Как рассчитать мощность трансформатора
Чаще всего необходимость расчета мощности трансформатора возникает при работе со сварочной аппаратурой, особенно когда технические характеристики заранее неизвестны.
Мощность трансформатора тесно связана с силой тока и напряжением, при которых аппаратура будет нормально функционировать. Самым простым вариантом расчета мощности будет умножение значения напряжения на величину силы тока, потребляемого устройством. Однако на практике не все так просто, прежде всего из-за различия в типах устройств и применяемых в них сердечников. В качестве примера рекомендуется рассматривать Ш-образные сердечники, получившие наиболее широкое распространение, благодаря своей доступности и сравнительно невысокой стоимости.
Для расчета мощности трансформатора понадобятся параметры его обмотки. Эти вычисления проводятся по такой же методике, которая рассматривалась ранее. Наиболее простым вариантом считается практическое измерение обмотки трансформатора. Показания нужно снимать аккуратно и максимально точно. После получения всех необходимых данных можно приступать к расчету мощности.
Ранее, для определения площади сердечника применялась формула: S=1,3*√Pтр. Теперь же, зная площадь сечения магнитопровода, эту формулу можно преобразовать в другой вариант: Ртр = (S/1,3)/2. В обеих формулах число 1,3 является коэффициентом с усредненным значением.
Как рассчитать диаметр провода для любой обмотки?
Чем толще, тем лучше, но с условием, что он поместится в окно магнитопровода. Если окно небольшое, то желательно посчитать ток каждой наматываемой обмотки, чтобы подобрать оптимальный диаметр провода из имеющихся в наличии.
I = P / U
I
– ток обмотки,
P
– мощность потребляемая от данной обмотки,
U
– действующее напряжение данной обмотки.
Например, у меня потребляемая мощность 31 Ватт и вся она будет отдаваться катушками «III» и «IV».
31 / (12,8+12,8) = 1,2 Ампер
Диаметр провода можно вычислить по формуле:
D = 1,13 √(I / j)
D
– диаметр провода в мм,
I
– ток обмотки в Амперах,
j
– плотность тока в Ампер/мм².
При этом плотность тока можно выбрать по таблице.
Конструкция трансформатора | Плотность тока (а/мм2) при мощности трансформатора (Вт) | ||||
5-10 | 10-50 | 50-150 | 150-300 | 300-1000 | |
Однокаркасная | 3,0-4,0 | 2,5-3,0 | 2,0-2,5 | 1,7-2,0 | 1,4-1,7 |
Двухкаркасная | 3,5-4,0 | 2,7-3,5 | 2,4-2,7 | 2,0-2,5 | 1,7-2,3 |
Кольцевая | 4,5-5,0 | 4,0-4,5 | 3,5-4,5 | 3,0-3,5 | 2,5-3,0 |
Ток, протекающий через катушки «III» и «IV» – 1,2 Ампера.
А плотность тока я выбрал – 2,5 А/ мм².
1,13√ (1,2 / 2,5) = 0,78 мм
У меня нет провода диаметром 0,78 мм, но зато есть провод диаметром 1,0мм. Поэтому, я на всякий случай посчитаю, хватит ли мне места для этих катушек.
На картинке два варианта конструкции каркаса: А – обычная, В– секционная.
- Количество витков в одном слое.
- Количество слоёв.
Ширина моего несекционированного каркаса 40мм.
Мне нужно намотать 124 витка проводом 1,0 мм, у которого диаметр с изоляцией равен 1,08 мм. Таких обмоток требуется две.
124 * 1,08 * 1,1: 40
≈ 3,68 слоя
1,1
– коэффициент. На практике, при расчёте заполнения нужно прибавить 10 – 20% к полученному результату. Я буду мотать аккуратно, виток к витку, поэтому добавил 10%.
Получилось 4 слоя провода диаметром 1,08мм. Хотя, последний, четвёртый слой заполнен только на несколько процентов.
Определяем толщину обмотки:
1,08 * 4
≈ 4,5 мм
У меня в распоряжении 9мм глубины каркаса, а значит, обмотка влезет и ещё останется свободное место.
Ток катушки «II» вряд ли будет больше чем – 100мА.
1,13√ (0,1 / 2,5) = 0,23 мм
Диметр провода катушки «II» – 0,23мм.
Это малюсенькая по заполнению окна обмоточка и её можно даже не принимать в расчёт, когда остаётся так много свободного места.
Конечно, на практике у радиолюбителя выбор проводов невелик. Если нет провода подходящего сечения, то можно намотать обмотку сразу несколькими проводами меньшего диаметра. Только, чтобы не возникло перетоков, мотать нужно одновременно двумя, тремя или даже четырьмя проводами. Перетоки, возникают тогда, когда есть даже незначительные отклонения в длине обмоток соединённых параллельно. При этом, из-за разности напряжений, возникает ток, который греет обмотки и создаёт лишние потери.
Перед намоткой в несколько проводов, сначала нужно посчитать длину провода обмотки, а затем разрезать провод на требуемые куски.
Длина проводов будет равна:
L = p * ω * 1,2
L
– длина провода,
p
– периметр каркаса в середине намотки,
ω
– количество витков,
1,2*
– коэффициент.
* Укладывать обмотку при намотке в несколько проводов сложно и утомительно, поэтому лучше перестраховаться и использовать этот коэффициент, компенсирующий ошибки расчёта и неаккуратной укладки.
Толстый провод необходимо мотать виток к витку, а более тонкие провода можно намотать и в навал. Главное, чтобы обмотка поместилась в окно магнитопровода.
Если намотка производится аккуратно без повреждения изоляции, то никаких прокладок между слоями можно не применять, так как, при постройке УНЧ средней мощности, большие напряжения не используются. Изоляция же обмоточного провода рассчитана на напряжение в сотни вольт. Чем толще провод, тем выше пробивное напряжение изоляции провода. У тонкого провода пробивное напряжение изоляции около 400 Вольт, а у толстого может достигать 2000 Вольт.
Закрепить конец провода можно обычными нитками.
Если при удалении вторичной обмотки повредилась межобмоточная изоляция, защищающая первичную обмотку, то её нужно обязательно восстановить. Тут можно применить плотную бумагу или тонкий картон. Не рекомендуется использовать всякие синтетические материалы вроде скотча, изоленты и им подобные.
Если катушка разделена на секции для первичных и вторичных обмоток, то тогда и вовсе можно обойтись без изоляционных прокладок.
Выбор размеров окна сердечника и укладка обмоток на стержнях трансформатора
Форма окна сердечника трансформатора оказывает значительное влияние на величину намагничивающего тока, расход стали на сердечник и меди на обмотки трансформатора. Излишняя высота окна сердечника H повышает намагничивающий ток Iμ и увеличивает расход стали и вес трансформатора. Заниженная высота окна повышает нагрев обмотки и увеличивает расход меди на них.
Как показывает опыт, наивыгоднейшая форма окна сердечника трансформатора получается при отношении высоты окна H к его ширине b в пределах 2,5 – 3 (рисунки 2, 3 и 4).
Если при расчете сердечника трансформатора принята стандартная форма П-образных или Ш-образных пластин из таблицы 2, то размеры H и b берутся из этой же таблицы.
При расположении обмоток на стержнях сердечника трансформатора нужно иметь в виду следующее: чем меньше диаметр обмоточного провода, тем выше его стоимость. Поэтому для уменьшения общей стоимости трансформатора целесообразно обмотку с более тонким проводом располагать на стержне первой.
Для уточнения ширины окна сердечника b необходимо вычислить радиальную толщину обмоток трансформатора.
Число витков первичной обмотки в одном слое:
где d1н – берется из позиции 5; ε1 – расстояние от обмотки до ярма, обычно ε1 = 2 – 5 мм.
Число слоев первичной обмотки однофазного однокатушечного или трехфазного трансформаторов (рисунок 5, б и в):
Полученное значение m1 округляется до ближайшего большего целого числа.
В случае однофазного двухкатушечного трансформатора стержневого типа число витков на стержне будет (рисунок 5, а):
Толщина первичной обмотки:
где γ1 – толщина изоляционной прокладки между слоями. Изоляционные прокладки следует применять лишь при напряжении между слоями свыше 50 В. Толщина изоляционных прокладок обычно не превышает 0,03 – 0,10 мм; d1н – берется из позиции 5.
Рисунок 5. Формы катушек маломощных двухобмоточных трансформаторов: а – стержневого двухкатушечного; б – стержневого однокатушечного; в – броневого
Число витков вторичной обмотки в одном слое:
Число слоев вторичной обмотки однофазного однокатушечного или трехфазного трансформаторов (рисунок 5, б и в):
Полученное значение m2 также округляется до ближайшего большего числа.
В однофазном двухкатушечном трансформаторе стержневого типа число витков на стержне W2 / 2 (рисунок 5, а):
Толщина вторичной обмотки:
где d2н берется из позиции 5.
Ширина окна сердечника однофазного трансформатора с одной круглой катушкой (рисунок 5, б):
b = ε0 + ε2 + δ1 + δ12 + δ2 + ε3 ,
где
– зазор от стержня до катушки (рисунок 5, б); ε0 = 1,0 – 2,0 – толщина изоляции между катушкой и стержнем, выполняемой обычно из электрокартона; δ12 – толщина изоляции между обмотками, выполняемая обычно в маломощных трансформаторах из электрокартона и лакоткани толщиной 0,10 – 1,0 мм; ε3 – расстояние от катушки до второго стержня, принимаемое обычно в пределах ε3 = 3 – 5 мм; δ1 и δ2 – толщина соответствующих обмоток, мм.
Ширина окна однофазного трансформатора с двумя круглыми катушками, а также трехфазного трансформатора с аналогичными катушками (рисунок 5, а):
b = 2 × (ε0 + ε2 + δ1 + δ12 + δ2) + ε3 .
Ширина окна однофазного трансформатора с одной прямоугольной катушкой (рисунок 5, в):
b = k2 × (ε0 + δ1 + δ12 + δ2) + ε3 ,
где k2 = 1,2 – 1,3 – коэффициент увеличения толщины катушки за счет неплотностей прилегания слоев, в результате чего катушка приобретает овальный вид.
Ширина окна однофазного трансформатора с двумя прямоугольными катушками, а также трехфазного трансформатора с аналогичными катушками:
b = 2 × k2 × (ε0 + δ1 + δ12 + δ2) + ε3.
Принцип работы трансформатора.
Принцип работы трансформатора основан на явлении электромагнитной индукции.
Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.
При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.
В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.
Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.
Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.
Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.
Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.
Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.
Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.
Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.
Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.
Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.
Плагин Ferrite: Расчет индуктивности на ферритовом стержне
В отличии от тороидальной индуктивности на ферритовом кольце, магнитный поток катушки на ферритовом стержне не замкнут целиком внутри феррита и каждая силовая линия проходит и по ферритовому стержню и по воздуху, поэтому расчет такой катушки представляет довольно сложную задачу. Индуктивность зависит от:
- магнитной проницаемости ферритового стержня и его размеров;
- размеров самой катушки;
- взаимного соотношения размеров катушки и стержня;
- положения катушки относительно центра стержня.
Расчет индуктивности катушки на ферритовом стержне основан на определении относительной эффективной проницаемости стержня. Другими словами, нам нужно определить насколько возрастет индуктивность катушки с “воздушным сердечником” если внутрь нее вставить ферритовый стержень. Основная формула выглядит вот так:
,где Lf / Lair – отношение индуктивности катушки с ферритом к индуктивности той же катушки без феррита, а коэффициенты x, k и μfe вычисляются по следующему алгоритму:
- l’ = lc + 0.45 dc;
- φ_φmax ≈ 1 / [ 1 + { ( ( lf – lc ) / df )1.4 } / ( 5 μ ) ];
- Canf = 0.5 π ε ( lf – lc ) / [ ln { 2 ( lf + df) / df } – 1 ];
- k = [ (φ_φmax Canf / ε ) + 2 df ] / 2 dc
- x = 5.1 [ l’ / dc ] / [1+ 2.8 ( dc / l’ )];
- μfe = ( μ -1) ( df /dc)2 +1;
где ε = 8,8542*10-12 Ф/м – электрическая постоянная, μ – начальная магнитная проницаемость материала стержня. Основные размеры в метрах, обозначения понятны из рисунка:
Немного теории обосновывающей этот алгоритм.
- Можно считать что воздушная катушка имеет магнитную цепь состоящую из двух частей. Снаружи катушки и внутри нее. Они отличаются плотностью силовых линий и . Если магнитное сопротивление внутренней части магнитной цепи выше, чем наружной части (а это так, поскольку ее площадь поперечного сечения намного меньше), тогда применение феррита уменьшает это сопротивление и имеет эффект увеличения индуктивности. Это отношение двух частей магнитных сопротивлений магнитной цепи воздушной катушки обозначено в основной формуле как x и вычисляется на 5-ом шагу алгоритма.
- Параметр μfe учитывает случай, когда обмотка не плотно прилегает к стержню, т.е. между стержнем и обмоткой существует радиальный зазор.
- Параметр Canf учитывает влияние частей стержня, которые выступают за пределы катушки. Эти части уменьшают магнитное сопротивление внешней части магнитной цепи и также увеличивают индуктивность.
- Параметр φ_φmax учитывает конечное магнитное сопротивление феррита. Этот параметр, наряду с параметром Canf используется для расчета коэффициента k из основного уравнения
При смещении катушки относительно стержня индуктивность катушки уменьшается, это обстоятельство учитывается с помощью поправочного коэффициента K:
,где
sh – относительное смещение = смещение s деленное на половину длины сердечника [sh = s / ( lf / 2 )].
Эта формула получена методом регрессионного анализа и справедлива при s = 0,05 – 0,75
В итоге индуктивность катушки на ферритовом стержне определяется по следующей формуле:
Индуктивность катушки “воздушным” сердечником Lair рассчитывается по алгоритму расчета однослойной катушки с учетом шага намотки. Длину намотки можно определить по следующей формуле:
,где
- N – число витков.
- dw – диаметр провода.
- p – шаг намотки.
Алгоритм имеет следующие ограничения в расчетах:
- шаг намотки не может превышать удвоенного диаметра провода;
- диаметр катушки не может быть больше удвоенного диаметра стержня;
- длина намотки должна быть меньше 3/4 длины стержня;
- длина стержня должна быть не менее чем в 12 раз больше его диаметра;
- при смещении катушки она не должна доходить до края стержня на 1/8 его длины;
- начальная магнитная проницаемость стержня должна быть больше 100;
Также как и в дросселе на ферритовом кольце с немагнитным зазором, при больших значениях начальной магнитной проницаемости стержня его эффективная магнитная проницаемость слабо зависит от начальной и составляет величину не более нескольких десятков.
Кроме того, вы можете воспользоваться онлайн-калькулятором катушки на ферритовом стержне.
Особая благодарность за конструктивную помощь и соавторство в разработке методики расчета.
СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.
Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60
ватт
Где:Р_2
– мощность на выходе трансформатора, нами задана 60 ватт
;
U
_2
— напряжение на выходе трансформатора, нами задано 36 вольт
;
I
_2
— ток во вторичной цепи, в нагрузке.
КПД трансформатора мощностью до 100 ватт
обычно равно не более η = 0,8
.КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.
Определим мощность потребляемую трансформатором от сети с учетом потерь:
Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт
.
Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе.Поэтому от значения Р_1
, мощности потребляемой от сети 220
вольт,
зависит площадь поперечного сечения магнитопровода S
.
Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.
Площадь поперечного сечения магнитопровода рассчитывается по формуле:
S = 1,2 · √P_1.
Где:S
— площадь в квадратных сантиметрах,P
_1 — мощность первичной сети в ваттах.
S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².
По значению S
определяется число витков w
на один вольт по формуле:
w = 50/S
В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.
w = 50/10,4 = 4,8
витка на 1 вольт.
Рассчитаем число витков в первичной и вторичной обмотках.
Число витков в первичной обмотке на 220 вольт:
W1 = U_1 · w = 220 · 4.8 = 1056 витка.
Число витков во вторичной обмотке на 36 вольт:
W2 = U_2 · w = 36 · 4,8 = 172.8 витков
,
округляем до 173 витка
.
В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.
Величина тока в первичной обмотке трансформатора:
I_1 = P_1/U_1 = 75/220 = 0,34 ампера
.
Ток во вторичной обмотке трансформатора:
I_2 = P_2/U_2 = 60/36 = 1,67 ампера.
Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока,для медного провода,
принимается 2 А/мм² .
При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I
.
Для первичной обмотки диаметр провода будет:
d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм
.
Диаметр провода для вторичной обмотки:
d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.
ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА,
то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.
Площадь поперечного сечения провода определяется по формуле:
s = 0,8 · d².
где
: d — диаметр провода
.
Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1
мм.
Площадь поперечного сечения провода диаметром 1,1
мм. равна:
s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм²
.
Округлим до 1,0
мм².
Изтаблицывыбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².
Например, это два провода диаметром по 0,8 мм
. и площадью по0,5 мм²
.
Или два провода: — первый диаметром 1,0 мм
. и площадью сечения 0,79 мм²
,— второй диаметром 0,5 мм
. и площадью сечения 0,196 мм²
.что в сумме дает: 0,79 + 0,196 = 0,986 мм².
Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.
Получается как бы один провод с суммарным поперечным сечением двух проводов.
Смотрите статьи:— «Как намотать трансформатор на Ш-образном сердечнике».— «Как изготовить каркас для Ш — образного сердечника».
Электрический аппарат — трансформатор используется для преобразования поступающего переменного напряжения в другое — исходящее, к примеру: 220 В в 12 В (конкретно это преобразование достигается использованием понижающего трансформатора). Прежде чем разбираться с тем, как рассчитать трансформатор, вы в первую очередь должны обладать знаниями о его структуре.
Простейший трансформатор является компоновкой магнитопровода и обмоток 2-х видов: первичной и вторичной, специально намотанных на него. Первичная обмотка воспринимает подающееся переменное напряжение от сети (н-р: 220 В), а вторичная обмотка, посредством индуктивной связи создает другое переменное напряжение. Разность витков в обмотках влияет на выходное напряжение.
Как пользоваться онлайн калькулятором для расчета трансформатора пошагово
Подготовка исходных данных за 6 простых шагов
Шаг №1. Указание формы сердечника и его поперечного сечения
Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.
Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:
- Ширину пластины под катушкой с обмоткой.
- Толщину набранного пакета.
Вставьте эти данные в соответствующие ячейки таблицы.
Шаг №2. Выбор напряжений
Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.
Заполните указанные ячейки.
Шаг №3. Частота сигнала переменного тока
По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.
Их создают из других материалов сердечника и рассчитывают иными способами.
Шаг №4. Коэффициент полезного действия
У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.
Но, вы можете откорректировать его значение вручную.
Шаг №5. Магнитная индуктивность
Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.
По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.
Шаг №6. Плотность тока
Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.
Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.
Выполнение онлайн расчета трансформатора
После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.
Колебательный контур
Емкость и индуктивный элемент, соединенные в цепь, образуют колебательный контур с резко выраженными частотными свойствами и будут являться резонансной системой. В качестве системы используется конденсатор, изменяя емкость которого, можно производить коррекцию частотных свойств.
Последовательный и параллельный колебательные контуры
Если измерить резонансную частоту, используя известный конденсатор, то можно определить индуктивность катушки.
Индуктивность – важнейший элемент в разных областях электротехники. Для правильного применения нужно знать все параметры используемых элементов.
Устройство, которое позволяет определить параметры катушек индуктивности, в том числе добротность, может называться L-метр или Q-метр.
Q-метр для измерения добротности
https://youtube.com/watch?v=8pluF9EEEgc
Методика расчета
Полный расчет трансформатора довольно сложен и учитывает такие параметры:
- напряжение и частоту питающей сети;
- число вторичных обмоток;
- ток потребления каждой вторичной обмотки;
- тип материала сердечника;
- массогабаритные показатели.
На бытовом уровне для изготовления устройств с питанием от стандартной сети 220В 50Гц, проектирование можно значительно упростить.
Для расчета требуются следующие данные:
- Количество выходов.
- Напряжение и потребляемый ток каждой обмотки.
В основе конструирования любого трансформатора лежит суммарная мощность всех вторичных нагрузок:
Для учета потерь введено понятие габаритной мощности, для вычисления которой применяется несложная формула:
Зная мощность, можно определить сечение сердечника:
Полученное значение сечения будет выражено в квадратных сантиметрах!
Дальнейшие расчеты зависят от типа и материала выбранного сердечника. Магнитопроводы бывают следующих типов:
- броневые;
- стержневые;
- О-образные.
Также различаются и способы изготовления магнитопроводов:
- наборные – из отдельных пластин;
- витые, разрезные или сплошные.
Разрезными обычно бывают броневые или стержневые магнитопроводы, а О-образные конструктивно выполняются исключительно цельные. В этом отношении они ничем не отличаются от не разрезных стержневых сердечников.
Для определения числа витков используют следующее соотношение, показывающее, сколько необходимо витков на 1 вольт напряжения:
где К – коэффициент, который зависит от материала и типа сердечника.
Для упрощения вычислений приняты следующие значения коэффициента:
- Для наборных магнитопроводов из Ш-или П-образных пластин К=60.
- Для разрезных магнитопроводов К=50.
- Для О-образных сердечников К=40.
Как видно, наименьшая длина обмоточного провода, а следовательно, и наилучшие массогабаритные показатели будут у О-образных сердечников. Кроме этого, конструкции с такими сердечниками имеют малое поле паразитного магнитного рассеивания и максимальный КПД. Их редко применяют только потому, что намотать обмотку на замкнутый сердечник трудно технически.
Зная параметр W, легко определить количество витков для каждой из обмоток:
Для учета падения напряжения на первичной обмотке, намотанной большим количеством тонкого провода, следует увеличить количество витков в ней на 5%. Особенно это касается малогабаритных конструкций малой мощности.
Можно снизить ток холостого хода, увеличив значение W для каждой из обмоток, но следует знать, что чрезмерное увеличение может привести к насыщению магнитопровода, что приведет к резкому увеличению тока холостого хода и снижению напряжения на выходе.
На заключительном этапе определяют диаметр проводников каждой обмотки. Формула расчета имеет следующий вид:
Определение диаметра обмоточного провода выполняют для всех без исключения обмоток.
Методика расчета
Полный расчет трансформатора довольно сложен и учитывает такие параметры:
- напряжение и частоту питающей сети;
- число вторичных обмоток;
- ток потребления каждой вторичной обмотки;
- тип материала сердечника;
- массогабаритные показатели.
На бытовом уровне для изготовления устройств с питанием от стандартной сети 220В 50Гц, проектирование можно значительно упростить.
Для расчета требуются следующие данные:
- Количество выходов.
- Напряжение и потребляемый ток каждой обмотки.
В основе конструирования любого трансформатора лежит суммарная мощность всех вторичных нагрузок:
Для учета потерь введено понятие габаритной мощности, для вычисления которой применяется несложная формула:
Зная мощность, можно определить сечение сердечника:
Полученное значение сечения будет выражено в квадратных сантиметрах!
Дальнейшие расчеты зависят от типа и материала выбранного сердечника. Магнитопроводы бывают следующих типов:
- броневые;
- стержневые;
- О-образные.
Также различаются и способы изготовления магнитопроводов:
- наборные – из отдельных пластин;
- витые, разрезные или сплошные.
Разрезными обычно бывают броневые или стержневые магнитопроводы, а О-образные конструктивно выполняются исключительно цельные. В этом отношении они ничем не отличаются от не разрезных стержневых сердечников.
Как выбрать ферритовый кольцевой сердечник?
Выбрать примерный размер ферритового кольца можно при помощи калькулятора для расчета импульсных трансформаторов и справочника по ферритовым магнитопроводам. И то и другое Вы можете найти в .
Вводим в форму калькулятора данные предполагаемого магнитопровода и данные, полученные в предыдущем параграфе, чтобы определить габаритную мощность срдечника.
Не стоит выбирать габариты кольца впритык к максимальной мощности нагрузки. Маленькие кольца мотать не так удобно, да и витков придётся мотать намного больше.
Если свободного места в корпусе будущей конструкции достаточно, то можно выбрать кольцо с заведомо бо’льшей габаритной мощностью.
В моём распоряжении оказалось кольцо М2000НМ типоразмера К28х16х9мм. Я внёс входные данные в форму калькулятора и получил габаритную мощность 87 Ватт. Этого с лихвой хватит для моего 50-ти Ваттного источника питания.
Запустите программу. Выберете «Pacчёт тpaнcфopмaтopa пoлумocтoвoго пpeoбpaзoвaтeля c зaдaющим гeнepaтopoм».
Чтобы калькулятор не «ругался», заполните нолями окошки, неиспользуемые для расчёта вторичных обмоток.
Конструкция и принцип работы
Трансформатор — название слова происходит от латинского transformare, что в переводе означает превращать. Общепринятое определение для него следующее: трансформатор — это устройство, которое, используя явление электромагнитной индукции, способно изменять амплитуду напряжения без изменения формы и частоты сигнала.
Трансформатор — это электротехнический прибор, с помощью которого происходит уменьшение или увеличение переменного электрического напряжения. Такие трансформаторы называют понижающими или повышающими. При этом следует отметить, что существуют и такие приборы, которые оставляют величину синусоидального сигнала без изменения, они называются гальваническими или дроссельными.
Любой трансформатор в своей конструкции содержит следующие компоненты:
- магнитопровод (сердечник);
- обмотки;
- каркас для расположения обмоток;
- изолятор;
- различные дополнительные элементы (скобы для крепления, планки для вывода контактов и т. п. ).
Трансформатор в своей конструкции имеет две или более обмотки с индуктивной связью. Выпускаются они как проволочного, так и ленточного типа и всегда покрываются слоем изоляции. Обмотки закрепляются на магнитопроводе, изготовленном из мягкого ферромагнитного материала. Первичная обмотка подсоединяется к источнику напряжения, а вторичная к нагрузке.
Общий принцип работы устройства, независимо от его вида и назначения, заключается в следующем. На первичную обмотку прибора подаётся переменный сигнал, что приводит к появлению в ней переменного тока. Этот ток, в свою очередь, наводит в сердечнике переменное магнитное поле, под действием, которого происходит возникновение переменной электродвижущей силы (ЭДС) в обмотках. При подключении нагрузки к вторичной обмотке по ней начинает протекать переменный ток. Обмотка, на которую подаётся сигнал, называется первичкой. Обмотка, подключённая к нагрузке, называется вторичкой.
По способу охлаждения тороидальные устройства различаются на использующие воздушное и жидкостное охлаждение. Кроме этого, существуют трансформаторы с совмещённым охлаждением — жидкостно-воздушным. К главным техническим параметрам устройства относятся:
- Величина входного напряжения: допустимое значение напряжения, подаваемое на первичку.
- Величина выходного напряжения. Определяется коэффициентом трансформации.
- Тип трансформации. Существует с повышением или понижением уровня сигнала.
- Число фаз. В зависимости от сети, в которой используются трансформаторы, они делятся на однофазные или трехфазные.
- Число обмоток. Существуют двухобмоточные или многообмоточные устройства.
К основным параметрам устройства относят: номинальную мощность и коэффициент трансформации. Единица измерения мощности вольт-ампер (ВА). Коэффициент трансформации показывает соотношение уровней напряжения на входе устройства к его выходу. Его значение прямо пропорционально отношению количества витков первички к вторичке.
В тороидальном трансформаторе в качестве основы используется кольцевой сердечник, геометрически представляющий собой тор. Преимущество такого вида магнитопровода заключается в простой перемотке трансформатора своими руками и получении наибольшего коэффициента полезного действия (КПД) по сравнению с другими типами трансформаторов при тех же габаритных значениях. К недостаткам торов относят повышенный нагрев при работе.