Явление резонанса

Примеры применения на практике

Классическим примером применения резонанса колебательных контуров является настройка радиоприёмника на частоту соответствующей радиостанции. В качестве рабочего элемента настроечного узла используется конденсатор с регулируемой ёмкостью. Вращение ручки настройки изменяет ёмкость конденсатора, а значит и резонансную частоту контура.

В момент совпадения резонансной частоты с рабочей частотой какой-либо радиостанции возникает резонанс напряжений, в результате которого резко возрастает амплитуда колебаний принятой радиоприёмником частоты. Специальные фильтры отделяют эти колебания от несущих радиочастот, а усилители усиливают полученные сигналы. В динамике появляются звуки, генерируемые передатчиком радиостанции.

Колебательные контуры, построенные на принципе последовательного соединения LC-элементов, применяются в цепях питания высокоомных нагрузок, потребляющих токи повышенного напряжения. Такие же устройства применяют в полосовых фильтрах.

Последовательный резонанс применяют при пониженных напряжениях сети. В этом случае используют реактивную энергию обмоток трансформатора, соединённых последовательно.

Конденсаторы и различные катушки индуктивности (рис. 5) входят в конструкцию практически всех аналоговых устройств. Они используются для настройки фильтров или для управления токами в отдельных узлах.

Катушки индуктивности

Важно знать, что резонансные контуры не увеличивают количество электрической энергии в цепях. Они лишь могут повышать напряжения, иногда до опасных значений

Постоянный ток не причиной резонансных явлений.

Источник

Применение на практике

Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простыми словами, а схеме приемника установлены катушка и конденсатор, подключенные к антенне. С помощью изменения индуктивности (например, перемещая сердечник) или величины емкости (например, воздушным переменным конденсатором) вы настраиваете резонансную частоту. В результате чего напряжение на катушке повышается и приемник ловит определенную радиоволну.

Вред эти явления могут на нести в электротехнике, например, на кабельных линиях. Кабель представляет собой распределенную по длине индуктивность и емкость, если на длинную линию подать напряжение в режиме холостого хода (когда на противоположном от источника питания конце кабеля нагрузка не подключена). Поэтому есть опасность того, что произойдет пробой изоляции, во избежание этого подключается нагрузочный балласт. Также аналогичная ситуация может привести к выходу из строя электронных компонентов, измерительных приборов и другого электрооборудования – это опасные последствия возникновения этого явления.

Резонанс в распределённых колебательных системах, нелинейные процессы

Разделение автоматических выключателей по время токовым характеристикам

Общим понятием для всех явлений данной категории можно назвать действенную связь с окружающей средой. В механических системах влияние на амплитуду фазовых характеристик процесса оказывает определенное положение в пространстве. В колебательном контуре радиоприемника, кроме собственного затухания, приходится учитывать реальный электромагнитный фон. При определенных условиях с высоким значением добротности допустимо образование стоячих волн.

Если пружина создана с различным распределением плотности витков, типовые формулы не действуют. Стандартные расчеты подразумевают равномерные упругость и деформации каждой части. Для уточнения нелинейности применяют корректирующие коэффициенты, сложные многоэтапные схемы вычислений.

Аналогичные особенности учитывают при использовании диодов или других радиотехнических компонентов с переменными амплитудно-частотными характеристиками. Если катушку индуктивности намотать на сердечнике из ферромагнитного материала, также придется учитывать нелинейность выходных параметров. Ее не получится описать элементарным уравнением закона Ома.

В нелинейных контурах при определенном спектральном распределении внешних воздействий присутствуют гармонические колебания. Кроме совпадения частот, значение имеет их амплитуда. В зависимости от настроек, они способны выполнять полезные и вредные функции. Определенные условия вызывают искажение формы базового сигнала.

Польза и вред механических резонансов

При строительстве заданий и инженерных сооружений обязательное условие – проверка конструкций на резонансные явления. При этом изучаются все источники колебаний, как природных (ветра, прибоя), так и искусственных (радары, передающие антенны).

Одним из примеров вреда резонанса можно назвать разрушение в 1940 году висячего моста в штате Вашингтон, США. Низкая высота опор Такомского сооружения вызывала непроизвольные колебания при воздействии ветра. В результате того, что эти колебания однажды вступили в резонанс с порывами движения воздушных масс, мост разрушился. Хотя ещё в ходе строительства было отмечено появление этого явления, но ему не придали значения.

Явление усиления амплитуды при совпадении частот при землетрясении вызывает разрушения и огромные волны цунами.

У резонанса есть плюсы:

  • резонаторы на струнных инструментах усиливают гармонику, выполняя усиления стоячих волн;
  • колебательный контур радиоприёмных устройств, при настройке на передающую станцию, усиливает принятый сигнал по амплитуде;
  • разрушающие особенности этого процесса для бетона используются при работе перфоратора, во время вибрации при сверлении.

Интересно. Благодаря рассматриваемому явлению, современная медицина приобрела такой незаменимый прибор, как МРТ – магниторезонансная томография. При помощи МРТ производят полное обследование организма человека. Магниторезонансная терапия позволяет лечить болезни опорно-двигательного аппарата без хирургического вмешательства.

Цунами – результат резонанса частоты морских волн с частотой подземных толчков

Резонанс в линейных колебательных системах с несколькими степенями свободы

Такие расчеты понадобятся при конструировании двух последовательных контуров с индуктивной связью. В этом случае переменные колебательные процессы оказывают взаимное влияние. Фактически речь идет о распределенной системе.

Кроме схемотехники, в подобных ситуациях отдельно изучают коэффициент связи (Кс). При работе с трансформатором его вычисляют делением напряжений на первичной (вторичной) катушке, соответственно. Следует учесть реактивные характеристики, которые преобладают в рабочем диапазоне частот.

Узнав, что такое резонанс напряжений и токов, можно самостоятельно реализовать различные проекты. Тщательная предварительная подготовка необходима для создания схемы с хорошими эксплуатационными параметрами. Начинают с чертежей и расчетной части. Теоретические изыскания дополняют изготовлением макета и практическими испытаниями. Ускоряют подготовку конструкторской документации, а также выполняют эксперименты с применением программного обеспечения. В наиболее сложных ситуациях обращаются к опытным специалистам.

Последовательное соединение

Катушка индуктивности и последовательно включенный в цепь конденсатор вместе особенным образом воздействуют на генератор, от которого запитана цепь. Также они влияют на фазовые соотношения напряжения и тока:

  1. Первый элемент сдвигает фазу, при этом напряжение начинает обгонять ток примерно на четверть периода.
  2. Второй элемент действует иначе. Он заставляет ток обгонять напряжение также на одну четвертую часть периода фазы.

Индуктивное сопротивление действует на смещение фаз, из-за чего его можно считать противоположным работе емкостного сопротивления. В результате итоговый сдвиг фаз между напряжением и током в цепи зависит от суммарного действия индуктивного и емкостного сопротивлений, а также соотношения между ними. От этого тоже зависит характер цепи.

Общее реактивное сопротивление определить просто. Необходимо сложить два показателя сопротивления:

  1. Индуктивное от катушки.
  2. Емкостное от конденсатора.

Из-за того, что они оказывают противоположное воздействие, одному из них присваивается отрицательный знак (обычно ёмкостному сопротивлению конденсатора). Тогда общее реактивное сопротивление можно найти так: из показателя катушки вычесть конденсатор. Если общее напряжение разделить на найденный параметр, то по закону Ома получится сила тока. Эту формулу можно легко изменить, переведя на напряжение. Оно будет равно произведению силы тока и разности двух сопротивлений (индуктивное берется с катушки, а емкостное — с конденсатора).

Если раскрыть скобку, то первое значение отразит действительный показатель части общего напряжения, которая старается преодолеть сопротивление. Второе — слагающая всего напряжения, которая пытается преодолеть емкостный параметр. Так, общее напряжение можно рассматривать как сумму этих слагаемых.

Для определения этого значения нужно вычислить квадратный корень из суммы двух частей:

  1. Общее активное сопротивление, возведенное в квадрат.
  2. Квадрат разности индуктивного и емкостного сопротивлений, то есть общее реактивное.

https://youtube.com/watch?v=vp-uTZ_0FrQ

Принцип резонанса токов

Токовый резонанс наблюдается внутри электроцепи, обладающей параллельным катушечным, резисторным и конденсаторным подсоединением. Основной принцип работы стандартного резонанса токов не слишком сложен для понимания простого обывателя:

  • включение электропитания сопровождается накоплением заряда внутри конденсатора до номинальных показателей напряжения источника;
  • отключение питающего источника с последующим замыканием цепи в контур сопровождается процессом переноса разряда на катушечную часть прибора;
  • токовые показатели, проходящие по катушке, вызывают генерирование магнитного поля и создание электродвижущей силы самоиндукции, в направлении, встречном току;
  • максимальное значение токовых показателей достигается на стадии полного конденсаторного разряда;
  • весь объем накопленной энергетической емкости легко преобразуется в магнитное индукционное поле;
  • катушечная самоиндукция не провоцирует остановку заряженных частиц, а повторный этап зарядки с другим типом полярности обусловлен отсутствием конденсаторного противотока.

Резонанс в параллельной цепи (резонанс токов)

Итогом данного цикла является повторяющееся преобразование всего катушечного поля в конденсаторный заряд. Определение стандартной резонансной частоты осуществляется аналогично расчетам резонанса напряжения.

Присутствующая внутренняя активная составляющая R вызывает постепенное угасание колебательного процесса, чем и обуславливается токовый резонанс.

Резонанс: атомный, частичный и молекулярный

Атомный резонанс – это поглощение электромагнитных волн ядрами атома, которое происходит, когда изменяется вектор его момента движения. Особенно часто АР проявляется в атомах, которые помещают в сильное магнитное поле. При этом на них должно воздействовать небольшое электромагнитное поле, характеризующееся радиочастотным диапазоном.

График ядерного магнитного резонанса

В этом области существует и теория резонанса. Согласно ей, химические соединения имеют электронное строение, а распределение электронов в молекулах вещества есть комбинация или резонанс структуры с различным строением.

Важно! Это означает, что структура молекулы описывается не только одной возможной структурной формулой, сочетанием (резонансом) других структур. Теория резонанса позволяет путем химической терминологии и классических формул визуализировать построение мат. модели волновой функции какой-либо сложной молекулы

модели волновой функции какой-либо сложной молекулы.

Резонирование применяется в частотомере

Применение токового резонанса

Основная область активного применения широко востребованных резонансных токов сегодня представлена:

  • некоторыми видами фильтрующих систем, в которых току с определенными частотными параметрами оказываются значительные показатели сопротивления;
  • радиотехникой в виде приемников, выделяющих сигналы, предназначенные для конкретных точек радиостанций. Оказание значительного сопротивления току сопровождается снижением показателей контурного напряжения при максимальной частоте;
  • асинхронного типа двигателями, в особенности функционирующими в условиях неполной нагрузки;
  • установками высокоточной электрической сварки;
  • колебательными контурами внутри узлов генераторов электронного типа;
  • приборами, отличающимися высокочастотной закалкой;
  • снижением показателей генераторной нагрузки. При таких условиях в приемном трансформаторе с первичной обмоткой делается колебательный контур.

Схема цепи

Особенно часто колебательные контуры или токовые резонансы применяются в производстве современного промышленного индукционного котлового оборудования, что позволяет в значительной степени улучшить стартовые показатели коэффициента полезного действия.

Стандартные колебательные контуры, функционирующие в условиях режима токового резонанса, массово применяются в качестве одного из наиболее важных узлов в современных электронных генераторах.

Амплитуда резонанса

В КК при подаче переменного напряжения от внешнего источника наблюдаются два вида резонанса и резкое увеличение двух видов амплитуды: амплитуды тока и амплитуды напряжения.

Амплитуда тока

Амплитуда тока резко возрастает при резонансе напряжений в последовательном контуре (последовательный резонанс). Источник переменной ЭДС включён в цепь, где нагрузкой служат последовательно включённые элементы L и С.

В этом случае в цепь входят сопротивления: активное r и реактивное x, равное:

x = xL – xC.

Так как для внутренних колебаний xL и xC равны, то для тока, поступающего от генератора, при резонансе (когда частоты совпадают) эти значения тоже одинаковы. Поэтому x = 0. В итоге полное сопротивление цепи будет состоять только из небольшого активного сопротивления. Ток при этом получается максимальным.

Схема (а) и резонансные кривые (б) для резонанса напряжений

Амплитуда напряжения

Резонанс токов (параллельный резонанс) является условием резкого возрастания амплитуды напряжения. Источник ЭДС подключается вне контура и нагружен параллельно соединёнными элементами L и С. В этом случае на эффект резонанса влияет внутреннее сопротивление генератора. Амплитуда напряжения на контуре максимальна при малом отличии напряжения контура от напряжения генератора. Это возможно при малом Ri.

Внимание! Изменение частоты генератора меняет ток, а амплитуда напряжения на контуре не отстаёт по величине от напряжения на генераторе. Если, U = Е – I*Ri, где Е – ЭДС, I – ток, то при малом Ri U = Е. Схема (а) и резонансные кривые (б) для резонанса токов

Схема (а) и резонансные кривые (б) для резонанса токов

Формула для определения расчётной резонансной частоты для разных колебательных систем различается по входящим в неё параметрам. Несмотря на все различия, суть остаётся неизменной: эффект резонанса наступает тогда, когда частота внутренних колебаний системы и внешних воздействий становятся равны друг другу.

Применение резонансного явления

Резонанс в электрических цепях используют для фильтрации сигналов. Выбирают соответствующую схему обработки для ограничения необходимого диапазона либо расширения полосы пропускания.

С помощью последовательного контура можно повысить напряжение питания, если снабжающая организация не обеспечивает стабильность параметров сети. Такие неприятности встречаются при подключении потребителей на дачных участках и в коттеджных поселках, в сравнительно небольших населенных пунктах.

Недостаток ликвидируют конденсаторами, которые добавляют в электрическую цепь. Подобные решения помогают восстановить работоспособность дрели, станка, другого мощного оборудования. Обмотки соответствующего привода выполняют функции индуктивного компонента колебательного контура.

Параллельное подключение конденсаторов компенсирует потери, созданные реактивной мощностью. Этот вариант обеспечивает циркуляцию энергии между накопителем и подключенной обмоткой. Без такого дополнения часть энергии будет бесполезно потребляться сетью питания. Следует подчеркнуть, что счетчик в любом случае фиксирует потребление. Данная модернизация поможет сэкономить на оплате коммунальных услуг.

Резонансные явления способны чрезмерно увеличить силу тока или напряжение. Необходим точный расчет электрических цепей, чтобы предотвратить перегрев и повреждение проводов, короткие замыкания и другие аварийные ситуации.

ЦЕНТР КТ

  • Прайс-лист КТ
  • Дентальное КТ
  • Консультация специалиста КТ
  • КТ височных костей (среднее, внутреннее ухо, сосцевидный отросток)
  • КТ головного мозга
  • КТ головного мозга + околоносовые пазухи
  • КТ носоглотки, околоносовых пазух
  • КТ одного из сегментов конечностей
  • КТ одного из суставов
  • КТ орбит, турецкого седла
  • КТ органов брюшной полости + забрюшинного пространства + малого таза
  • КТ органов грудной + брюшной полостей + органов малого таза
  • КТ органов грудной полости (легкие, средостение, грудная клетка)
  • КТ сердца для подсчета кальция в коронарных сосудах (Са-scoring)
  • КТ сердца для подсчета кальция в коронарных сосудах (Са-scoring)
  • КТ тазобедренных суставов, костей таза
  • КТ челюстно-лицевой области
  • КТ шеи + органов средостения
  • КТ шеи, гортани
  • КТ эндопротеза тазобедренных суставов
  • КТ-ангиография
  • КТ-ангиография брюшной аорты и сосудов нижних конечностей
  • КТ-ангиография всей аорты
  • КТ-ангиография одной анатомической области (сосудов головного мозга, сосудов шеи, грудной аорты, брюшной аорты, сосудов почек)
  • КТ-ангиография сосудов верхних конечностей (с одной стороны)
  • КТ-ангиография сосудов головного мозга и шеи
  • КТ-ангиография сосудов одной области
  • КТ-ангиопульмонография
  • КТ-колонография + «Фортранс»
  • КТ-коронарография
  • КТ-коронарография + Са-scoring
  • КТ-энтерография
  • Поиск метастазов в костях
  • Спиральная КТ одного отдела позвоночника
  • Спиральная КТ поясничного отдела позвоночника + крестец

Резонанс: что, как и зачем

Все связи между явлениями устанавливаются исключительно путем разного рода простых и сложных резонансов — согласованных вибраций физических систем.

Н. Тесла

Резонанс (от лат. resono — «звучу в ответ, откликаюсь») — это:1) резкое увеличение:

  • амплитуды механических (звуковых) колебаний под влиянием внешних воздействий, когда частота собственных колебаний системы совпадает с частотой колебаний внешнего воздействия, — механический (акустический) резонанс;
  • силы тока в контуре при приближении частоты внешнего воздействия к собственной частоте колебаний контура, — электрический резонанс;
  • числа поглощаемых системой фотонов, вызывающих квантовые переходы на более высокий энергетический уровень, при совпадении энергии фотона с разностью энергий двух энергетических уровней, — квантовый резонанс;

Суть явления резонанса: многократное усиление эффекта от воздействия на объект при совпадении частоты внешнего воздействия с собственной частотой объекта.

Резонанс в обычной жизни

В быту мы часто сталкиваемся с резонансом, даже не задумываясь о смысле явления. Он используется в:

  • радиопередатчиках и приемных устройствах;
  • микроволновых печах;
  • музыкальных инструментах.

В поле акустики при игре на гитаре в определенный момент струны начинают вибрирующие движения. Слышен звук при отсутствии непосредственного воздействия игрока. Энергия от поглощения колебаний сильно возрастает к моменту, когда толчки (воздействие) совпадают с естественными движениями.

Отклик распространен в природе и искусственных устройствах. Многие слышат звук, источником которого является удар твердого предмета (металл, стекло, дерево). Они вызываются колебаниями малой частоты.

Феномен залива Фанди

Между Нью-Брансуик и Новой Шотландией в Канаде на побережье Атлантического океана расположен залив, известный на весь мир самым сильным приливом. Перепад в отметках между уровнями в момент максимальных значений достигает 18 метров. За один цикл свыше ста миллиардов тонн воды проходит через центральный вход залива. Продолжительность одного периода отлива-прилива постоянна – около 6 часов 13 минут.

Уникальностью природное явление «обязано» природными характеристиками:

  • огромному количеству воды, проходящем через горловину залива;
  • неповторимым очертаниям берегов;
  • резонансному эффекту.

По сравнению со средней высотой прилива в океанах – 3 фута (около 1 м) гигантский размах поступательных движений водяной массы поражает. Физический смысл явления объясняется причинами:

  • жидкость в любом объеме имеет свой период «колебаний», она постоянно движется с одним ритмом;
  • частота движений полностью зависит от размеров резервуара – длины и глубины;
  • большие размеры залива обеспечивают постоянство внутренних колебаний воды;
  • цикл прилива (отлива) совпадает с внутренними колебаниями воды.

При начале прилива огромная водяная масса доходит до противоположного берега, затем движется в обратном направлении. Происходит совпадение момента отката воды и отлива. При этом волна получает дополнительное ускорение.

Для модели подойдет емкость длинной формы с водой, если ее раскачивать вдоль в одном ритме с движением жидкости. Спустя несколько колебаний вода будет переливаться через край. В заливе Фанди система более уравновешенная, и поэтому перелива нет.

Резонанс напряжений

Резонанс в цепях синусоидального тока

При подключении колебательного контура, состоящего из катушки индуктивности и конденсатора, к источнику энергии (источнику синусоидальной ЭДС или синусоидального тока) могут возникнуть резонансные явления. Возможны два основных типа резонанса: при последовательном соединении катушки и конденсатора — резонанс напряжений, при их параллельном соединении — резонанс токов.

Резонанс напряжений.

Резонанс напряжений возможен в неразветвленном участке цепи, схема замещения которого содержит индуктивный L, емкостный С, и резистивный Rэлементы, т.е. в последовательном колебательном контуре (рис. 2.43).

По закону Ома комплексное значение тока в контуре

— угол сдвига фаз между напряжением и током, т. е. аргумент комплексного сопротивления

— действующее значение тока.

Режим работы неразветвленного участка цепи, содержащей индуктивный, емкостный и резистивный элементы последовательного контура, при котором ее ток и напряжение совпадают по фазе, т. е.

φi = φu , (2.77)

называется резонансом напряжений.

Это название отражает равенство действующих значений напряжений на емкостном и индуктивном элементах при противоположных фазах, что видно из векторной диаграммы на рис. 2.44, на которой начальная фаза тока выбрана равной нулю.

Из соотношения (2.766) и условия (2.77) следует, что угловая частота, при которой наблюдается резонанс напряжений, определяется равенством

и называется резонансной.

При резонансе напряжений ток в цепи достигает наибольшего значения Iрез = U/R, а напряжения на емкостном и индуктивном элементах

ULрeз = UСрeз = ωрез LIрез = UωpeзL/R

могут (и во много раз) превысить напряжение питания, если

ωpeзL = 1/ωpeзС = √L/C > R.

Величина ρ = ωpeзL = 1/ωpeзС = √L/C имеет размерность сопротивления и называется характеристическим сопротивлениемколебательного контура. Отношение напряжения на индуктивном или емкостном элементе при резонансе к напряжению U на выводах контура, равное отношению характеристического сопротивления к сопротивлению резистивного элемента, определяет резонансные свойства колебательного контура и называется добротностью контура

Если при резонансе увеличить в одинаковое число раз пиндуктивное и емкостное сопротивления, т. е. выбрать

Х’L = nXLpeз и Х’C = пХСрез,

то ток в цепи не изменится, а напряжения на индуктивном и емкостном элементах увеличатся в n раз (рис. 2.44, б): UL = nULpeз и U’C = пUCрезСледовательно, в принципе можно безгранично увеличивать напряжения на индуктивном и емкостном элементах при том же токе: I = Iрез = U/R.

Физическая причина возникновения повышенных напряжений — это колебания значительной энергии, запасаемой попеременно в электрическом поле емкостного и в магнитном поле индуктивного элементов.

При резонансе напряжений малые количества энергии, поступающей от источника и компенсирующей потери энергии в активном сопротивлении, достаточны для поддержания незатухающих колебаний в системе относительно больших количеств энергии магнитного и электрического полей.

В аппаратуре связи, автоматики и т. д. большое практическое значение имеют зависимости токов и напряжений от частоты для цепей, в которых возможен резонанс. Эти зависимости называются резонансными кривыми.

Выражение (2.76в) показывает, что ток в цепи зависит от угловой частоты I(ω) и достигает наибольшего значения при резонансе, т.е. при ω = ωpeз и ωpeз L = 1/( ωpeз С) (рис. 2.45).

Полное сопротивление идеального последовательного контура (R = 0) при резонансе равно нулю (короткое замыкание для источника питания).

Наибольшие значения напряжений на индуктивном и емкостном элементах получаются при угловых частотах, несколько отличающихся от резонансной. Так, напряжение на емкостном элементе

Чем больше добротность колебательного контура Q, тем меньше отличаются угловые частоты ωC и ωL от резонансной угловой частоты и тем острее все три резонансные кривые I(ω), UC(ω) и UL(ω).

В электроэнергетических устройствах в большинстве случаев резонанс напряжений — явление нежелательное, так как при резонансе напряжения установок могут в несколько раз превышать их рабочие напряжения. Но, например, в радиотехнике, телефонии, автоматике резонанс напряжений часто применяется для настройки цепей на заданную частоту.

studopedia.ru

Положительные и отрицательные стороны резонанса

Увеличение колебаний в два раза и более, по сравнению с исходным допуском технического задания, способно привести к разрушению конструкции. Однако это же проявление в другой ситуации выполняет полезные функции. Плюсы и минусы резонанса удобно изучать на конкретных примерах.

Резонансный преобразователь

Для преобразования импульсного сигнала в синусоидальный можно применить представленный на рисунках инвертор. Принцип работы заключается в периодическом накоплении-возврате энергии с применением реактивных компонентов. При корректном выборе элементов колебательный контур выполняет функции фильтра. Трансформатор – это дополнительная индуктивность в цепи, поэтому основную катушку можно сделать меньше. Количеством витков обмоток устанавливают необходимое напряжение на выходе.

Определенный резон имеет создание системы отопления с помощью электроэнергии, созданной солнечными батареями. Эти «бесплатные» генераторы по мере совершенствования производственных технологий становятся дешевле. Эффективный индукционный нагреватель можно собрать самостоятельно. Некоторые схемы по КПД не уступают фабричным аналогам.

Нагреватель воды

Следующие примеры резонанса демонстрируют отрицательные стороны явления:

  • чрезмерное увеличение амплитуды колебаний элементов подвески транспортных средств;
  • вредный и неприятный звук, который формируется на резонансных частотах технологическим оборудованием;
  • возникновение помех в акустических, оптических и радио трактах.

Резонанс токов в параллельном колебательном контуре

Рассмотрим случай параллельного соединения колебательного контура с источником тока (рис. 1) и посмотрим, каково будет сопротивление контура для токов различных частот в этом случае. Если частота тока невелика (ниже резонансной), то почти весь ток пойдет по наиболее легкому для него пути — через индуктивную ветвь; сопротивление контура при низких частотах будет небольшим по величине и индуктивным по своему характеру.

Для токов высоких частот (выше резонансной) более легким путем будет путь через емкостную ветвь, и, следовательно, сопротивление контура будет также небольшим по величине, но емкостным по характеру.

При резонансной частоте, когда емкостное сопротивление равно индуктивному, путь для тока будет одинаково трудным через обе ветви. Мы знаем, что при параллельном соединении двух равных сопротивлений общее сопротивление равняется половине любого из них. Поэтому, казалось бы, что сопротивление контура при резонансе должно равняться половине одного из реактивных сопротивлений. Однако, не следует забывать, что мы имеет дело, с сопротивлениями, хотя и одинаковыми по величине, но имеющими принципиально различный характер. Это различие проявляется в том, что токи в индуктивной и емкостной ветвях контура сдвинуты по фазе друг относительно друга на 180°. Отсюда непосредственно следует, что в неразветвленной части цепи всегда протекает не суммарный, а разностный ток (рис. 1).

Рисунок 1. Токи при параллельном резонансе. В неразвлетвленной части цепи протекает не скммарный, а разностный ток.

Поэтому при резонансе, когда токи в емкостной и индуктивной ветвях равны между собой, ток в неразветвленной части цепи будет равен нулю, какое бы напряжение мы ни прилагали к контуру. При резонансе между точками АВ цепь будет казаться разорванной, т. е. сопротивление ее между этими точками будет бесконечно велико, а отнюдь не будет равным половине одного из реактивных сопротивлений. Практически бесконечно большого сопротивления контура при резонансе не бывает, так как из-за наличия активного сопротивления в контуре (сопротивление провода катушки) сдвиг фаз токов никогда не может быть равным точно 180°.

Однако активное сопротивление катушки обычно бывает много меньше ее индуктивного сопротивления, и поэтому сопротивление колебательного контура при резонансе может достигать очень больших величин.

Сопротивление колебательного контура при параллельном резонансе равно:

где L выражено в гн, С—в ф, RL—в ом.

Полное сопротивление колебательного контура при резонансе является чисто активным в силу того обстоятельства, что индуктивное и емкостное сопротивления взаимно компенсируются.

Кривые изменения полного сопротивления колебательного контура между точками АВ при изменении частоты тока приведены на рис. 2,б.

Рисунок 2. Резонанс токов. а) — схема и обозначения; б) — график полного сопротивления.

При параллельном резонансе токи ,в ветвях контура достигают наибольшей величины; поэтому параллельный резонанс называется резонансом токов.

Явление резонанса имеет огромнейшее значение в радиотехнике. На земном шаре имеется большое количество передающих радиостанций. Передачи всех этих радиостанций распространяются в эфипе и все одновременно принимаются приемной антенной. Нетрудно представить себе, каким получилось бы нагромождение друг на друга передач, если бы мы не могли выделить из этого хаоса только одну нужную нам. Вот тут-то на помощь приходит явление резонанса. Передающие радиостанции излучают в пространство электромагнитную энергию на различных частотах, мы же, настраивая контуры нашего приемника в резонанс с той или иной частотой, тем самым выбираем нужную нам передачу.

Похожие материалы:

  • Индуктивное сопротивление катушки
  • Катушка индуктивности в цепи переменного тока
  • Конденсатор в цепи переменного тока. Емкостное сопротивление конденсатора.
  • Активное сопротивление цепи переменного тока
  • Полное сопротивление цепи переменного тока
  • Явление резонанса
  • Закон Ома для переменного тока
  • Резонанс напряжений в последовательном колебательном контуре
  • Пульсирующий ток
  • Несинусоидальный ток

Польза и вред резонансов

Полезный результат понятен из примера с колоколом. Человек со средними физическими способностями способен создать перезвон, который слышен на очень большом расстоянии. Для аналогичной силы звука с применением электронной аппаратуры необходимо применить мощнейший усилитель и огромный динамик.

Для воспроизведения аудио сигнала с помощью подобной аппаратуры придется затратить много электроэнергии

Резкий нерегулируемый рост амплитуды на определенном уровне превышает прочностные характеристики конструкции. Именно такое воздействие ветровых нагрузок разрушило такомский мост в США. Чтобы исключить опасные ситуации, вместо сложного инженерного расчета офицеры командуют солдатам шагать не в ногу при переходе водных преград по таким конструкциям.

В чем заключается явление резонанса напряжений

Как известно, в сети переменного тока домашней сети разность потенциалов изменяется с частотой 50 Гц. То есть, каждую секунду производится 50 полных колебаний. Такое явление несложно замерить даже бытовым частотомером, который определить точное значение этого параметра именно по эффекту электромагнитного поля, образованного вокруг проводника с током. Катушка с металлическим сердечником, которая устанавливается в измерительный прибор, будет колебаться с частотой электромагнитного поля домашней электросети.

Вам это будет интересно Особенности SMD маркировки

Частотомер

Таким образом, вырабатывается переменное напряжение, которое затем может быть увеличено, а его частота подсчитана микропроцессорным либо аналоговым устройством, после чего информация может быть выведена на экран.

Разобравшись, в чем заключается явление резонанса электрического напряжения, необходимо стараться всячески избегать этого явления, когда одновременные колебательные движения полей являются нежелательными. Если же в каком-либо устройстве такой эффект применяется с целью получения определенных физических явлений, то схема должна быть изготовлена с высокой добротностью, чтобы на поддержание процесса тратилось как можно меньше энергии (таким образом повышается КПД устройства).

Заключение

Резонанс напряжений и токов — интересное явление, о котором нужно знать. Он наблюдается только в индуктивно-емкостных цепях. В цепях с большим активным сопротивлениям он не может возникнуть. Подведем итоги, кратко ответив на основные вопросы по этой теме:

  1. Где и в каких цепях наблюдается явление резонанса?

В индуктивно-емкостных цепях.

  1. Какие условия возникновения резонанса токов и напряжений?

Возникает при условии равенства реактивных сопротивлений. В цепи должно быть минимальное активное сопротивление, а частота источника питания совпадать с резонансной частотой контура.

  1. Как найти резонансную частоту?

В обоих случаях по формуле: w=(1/LC)^(1/2)

  1. Как устранить явление?

Увеличив активное сопротивление в цепи или изменив частоту.

Теперь вы знаете, что такое резонанс токов и напряжений, каковы условия его возникновения и варианты применения на практике. Для закрепления материала рекомендуем просмотреть полезное видео по теме:

Материалы по теме:

  • Причины потерь электроэнергии на больших расстояниях
  • Измерение частоты переменного тока
  • Как рассчитать сопротивление провода

https://youtube.com/watch?v=KB0eMQ8loy0

https://youtube.com/watch?v=kOeAf_yKZxo

Сам электрик — энциклопедия домашнего мастера