Фарфор
Фарфор
Примеры применения
Высокотемпературные изоляторы.Корпус ртутной дуговой лампы от светолучевого осциллографа. Рама из алюминиевого сплава, чёрный корпус — карболит, фарфоровые бусы изолируют проводники, которыми подключается лампа. Лампа очень сильно нагревается во время работы. Кучка фарфоровых бус от различных нагревателей.Свечи зажигания от двигателя внутреннего сгорания. Центральный электрод изолирован фарфором. Ни один другой диэлектрик не способен выдержать длительное воздействие температуры, давления, горючего внутри камеры сгорания.Детали электроизделий.Держатели ламелей розетки, патрона изготовлены из фарфора. Чёрный корпус патронов — карболит.Мощные резисторы имеют основу из фарфоровой трубки. У зеленого резистора обмотка скрыта под эмалью.Изоляторы на столбах.Фарфоровые изоляторы линий электропередач. Между фарфоровым изолятором и стальным крюком втулка из полиэтилена, для защиты фарфора от трещин. Дисковая форма изоляторов позволяет воде стекать не образуя сплошного слоя, замыкающего проводник на опору.
Сферы применения электроизоляторов
Практически все сферы, в которых задействуется электропроводка, в том или ином виде применяют и диэлектрические средства. Базовым примером можно назвать кабели, которые получают несколько слоев изоляции – как электрической, так и механической. Приборостроение можно назвать второй по популярности сферой использования данной изоляции. От воздействия токов ограничивают как отдельные детали аппаратной части, так и технологические узлы в электротехнических машинах. В строительстве также востребованы средства изоляции от тока. Например, в прокладке домашней и уличной проводки тоже задействуются электроизоляционные материалы. Применение диэлектриков позволяет сохранить материалы, которые находятся рядом с токопроводящим контуром. В некоторых случаях подобная изоляция себя оправдывает и как средство понижения потерь в напряжении основной линии.
Зонная теория
Зонная теория твердых тел – это теория перемещения валентных электронов в потенциальном поле кристаллической решетки. Квантовая механика полагает, что свободные электроны могут обладать любой энергией, спектр которой непрерывен.
Электроны изолированных атомов имеют некоторую дискретную величину энергии. При объединении отдельных атомов в молекулы и образовании вещества происходит смещение электронных уровней атома. Таким образом, из энергетических уровней отдельных атомов в твёрдом теле образуются полосы зон энергетических уровней.
Верхняя заполненная зона, валентная, соответствует энергетическому уровню валентных электронов внешней оболочки. Ближайшая к ней, незаполненная, – зона проводимости. Взаимным расположением обеих зон определяются процессы, происходящие в твердом теле, и классифицируются материалы по группам: проводники, полупроводники, диэлектрики.
Зонная классификация
В проводниках зона проводимости и валентная зона совмещены. Образовавшаяся зона перекрытия позволяет электрону свободно перемещаться при получении даже небольшой энергии.
В полупроводниках зоны не перекрываются. Расстояние между ними, называемое запрещенной зоной, – менее 2.0 эВ. При нулевой температуре в зоне проводимости отсутствуют электроны, а валентная зона ими заполнена. При возрастании температуры часть электронов забрасывается в зону проводимости за счет теплового движения. Полупроводник становится электропроводящим.
В диэлектриках зоны так же, как и у полупроводников, не перекрываются. Величина запрещенной зоны здесь – более 2.0 эВ. Для того чтобы перевести электроны из зоны валентности в зону проводимости, необходимо значительно повысить температуру. При невысоких градусах электрический ток не проводится.
Характеристики электроизоляторов
Одной из главных характеристик диэлектриков является поверхностное сопротивление. Это сопротивление, которое возникает в момент прохождения тока по поверхности материала. Следующей по значимости характеристикой можно назвать диэлектрическую проницаемость. Как уже говорилось, проницаемость напрямую связана с пробиваемостью целевого материала. И отдельного внимания заслуживают физико-химические характеристики. В их числе отмечают водопоглощаемость, вязкость и кислотность. Водопоглощаемость указывает на степень пористости материала и присутствие в нем водорастворимых элементов. Чем выше это значение, тем выше эффективность материала как диэлектрика
В свою очередь, вязкость характеризуется текучестью, что важно для определения взаимодействия материала с жидкостными или расплавленными диэлектриками. Кислотным числом обычно характеризуются жидкие диэлектрики
Например, основные особенности электроизоляционных материалов сводятся к способности нейтрализовать свободные кислоты, содержащиеся в 1 г материала. Присутствие свободных кислот понижает электроизоляционные качества электроизоляторов.
§ 5. Проводники и диэлектрики в электрическом поле
Как нам уже известно, проводник представляет собой тело, которое содержит большое число свободных электронов, заряды которых компенсируются положительными зарядами ядер атомов. Если металлический проводник поместить в электрическое поле (рис. 12), то под влиянием сил поля свободные электроны проводника придут в движение в сторону, противоположную направлению сил поля. В результате этого на одной стороне проводника возникает избыточный отрицательный заряд, а на другой стороне проводника — избыточный положительный заряд.
Рис. 12. Проводник в электрическом поле
Разделение зарядов в проводнике под влиянием внешнего электрического поля называется электризацией через влияние, или электростатической индукцией, а заряды на проводнике — индуцированными зарядами.
Индуцированные заряды проводника создают добавочное электрическое поле, направление которого противоположно внешнему полю.
Результирующее электрическое поле внутри проводника уменьшается, а вместе с ним уменьшаются силы, действующие на перераспределение зарядов. Движение зарядов в проводнике прекратится, когда напряженность поля, вызванного индуцированными зарядами проводника εп, станет равной напряженности внешнего поля εвн, а результирующая напряженность поля внутри проводника будет равна нулю.
Как было указано выше, диэлектрик отличается от проводника отсутствием свободных электронов (точнее, весьма малым количеством свободных электронов). Электроны атомов диэлектрика прочно связаны с ядром атома.
Диэлектрик, внесенный в электрическое поле, так же как и проводник, электризуется через влияние. Однако между электризацией проводника и диэлектрика имеется существенная разница. Если в проводнике под влиянием сил электрического поля свободные электроны передвигаются по всему объему проводника, то в диэлектрике свободного перемещения электрических зарядов произойти не может. Но в пределах каждой молекулы диэлектрика возникает смещение положительного заряда вдоль направления электрического поля и отрицательного заряда в обратном направлении. В результате на поверхности диэлектрика возникнут электрические заряды.
Рассматриваемое явление называется поляризацией диэлектрика.
Различают диэлектрики двух классов. У диэлектриков первого класса молекула в нейтральном состоянии имеет положительный и отрицательный заряды, настолько близко расположенные один к другому, что действие их взаимно компенсируется. Под влиянием электрического поля положительные и отрицательные заряды в пределах молекулы несколько смещаются один относительно другого, образуя диполь* (рис. 13).
* ()
Рис. 13. Электрические заряды молекул диэлектрика: а — без внешнего поля, б — при наличии поля
У диэлектриков второго класса молекулы и в отсутствие электрического поля образуют диполи. Такие диэлектрики называются полярными. К ним относятся вода, аммиак, эфир, ацетон и т. д. У таких диэлектриков при отсутствии электрического поля диполи в пространстве расположены хаотически, и вследствие этого результирующее электрическое поле вокруг полярного диэлектрика равно нулю. Под действием внешнего электрического поля молекулы (а стало быть, и диполи) стремятся повернуться так, чтобы их оси совпали с направлением внешнего поля. С устранением электрического поля поляризация диэлектрика исчезает. Таким образом, поляризация представляет собой упругое смещение электрических зарядов в веществе диэлектрика.
При некоторой определенной величине напряженности электрического поля смещение зарядов достигает предельной величины, после чего происходит разрушение — пробой диэлектрика, в результате которого диэлектрик теряет свои изолирующие свойства и становится токопроводящим.
Напряженность электрического поля, при которой наступает пробой диэлектрика, называется пробивной напряженностью εпр. Напряженность поля, допускаемая при работе диэлектрика εдоп, должна быть меньше пробивной напряженности. Отношение
называется запасом прочности.
Приведем значения пробивной напряженности (в кв/мм) для некоторых диэлектриков:
Конденсаторы
Электрическая изоляция является важным условием полноценной работоспособности конденсаторов. В некоторых случая сам конденсатор выступает как диэлектрик в составе сложной электротехнической цепи. Такие приборы имеют разное применение, в том числе выделяется нейтрализация индукционных эффектов в линиях с переменным током, накопление заряда, а также получение токовых импульсов для всевозможных приложений. Для использования конденсатора в качестве изоляционной точки необходимо иметь представление о требуемой емкости. В приборах она рассчитывается исходя из характеристик системы или посредством вычисления размера заряда на обкладке. В самой конструкции для обеспечения защитной функции могут применяться электроизоляционные материалы в виде лаков и масел. В зависимости от типа конденсатора определяется и набор вторичных функций – например, учитывается горючесть, влагостойкость, износостойкость и т.д.
Характеристики и физические свойства материалов
Параметры проводников определяют область их применения. Основные физические характеристики:
- удельное электрическое сопротивление — характеризует способность вещества препятствовать прохождению электрического тока;
- температурный коэффициент сопротивления — величина, характеризующая изменение показателя в зависимости от температуры;
- теплопроводность — количество тепла, проходящее в единицу времени через слой материала;
- контактная разность потенциалов — происходит при соприкосновении двух разнородных металлов, применяется в термопарах для измерения температуры;
- временное сопротивление разрыву и относительное удлинение при растяжении — зависит от вида металла.
При охлаждении до критических температур удельное сопротивление проводника стремится к нулю. Это явление называется сверхпроводимостью.
Свойства, характеризующие проводник:
- электрические — сопротивление и электропроводимость;
- химические — взаимодействие с окружающей средой, антикоррозийность, способность соединения при помощи сварки или пайки;
- физические — плотность, температура плавления.
Особенность диэлектриков — противостоять воздействию электротока. Физические свойства электроизоляционных материалов:
- диэлектрическая проницаемость — способность изоляторов поляризоваться в электрическом поле;
- удельное объёмное сопротивление;
- электрическая прочность;
- тангенс угла диэлектрических потерь.
Изоляционные материалы характеризуются по следующим параметрам:
- электрические — величина пробивного напряжения, электрическая прочность;
- физические — термостойкость;
- химические — растворимость в агрессивных средствах, влагостойкость.
Диэлектрик в постоянном электрическом поле
При помещении диэлектрика в постоянное электрическое поле заряды, из которых он построен, оказываются подверженными действию сил обусловливающих:
- смещение связанных зарядов (электроны, ионы),
- наложение на беспорядочное тепловое движение некоторого упорядоченного, состоящего в перемещении положительных зарядов в направлении поля, отрицательных зарядов — в обратном направлении.
Это упорядоченное перемещение может:
- а) привести к новому равновесному состоянию с несколько измененным распределением зарядов, по достижению которого упорядоченное движение прекращается (вращение дипольных молекул, перемещение полусвязанных ионов);
- б) продолжаться непрерывно, пока в нем существует в электрическое поле (свободные ионы и электроны).
Поляризации диэлектрика
Эти процессы будут развиваться с разной скоростью. Смещение связанных зарядов потребует для своего завершения лишь весьма малого времени; значительно медленнее протекают процессы. Смещение зарядов в электрическом поле, указанное, вызывает образование обратного поля, которое ослабляет приложенное внешнее поле. Это явление носит название поляризации диэлектрика. Мерой ослабления поля внутри него служит электрическая проницаемость (постоянная). Поскольку процесс поляризации не протекает мгновенно, а требует для завершения некоторого конечного промежутка времени, постольку связанные с явлением поляризации величины, в частности диэлектрическая проницаемость, не являются константами, а переменными величинами, зависящими от времени. При повышении температуры увеличивается интенсивность теплового движения, и переход в упорядоченное состояние затрудняется. Вследствие этого при наличии процессов, на поляризацию диэлектрика и его диэлектрическую проницаемость должна влиять и температуpa, причем при повышении температуры диэлектрическая проницаемость должна убывать.
Использование
При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов.
Диэлектрики используются не только как изоляционные материалы.
Пассивные свойства диэлектриков
Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных ёмкостей. Если материал используется в качестве диэлектрика конденсатора определённой ёмкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость.
Активные свойства диэлектриков
Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, электреты и др.
> См. также
- Трекингостойкость
- Материаловедение
- Кондуктометрия
Плоский диэлектрик
Почему-то многие иногда называют диэлектрик внутри плоского конденсатора. Быть может, так его называть просто удобнее. На самом деле, плоский конденсатор – это очень интересное устройство, поэтому поговорим о нем и о его диэлектрике (плоском диэлектрике раз уж на то пошло).
Раз уж мы говорим о конденсаторе, то давайте сразу же научимся определять его емкость (или же емкость диэлектрика). Для этого воспользуемся этой прекрасной формулой:
Давайте поймем, что здесь означает каждая из букв. S – это, очевидно, площадь обкладок данного плоского конденсатора. Буква d обозначает расстояние между обкладками, а остальные две переменные – это диэлектрическая проницаемость диэлектрика (плоского диэлектрика) и электрическая постоянная (если кто-то из вас подзабыл, 8,854 пФ/м)
Странно, но сейчас плоские конденсаторы встречаются очень редко. Возможно, это связано с пленочными технологии, которые настолько микроскопически, что делать их довольно сложно и дорого.
Почему плоский с конденсатор с диэлектриком не могут друг без друга?
Ответ на этот вопрос не так уж сложен. Все дело в том, что от диэлектрика зависит самый важный и основной элемент в плоском конденсаторе – его емкость. Давайте поговорим о том, как это работает. Как мы знаем, аморфное вещество состоит из диполей, которые, в свою очередь, укреплены на своих местах и хаотично ориентированы.
Когда поле извне воздействует на это самое аморфное вещество, диполи разворачиваются вдоль силовых линий это внешнего поля. При этом, поле ослабевает, а заряд постепенно накапливается, пока поле не перестанет действовать. И так длится цикл за циклом. Именно поэтому плоский конденсатор с диэлектриком можно рассматривать только вместе.
Аморфные диэлектрики. Какие они?
Чем особенны аморфные диэлектрики? Главное, что отличает их от других – это довольно рыхлая структура, а значит очень много пустот внутри и большое пространство, где ионы могут находится в состоянии равновесия. При этом, при переходе от одного равновесного состояния до другого энергия, расходуемая ионом будет всегда разной. В некоторых переходах ион не будет полностью высвобождаться от сдерживающих его сил, поэтому можно его условно охарактеризовать как наполовину связанный этими силами.
Такие переходы будут тратить очень небольшое количество энергии, и перемещаться ион при таких переходах сможет лишь на очень небольшое расстояние. В результате теплового перемещения такие переходы внутри аморфных тел будут встречаться гораздо чаще, ведь они требуют гораздо меньше энергии, чем другие.
Однако, небольшое количество ионов, которые содержат в себе большие запасы энергии, смогут таки преодолевать связывающие их силы и будут перемещаться на сравнительно большие расстояния.
Аморфные диэлектрики
В аморфных диэлектриках с их более рыхлой структурой имеется значительно больше мест, в которых может находиться ион в равновесном состоянии. Затрата энергии при переходе из одного равновесного состояния в другое также будет различна. Будут существовать переходы, требующие меньшей затраты энергии, при которых ион не будет однако полностью освобождаться от связывающих его сил, а, оставаясь «полусвязанным», перемещаться лишь на небольшое расстояние. Эти переходы и будут в основном происходить в результате теплового движения. Некоторое значительно меньшее количество ионов, более богатых энергией, сможет полностью оторваться от связующих их сил. Эти ионы по аналогии со случаем кристаллической решетки можно условно назвать «свободными». Данная картина теплового движения соответствует твердому состоянию.
Переход от твердого к жидкому состоянию
Переход от твердого к жидкому состоянию происходит различно для кристаллических и для аморфных веществ. В первом случае мы наблюдаем резкую t°пл T8, причем вязкость жидкости уже при температуре Тs мала. В случае аморфных диэлектриков t°пл не наблюдается, а переход из одного состояния в другое происходит в первом приближении непрерывно путем постепенного уменьшения вязкости. Более детальное изучение явления перехода из твердого в жидкое состояние показывает однако, что существует некоторая характерная для данного вещества температуpa Тg, при которой вязкость испытывает резкий скачок и вещество, оставаясь весьма вязким, начинает течь.
Ниже температуры Тg вещество следует считать твердым, выше — жидкостью. При температуpax, несколько превышающих Тg, аморфный диэлектрик сохраняет ряд свойств, характерных для твердого состояния. Молекулы диэлектрика остаются еще частично упруго связанными. Чем выше температура, тем слабее эти упругие связи; при температурах, значительно превосходящих Тg, можно в первом приближении считать, что молекулы в жидкости перемещаются свободно. При температуpax, близких к началу размягчения, перемещение молекул хотя уже и является принципиально возможным, но сильно затруднено. Внешне это сказывается в том, что вязкость такой жидкости еще очень велика. При повышении температуры перемещение молекул встречает меньше препятствия; параллельно убывает и вязкость.
За меру того, в какой степени молекулы «свободны» в своих перемещениях, мы можем поэтому выбрать вязкость жидкости. Тепловое движение молекул в жидкостях заключается:
- в колебании около положения равновесии, когда они связаны в комплексы,
- в поступательных и вращательных перемещениях когда они свободны.
При плавлении кристаллического диэлектрика, имеющих ионную решетку (например солей), получается как правило проводящая жидкость, которая диэлектриком считаться не может. В случае кристаллов с атомной и молекулярной решеткой плавление приводит в диэлектрическим жидкостям, имеющим малую вязкость; перемещение молекул в этих жидкостях можно считать свободным.
Жидкости кроме нейтральных молекул всегда содержат некоторое количество ионов, получившихся как вследствие диссоциации молекул жидкости, так и вследствие диссоциации молекул примесей. В газообразном состоянии как поступательное, так и вращательное движение молекул ничем не ограничено.
Механические свойства диэлектриков
Прочность-способность материала противостоять внешним силам без разрушения. Свойства этого материала характеризуются значениями прочности на растяжение (пр), сжатие (ПС) и изгиб (ПИ), чаще всего выраженными в кгс/см2 или единицах Си-ПА;1 кгс / см2 ″ 1 МПа: пр=ПП/л;= = Пжфо;=1,5;в-ширина; Н-высота бруска. П
В металлах значения PR, PS и PI находятся в одинаковом порядке, поэтому механическая прочность обычно характеризуется только пределом прочности при растяжении, а диэлектрическая (неорганическое стекло, керамика, пластик и др.) запахи) переменного тока, как правило, или и ОИ (например, кварцевые стекла ПС-2,103 и ПР-50мпа, поэтому применяется их механическая прочность (МПа). значения механической прочности сильно зависит от направления приложенной нагрузки.
Механическая прочность диэлектрика зависит от температуры, и ее рост, как правило, уменьшается. Многие диэлектрики обладают пластичностью-способностью необратимо деформироваться без разрушения под действием внешних сил. Пластичность возрастает с повышением температуры.
Некоторые материалы (например, PTFE) могут деформироваться при длительном воздействии небольших механических нагрузок; это явление называется холодным потоком. Для некоторых диэлектриков твердость и эластичность являются важными характеристиками. Твердость — это способность материала противостоять проникновению более твердых предметов и определяется в соответствии с природой диэлектрика различными методами(по Бринеллю, Роквеллу, Виккерсу, Полди, Шору и микротвердости).
Упруго-эластичный) — свойство материала, проявляющего упругую (обратимую) деформацию без разрушения под действием малых сил. Эластичность является обратной стороной пластичности. 160 при динамической нагрузке материал характеризуется своей удельной вязкостью (ударный изгиб). Вязкость-способность материала выдерживать ударные нагрузки. Это свойство является обратным хрупкости, поэтому пуд фактически указывает на степень хрупкости материала. Величину фактического пуд можно измерить кгс см/см2(или кгс/см) или единицами Си-Дж/м2 (1 кгс см/см2 1 кДж/м2). Высокий UD имеет PE UD превышает 100kJ / m2, micalexa od=2-5kJ / m2. При знакопеременных нагрузках прочность материала характеризуется усталостной прочностью—
Для перемещения контактных материалов, долговечность является важной характеристикой. Механические свойства твердых материалов более подробно описаны в разделе «механические свойства металлов» (см
главу 10.2.1). Важными свойствами жидких диэлектриков (изоляционных масел, лаков, наполнителей и пропиточных составов и др.)является вязкость. Существует динамическая вязкость, кинематическая и условная.
Динамическая вязкость t / — это внутренний коэффициент трения жидкости. Кинематическая вязкость V равна отношению динамической вязкости к плотности г жидкости: v=i\ / d. (6.2)в СИ Кинематическая вязкость измеряется в ПА с, а динамическая-в м2 / С. Условная вязкость измеряется с помощью шарикового или капиллярного вискозиметра, воронки ниилка, вискозиметра Энглера и др. Соотношение между кинематической вязкостью v и условной вязкостью равно°e и выглядит следующим образом: v=0.073°e-0.063/°E. (6.3) вязкость сильно зависит от температуры и уменьшается с ее увеличением.
Учебник по материаловедению
Влажностные свойства диэлектриков | Электрический пробой |
Химические свойства диэлектриков | Профилактическое испытание изоляции повышенным напряжением |
Изолента
Изоляционная лента или изолента знакома пожалуй каждому. По внешнему виду это узкий (не всегда) рулон цветного или чёрного материала. Внутренняя сторона ленты покрыта клеящим составом для приклеивания. Используется лента накручиванием на место изоляции перекрывающими витками.
По материалу изготовления изоляционная лента бывает:
- Поливинилхлоридной (ПВХ)
- Хлопчатобумажной (ХБ)
Первый тип изоленты представлен широким цветовым спектром. ХБ изолента чёрного цвета с характерным запахом резины или битума.
Изолента ПВХ
ПВХ изоленту изготавливают из винила, нанося на одну сторону ленты клеящий состав. Ширина изоленты ПВХ от 15 до 50 мм. Достоинства изоленты ПВХ в высокой эластичности. Недостатки в изменении своих свойств при снижении и повышении температуры. ПВХ изоленты отличные, однако дальше низких напряжения её применение не распространяется.
Изолента ХБ
ХБ изолента характерно чёрного цвета в рулонах шириной 15- 50 мм. Изготавливается из хлопчатобумажных лент из пропиткой в резине и нанесением клеящего слоя на одну сторону. Сочетание хлопка (возможно стеклоткани) делают ХБ ленту устойчиво к колебаниям температур и её применение распространяется на сети напряжением свыше 1000 В.