестве координирующих для налаженной работы автоматизированного оборудования. Так некоторые виды сигналов управления (команды) являются стимулирующими для системы, чтобы начать действовать.

К примеру, в противопожарных сигнализациях при обнаружении следов дыма датчиками они издают пронзительный звук. Тот, в свою очередь, воспринимается системой как управляющий сигнал для тушения очага возгорания.

Еще одним примером того, как сигнал (виды сигналов по типу физической природы перечислены выше) активизирует работу системы в случае опасности, является терморегуляция человеческого организма. Так, если вследствие различных факторов температура тела повышается, клетки «информируют» мозг об этом, и он включает «систему охлаждения организма», более известную всем как потоотделение.

Весь мир в двух цифрах

Теперь настало время разобраться с цифровым сигналом. И здесь сразу стоит оговорить, о каких цифрах идет речь. Всего о двух:

  • 0, или «ноль» это отсутствие сигнала (напряжения, если мы говорим о передаче по проводам);
  • 1, или «единица», сигнал подается (напряжение в сети есть, причем не имеет значения какое оно);

Поэтому, рассматривая цифровой сигнал на экране осциллографа, мы видим не плавно изменяющуюся линию, а периодически возникающие прямоугольные «зубцы», верхняя линия которых соответствует значению подаваемого напряжения.

Это и есть «единица», или сигнал. А в промежутке между ними линия находится на нуле, напряжения нет. Такой вид называется дискретным, состоящим из отдельных элементов.

Самым простым примером цифрового сигнала является азбука Морзе. Закодированные с помощью нее сообщения можно передавать по кабелю, звуком, светом или записав на ленте телеграфа.

Но у нас сейчас век цифровых технологий и даже ребенок знает, что с помощью нулей и единиц можно записать любую информацию, используя двоичный код. А как это можно сделать, знают лишь специалисты. Здесь используется сложная система кодов, описывающая, как нужно читать последовательность импульсов, и какая информация в них описана.

Например, когда речь идет о музыке, аналоговая синусоида колебаний звука разбивается на отдельные временные участки и для каждого из них определяется значение напряжения на данный момент. Чем меньше такие промежутки (частота дискретизации), тем более точно можно описать исходную синусоиду, но она уже получится в виде множества ступенечек.

Оцифровка звука используется повсеместно (в компьютерах, в мобильной связи) поэтому для облегчения данной задачи существует два типа устройств:

  • аналогово-цифровой преобразователь (АЦП);
  • цифро-аналоговый преобразователь (ЦАП).

Пример со звуком наиболее ярко показывает, как можно превратить аналоговый сигнал в цифровой и наоборот. Но в реальности цифровой сигнал имеет гораздо больше возможностей. Ведь цифрой можно описать и изображение, задав для каждого отдельного пикселя значения насыщенности RGB составляющих. Или передать детальную информацию о параметрах работы устройства.

Виды сигналов

Имеется несколько видов, а также классификации уже имеющихся сигналов. Рассмотрим их.

Первый тип – это электрический сигнал, есть также оптический, электромагнитный и акустический. Имеется еще несколько подобных типов, однако они не являются популярными. Такая классификация происходит по физической среде.

По способу задания сигнала они разделяются на регулярные и нерегулярные. Первый вид имеет аналитическую функцию, а также детерминированный вид передачи данных. Случайные сигналы могут формироваться при помощи некоторых теорий из высшей математики, более того, они способны принимать многие значения в совершенно разные промежутки времени.

Виды передачи сигналов довольно разные, следует отметить, что сигналы по данной классификации разделяются на аналоговые, дискретные и цифровые. Нередко для обеспечения работы электрических приборов используются именно такие сигналы. Для того чтобы разобраться с каждым из вариантов, необходимо вспомнить школьный курс физики и немного почитать теории.

Аналоговый сигнал

Для начала вспомним, что сигнальные данные – это коды, использующиеся для обмена какими-либо сообщениями в информационных или управленческих сферах деятельности. В электронике аналоговый тип кода используется при передаче электричества: при этом определённым величинам амплитуды и частоты звука, яркости цвета и света соответствуют определённые значения напряжения. Из-за этих соответствий данный тип передачи данных и прозвали аналоговым.

В мире физики передачу данных при помощи сигнала можно отразить графически. В данном случае график будет представлять собой постоянно «скачущую» то вверх, то вниз кривую, не имеющую прямых углов. Похожие графики большинство из нас часто рисовало в школе на уроках физики и математики.

Для чего обрабатывается сигнал?

Сигнал следует обрабатывать для того, чтобы получить информацию, которая в нем зашифрована. Если рассматривать виды модуляции сигнала, то следует отметить, что по амплитудной и частотной манипуляции это довольно сложный процесс, который необходимо полностью понимать. Как только информация будет получена, ее можно использовать совершенно различными способами. В некоторых ситуациях ее форматируют и отправляют далее.

Также нужно отметить другие причины, по которым происходит обработка сигналов. Она заключается в том, чтобы сжать частоты, которые передаются, однако не повредив всю информацию. Далее ее форматируют еще раз и передают. При этом делается это на медленных скоростях. Если говорить о сигналах аналогового и цифрового вида, то здесь используются особенные способы. Имеется фильтрация, свертка и некоторые другие функции. Они нужны для того, чтобы восстановить информацию, если сигнал был поврежден.

Виды сигналов

Существует несколько типов классификации имеющихся сигналов. Рассмотрим, какие бывают виды.

  1. По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
  2. По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
  3. В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.

Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное — немного подумать и вспомнить школьный курс физики.

Что такое дискретный

Дискретность применяется в вычислительной технике для пакетной передачи данных

Дискретный сигнал — тот, который в некотором интервале может принимать определённое число значений. К таким сигналам относятся показания цифровых часов или приборов, а также тексты в книгах.

Благодаря достижениям в цифровой технике большинство электронных устройств в настоящее время являются цифровыми и работают с ДС. В то же время физические сигналы в природе имеют аналоговый вид. Преобразование НС в дискретный вид производится путём дискретизации его с помощью специальных устройств (АЦП). Обратное преобразование сигнала производится с помощью ЦАП.

Достоинствами цифровых систем, работающих на ДС, являются:

  • высокая помехозащищённость и возможность работы каналов связи при больших шумах;
  • простота передачи команд управления каналами;
  • возможность цифровой обработки сигналов;
  • лёгкость засекречивания.

Дискретный сигнал

Сейчас каждый человек пользуется мобильным телефоном или какой-то «звонилкой» на своем компьютере. Одна из задач приборов или программного обеспечения – это передача сигнала, в данном случае голосового потока. Для переноса непрерывной волны необходим канал, который имел бы пропускную способность высшего уровня. Именно поэтому было предпринято решение использовать дискретный сигнал. Он создает не саму волну, а ее цифровой вид. Почему же? Потому что передача идет от техники (например, телефона или компьютера). В чем плюсы такого вида переноса информации? С его помощью уменьшается общее количество передаваемых данных, а также легче организуется пакетная отправка.

Понятие «дискретизация» уже давно стабильно используется в работе вычислительной техники. Благодаря такому сигналу передается не непрерывная информация, которая полностью закодирована специальными символами и буквами, а данные, собранные в особенные блоки. Они являются отдельными и законченными частицами. Такой метод кодировки уже давно отодвинулся на второй план, однако не исчез полностью. С помощью него можно легко передавать небольшие куски информации.

Определение понятия дискретности

Дискретная информация — это характерное свойство объекта изучения, что способно принимать в определённые моменты исключительно конкретные числовые или знаковые значения, а не иметь плавно изменяющиеся, поэтому бесчисленные однородные показатели.

Такие целые числа можно пронумеровать. Поэтому, пытаясь глубоко разобраться, что такое дискретная информация, следует учитывать ее прерывистость и цифровое обозначение признаков в виде логического нуля и такой же логической единицы.

Дискретные значения — это:

  • буквы алфавита;
  • геометрические фигуры;
  • здания в городе.

Выходит, что две основные формы информации имеют принципиальные различия, заключающиеся в природе каждой величины. Но чтобы зафиксировать более объёмные сведения о явлении или объекте, часто используют эти информации единовременно.

Пример 1. Высота какого-то треугольника – 26, 04 см. Здесь дискретное представление информации заключается в обозначении понятия «треугольник» – конкретной геометрической фигуры. А вот значение 26,04 – это информация непрерывная, она передаёт сведения об одном из показателей этой фигуры.

Пример 2. Берутся пружинные весы. Измеряемая ими масса – величина непрерывная. Информация заключена в длине отрезка, по которому перемещается показатель весов, ведь на этот механизм непрерывно воздействует масса тела.

Длина отрезка — также величина непрерывная, поэтому для определения веса используется шкала с максимально измельчёнными показателями. Значит здесь дискретное значение — это непрерывная величина с приобретённой дискретной формой.

Некоторые механические ювелирные весы имеют шкалу в диапазоне от 0,1 г (полкарата) до 1000 г. Самоцвет будет обладать одним из конкретных показателей из этого набора значений – к примеру, 8,3. Значит этим однозначным показателем закладывается дискретная форма представления информации о массе.

Удаётся даже по дискретному представлению восстановить непрерывную величину. Но в результате дискретная форма выведенного образа может не совпадать с реальным подлинником.

Отличие дискретного сигнала от цифрового

Про Азбуку Морзе наверное слышали все. Придумал художник Самуэль Морзе, другие новаторы усовершенствовали, а использовали все. Это способ передачи текста, где точками и тире закодированы буквы. Упрощенно, кодировка называется морзянкой. Её долго использовали на телеграфе и для передачи информации по радио. Кроме того, сигналить можно с помощью прожектора или фонарика.

Код морзянки зависит только от самого знака. А не от его продолжительности или громкости (силы). Как ни ударь ключом (моргни фонариком), воспринимаются только два варианта– точка и тире. Можно только увеличить скорость передачи. Ни громкость, ни продолжительность в расчёт ни принимаются. Главное, что бы сигнал дошёл.

Так же и цифровой сигнал

Важно закодировать данные с помощью 0 и 1. Получатель должен только разобрать, комбинацию нолей и единиц

Неважно с какой громкостью и какой продолжительностью будет каждый сигнал. Важно получить нолики и единички. Это суть цифровой технологии.

Дискретный сигнал получится если закодировать ещё громкость (яркость) и продолжительность каждой точки и тире, или 0 и 1. В этом случае вариантов кодировки больше, но и путаницы тоже. Громкость и продолжительность можно не разобрать. В этом и разница между цифровым и дискретным сигналами. Цифровой генерируется и воспринимается однозначно, дискретный с вариациями.

Список лекций

  1. Сигналы: аналоговые, дискретные, цифровые. Z-преобразование,
  2. Преобразование Фурье: амплитудный и фазовый сигнала, ДПФ и БПФ,
  3. Свертка и корреляция. Линейная и циклическая свертка. Быстрая свёртка,
  4. Случайные процессы. Белый шум. Функция плотности вероятностей,
  5. Детерминированные сигналы. Модуляция: АМ, ЧМ, ФМ, ЛЧМ. Манипуляция,
  6. Фильтрация сигналов: БИХ, КИХ фильтры,
  7. Оконные функции в задачах фильтрации. Детектирование слабых сигналов,
  8. Ресемплинг: децимация и интерполяция. CIC-фильтры, фильтры скользящего среднего,
  9. Непараметрические методы спектрального анализа,
  10. Усреднение по частоте и по времени. Полифазный БПФ.

но, разумеется, неполный

Сигналы. Z-преобразование

  • аналоговые — описываются непрерывными во времени функциями,
  • дискретные — прерываются во времени с шагом заданным дискретизации,
  • квантованные — имеют набор конечных уровней (как правило, по амплитуде),
  • цифровые — комбинация свойств дискретных и квантованных сигналов.

Теорема Котельникова (Найквиста-Шеннона)Любой непрерывный сигнал с ограниченным спектром может быть восстановлен однозначно и без потерь по своим дискретным отсчетам, взятым с частотой строго больше удвоенной верхней частоты спектра непрерывного сигнала.
Z-преобразование

-1-2-4-5-6

Преобразование Фурье. Свойства. ДПФ и БПФ

вещественнаячетнаянечетная

Сравнение эффективности ДПФ и БПФ

N ДПФ БПФ Отношение числа комплексных сложений Отношение числа комплексных умножений
Число операций умножения Число операций сложения Число операций умножения Число операций сложения
2 4 2 1 2 4 1
4 16 12 4 8 4 1.5
8 64 56 12 24 5.3 2.3
16 256 240 32 64 8 3.75
32 1024 992 80 160 12.8 6.2
64 4096 4032 192 384 21.3 10.5
128 16384 16256 448 896 36.6 18.1
4096 16777216 16773120 24576 49152 683 341
8192 67108864 67100672 53248 106496 1260 630

Свертка и корреляция

корреляциюСверткаАвтокорреляционная функцияпроигрывает

N Свертка Быстрая свертка Отношение
8 64 448 0.14
16 256 1088 0.24
32 1024 2560 0.4
64 4096 5888 0.7
128 16K 13312 1.23
..
2048 4M 311296 13.5

Случайные сигналы и шум

белого шумаСлучайным сигналомвероятностью

  • закон распределения (относительное время пребывания значения сигнала в определенном интервале),
  • спектральное распределение мощности сигнала.
  • шумы — беспорядочные колебания, состоящие из набора разных частот и амплитуд,
  • сигналы, несущие информацию, для обработки которых требуется прибегать к вероятностным методам.

ДецимацияИнтерполяцияCicFilter
Python CicFilter Class for Digital Signal Processing

  1. Непараметрические методы спектрального анализа (Владимир Фадеев)
  2. Усреднение по частоте и по времени. Полифазный БПФ.

Непрерывные и дискретные сигналы:

Непрерывный аналоговый сигнал определен на всем промежутке времени, то есть мы в любой момент времени t можем узнать значение сигнала x. Если мы возьмем эти значения с периодом дискретизации T, то мы получаем дискретный сигнал, значение которого определены только в конкретные моменты времени.

Дискретный сигнал теперь записываем как x, и n это номера отчетов дискретной последовательности. Если взглянуть на процесс дискретизации с точки зрения математики, то выходная дискретная последовательность с x формируется, когда мы подставляем в нашу функцию x(t) значение времени t равный nT, где n — это номер дискретного отчета, а T — это период дискретизации.

Другие решения Texas Instruments, используемые для реализации дискретных входов и выходов

Компания Texas Instruments не ограничивается выпуском модулей гальванической развязки и токочувствительных усилителей и предоставляет полный перечень компонентов, необходимых для реализации дискретного входа и выхода (таблица 2).

Таблица 2. Решения от Texas Instruments для реализации дискретных входов и выходов

Наименование Описание
TIDA-00017 8-канальный модуль дискретных входов для программируемого логического контроллера. Разработан в соответствии со стандартом IEC61000-4 EMC и включает в себя 8 цифровых входов до 34 В каждый, подключаемых к ПЛК через последовательный интерфейс. Модуль обладает защитой от превышения значений по току, имеет изолированный блок питания.
TIDA-00179 Универсальный цифровой интерфейс для подключения к энкодерам абсолютного положения, таким как EnDat 2.2, BiSS, SSI или HIPERFACE DSL. Решение способно работать со входными сигналами широкого диапазона напряжения 15…60 В. Разъем I/O логических сигналов с напряжением 3,3 В служит для организации прямой связи с головным процессором, например, Sitara AM437x или Delfino F28379.
TIDEP0049 Решение для системы связи по интегрированному промышленному протоколу Ethernet. Модуль базируется на процессоре семейства Sitara и отвечает требованиям промышленного Ethernet по скорости запуска после включения питания устройства.
PMP9409 Изолированный понижающий источник питания с 4 выходами для ПЛК-систем. Источник поддерживает номинальное входное напряжение 24 В и генерирует 4 изолированных напряжения смещения +15 В. Каждая из шин напряжения имеет ток нагрузки 30 мА.
TIDA-00129 Компактный источник на 1 Вт с двумя изолированными выходами для программируемых логических контроллеров. TIDA-00129 создавался специально для питания модулей, работающих с ПЛК, и автоматизации производства. Имеет изолированные выходы 24 и 3,3 В. Данный проект соответствует требованиям IEC 61010-1.
TIDEP0079 Проект EtherCAT на базе Sitara AM57x и PRU-ICSS с передачей в определенных временных интервалах. Решение может быть использовано в системах ПЛК, построенных на базе EtherCAT, или в системах управления движением.
TIDM-HAHSCPTO Проект высокоскоростного счетчика (HSC) и выхода с прямоугольными импульсами имеет высокую степень эксплуатационной готовности. В данном проекте TI приводится базовое решение (программное обеспечение и тестовая платформа) для двух разных индустриальных IO-функций, которые относятся к управлению движением: высокоскоростного счетчика (HSC) и выхода с прямоугольными импульсами (PTO). Данный проект базируется на платформе с микроконтроллером, которая подходит для использования в промышленных приложениях, где высокая степень эксплуатационной готовности и/или функциональная безопасность являются важными характеристиками.
TIDEP0057 Многопротокольный цифровой интерфейс ведущего устройства для датчика углового положения с использованием AM437xс PRU-ICSS. Решение построено на базе процессора Sitara с подсистемой программируемого модуля реального времени и промышленных коммуникаций (PRU-ICSS).
TIDEP0003 Платформа для создания и разработки ETHERNET/IP-коммуникаций. Дает возможность пользователям реализовывать стандарты связи Ethernet и IP для широкого диапазона устройств, используемых в промышленной автоматизации.
TIDA-00012 Изолированный интерфейс CAN-Profibus. Разработан для применения в промышленных системах, требующих подачи изолированного питания на приемопередатчики CAN и/или Profibus.
TIDA-00230 Интерфейс для настройки и логирования NFC (два порта FRAM: NFC ⇔ FRAM ⇔ Serial)
TIDA-00560 Проект 16-канального статусного LED-драйвера PLC-модулей для индикации статуса нескольких аналоговых и цифровых входных и выходных каналов.
TIDA-00320 Восьмиканальный модуль цифрового выхода для программируемых логических контроллеров. Предоставляет 0,5 А на всех 8 каналах при относительно небольших габаритах.
TIDA-00319 Высокоскоростной цифровой модуль вывода для программируемых логических контроллеров (ПЛК).
TIDA-00766 Дифференциальный высокоскоростной цифровой модуль вывода, оснащенный интерфейсом RS-485. Основная ниша применения — управление шаговыми двигателями.

Интерфейсы контроллера

У любого контроллера есть разные интерфейсы связи, которые определяют, с какими устройствами он может общаться. Интерфейсы связи обычно двухсторонние, то есть, контроллер может передавать на них информацию и получать информацию о состоянии.

Интерфейс Ethernet — это подключение к компьютерной сети и интернету для управления с мобильного приложения или общения с другими контроллерами. Аналогично интерфейс Wi-Fi.

Интерфейс RS-485 Modbus — самый распространённый для связи с разной техникой. Это кондиционеры, вентмашины, различные датчики и исполнительные устройства, модули расширения и много чего ещё.

RS-232 это интерфейс с маленькой дальностью линии. Обычно это, например, GSM модемы.

Что такое Modbus и RS-48, максимально просто.

KNX — интерфейс связи с шиной KNX, на которой может находиться очень много устройств всех видов.

Получаем такую сводную картинку по входам и выходам контроллера:

Интерфейсы контроллера

Ещё у любого контроллера есть разные интерфейсы связи, которые определяют, с какими ещё устройствами он может общаться. Интерфейсы связи обычно двухсторонние, то есть, контроллер может передавать на них информацию и получать информацию о состоянии.

Интерфейс Ethernet — это подключение к компьютерной сети и интернету для управления с мобильного приложения или общения с другими контроллерами.

Интерфейс RS-485 Modbus — самый распространённый для связи с разной техникой. Это кондиционеры, вентмашины, различные датчики и исполнительные устройства, модули расширения и много чего ещё.

RS-232 это интерфейс с маленькой дальностью линии. Обычно это, например, GSM модемы.

KNX — интерфейс связи с шиной KNX, на которой может находиться очень много устройств всех видов.

Получаем такую сводную картинку по входам и выходам контроллера:

Отличие дискретного сигнала от цифрового

Про Азбуку Морзе наверное слышали все. Придумал художник Самуэль Морзе, другие новаторы усовершенствовали, а использовали все. Это способ передачи текста, где точками и тире закодированы буквы. Упрощенно, кодировка называется морзянкой. Её долго использовали на телеграфе и для передачи информации по радио. Кроме того, сигналить можно с помощью прожектора или фонарика.

Код морзянки зависит только от самого знака. А не от его продолжительности или громкости (силы). Как ни ударь ключом (моргни фонариком), воспринимаются только два варианта– точка и тире. Можно только увеличить скорость передачи. Ни громкость, ни продолжительность в расчёт ни принимаются. Главное, что бы сигнал дошёл.

Так же и цифровой сигнал

Важно закодировать данные с помощью 0 и 1. Получатель должен только разобрать, комбинацию нолей и единиц. Неважно с какой громкостью и какой продолжительностью будет каждый сигнал

Важно получить нолики и единички. Это суть цифровой технологии

Неважно с какой громкостью и какой продолжительностью будет каждый сигнал. Важно получить нолики и единички

Это суть цифровой технологии.

Дискретный сигнал получится если закодировать ещё громкость (яркость) и продолжительность каждой точки и тире, или 0 и 1. В этом случае вариантов кодировки больше, но и путаницы тоже. Громкость и продолжительность можно не разобрать. В этом и разница между цифровым и дискретным сигналами. Цифровой генерируется и воспринимается однозначно, дискретный с вариациями.

Аналоговый сигнал

Это природный тип сигналов окружает нас повсеместно и постоянно. Звук, изображение, тактильные ощущения, запах, вкус и команды мозга. Все возникающие, во Вселенной без участия человека, сигналы являются аналоговыми.

В электронике, электротехнике и системах связи аналоговую передачу данных применяют со времени изобретения электричества. Характерной особенностью является непрерывность и плавность изменения параметров. Графически сеанс аналоговой связи можно описать как непрерывную кривую, соответствующую величине электрического напряжения в определённый момент времени. Линия изменяется плавно, разрывы возникают только при обрыве связи. В природе и электронике аналоговые данные генерируются и распространяются непрерывно. Отсутствие непрерывного сигнала означает тишину или черный экран.

В непрерывных системах связи аналогом звука, изображения и любых других данных является электрические или электромагнитные импульсы. Например, громкость и тембр голоса передаются от микрофона на динамик посредством электрического сигнала. Громкость зависит от величины, а тембр от частоты напряжения. Поэтому при голосовой связи сначала напряжение становится аналогом звука, а потом звук аналогом напряжения. Таким же образом происходит передача любых данных в аналоговых системах связи.

Виды сигналов

Сигнал это изменение физической величины во времени и пространстве. По сути это коды для обмена данными в информационной и управленческой средах. Графически любой сигнал можно представить в виде функции. По линии на графике можно определить тип и характеристики сигнала. Аналоговый будет выглядеть как непрерывная кривая, цифровой как ломаная прямоугольная линия, скачущая от ноля до единицы. Все, что мы видим глазами и слышим ушами поступает в виде аналогового сигнала.

Аналоговый сигнал

Зрение, слух, вкус, запах и тактильные ощущения поступают нам в виде аналогового сигнала. Мозг командует органами и получает от них информацию в аналоговом виде. В природе вся информация передаётся только так.

В электронике аналоговый сигнал основан на передаче электричества. Определённым величинам напряжения соответствуют частота и амплитуда звука, цвет и яркость света изображения и так далее. То есть цвет, звук или информация являются аналогом электрического напряжения.

При этом неважно идёт сигнал по проводам или радио. Передатчик непрерывно отправляет, а приёмник обрабатывает аналоговый вид информации. Принимая непрерывный электрический сигнал по проводам или радиосигнал через эфир приёмник преобразует напряжение в соответствующий звук или цвет

Изображение появляется на экране или звук транслируется через динамик

Принимая непрерывный электрический сигнал по проводам или радиосигнал через эфир приёмник преобразует напряжение в соответствующий звук или цвет. Изображение появляется на экране или звук транслируется через динамик.

Дискретный сигнал

Вся суть кроется в названии. Дискретный от латинского discretus, что означает прерывистый (разделённый). Можно сказать, что дискретный повторяет амплитуду аналогового, но плавная кривая превращается в ступенчатую. Изменяясь либо во времени, оставаясь непрерывной по величине, или по уровню, не прерываясь по времени.

Так, в определенный период времени (например миллисекунду или секунду) дискретный сигнал будет какой-то установленной величины. По окончании этого времени он резко изменится в большую или меньшую сторону и останется таким ещё миллисекунду или секунду. И так беспрерывно. Поэтому дискретный это преобразованный аналоговый. То есть полпути до цифрового.

Цифровой сигнал

После дискретного следующим шагом преобразования аналогового стал цифровой сигнал. Главная особенность – либо он есть, или его нет. Вся информация преобразуется в сигналы ограниченные по времени и по величине. Сигналы цифровой технологии передачи данных кодируются нолем и единицей в разных вариантах. А основой является бит, принимающий одно из этих значений. Бит от английского binarydigit или двоичный разряд.

Но один бит имеет ограниченную возможность для передачи информации, поэтому их объединили в блоки. Чем больше битов в одном блоке, тем больше информации он несёт. В цифровых технологиях используют биты объединенные в блоки кратные 8. Восьмибитовый блок назвали байтом. Один байт небольшая величина, но уже может хранить зашифрованную информацию о всех буквах алфавита. Однако при добавлении всего одного бита число комбинаций ноля и единицы удваивается. И если 8 битов делает возможным 256 вариантов кодировки, то 16 уже 65536. А килобайт или 1024 байт и вовсе немаленькая величина.

В большом количестве объединённых байтов хранится много информации, чем больше комбинаций 1 и 0 тем больше закодировано. Поэтому в 5 – 10 МБ (5000 – 10000 кБ) имеем данные музыкального трека хорошего качества. Идём дальше, и в 1000 МБ закодирован уже фильм.

Но так как вся окружающая людей информация аналоговая, то для её приведения в цифровой вид нужны усилия и какое-либо устройство. Для этих целей был создан DSP (digital signal processor) или ЦПОС (цифровой процессор обработки сигналов). Такой процессор есть в каждом цифровом устройстве. Первые появились еще в 70-е годы прошлого века. Методы и алгоритмы меняются и совершенствуются, но принцип остаётся постоянным – преобразование аналоговых данных в цифровые.

Обработка и передача цифрового сигнала зависит от характеристик процессора — разрядности и скорости. Чем они выше, тем качественней получится сигнал. Скорость указывается в миллионах инструкций в секунду (MIPS), и у хороших процессоров достигает нескольких десятков MIPS. Скорость определяет сколько единиц и нолей сможет устройство «запихнуть» в одну секунду и качественно передать непрерывную кривую аналогового сигнала. От этого зависит реалистичность картинки в телевизоре и звука из динамиков.

Выводы

В данной статье мы рассмотрели ключевые проектные требования для компонента цифрового входа промышленного модуля ввода-вывода. Рассмотрев ограничения более старых реализаций дискретного входа, мы можем сделать вывод, что комбинированное решение, использующее многоканальный цифровой вход и изолированную интегральную схему, предлагает лучшую гарантию интеграции, масштабируемости, надежности, целостности, безопасности и надежности, необходимую для обнаружения сигналов датчиков в современной промышленной среде. Помимо промышленной автоматизации и управления электроприводами, представленные здесь примеры решений также подходят для автоматизации зданий и робототехники.