Где 12 вольт, а где 5? Разбираемся с цветовой маркировкой
Как узнать, на каких нитях образуется напряжение? Где, например, на блоке питания компьютера 12 вольт? Тестер для этого не понадобится, так как все провода, выходящие из блока питания компьютера, имеют строго определенный общепринятый цвет. Поэтому вместо тестера вооружаемся табличкой внизу.
Расцветка и назначение проводов блока питания ATX
Цвет | Деловое свидание, встреча | Примечание |
чернить | GND | менее распространенная нить |
красный | +5 В | главный силовой автобус |
желтый | +12 В | главный силовой автобус |
синий | -12 В | основная силовая шина (может быть недоступна) |
апельсин | +3,3 В | главный силовой автобус |
белый | -5 В | главный силовой автобус |
альт | +5 VSB | ожидание еды |
серый | Хорошая сила | еда нормальная |
зеленый | Включить | команда для запуска блока питания |
Табличка в особых пояснениях не нуждается. С зеленым проводом (Power) мы познакомились в предыдущем разделе — материнская плата посылает сигнал низкого уровня (короткое замыкание на общий) для включения питания. Синий провод в новых моделях блоков питания может отсутствовать, поскольку производители материнских плат отказались от интерфейса RS-232C (COM-порт), для которого требуется -12 В.
Фиолетовый провод (+5 VSB) — это только действующий +5 В, который питает служебные узлы материнской платы. На сером проводе (Power good) блок питания показывает, что все напряжения в норме и компьютер можно включать. Если какое-либо напряжение выходит за пределы допустимого диапазона или исчезает во время работы, сигнал удаляется. Кроме того, это происходит до того, как накопительные конденсаторы источника питания успевают разрядиться, что дает процессору время для принятия экстренных мер по выключению системы. Остальные кабели — это силовые кабели для материнской платы и периферийных устройств: дисководов гибких дисков, внешних видеокарт и т.д.
Приступаем к сборке
Трансформатор ТС-150–1
После того как вы определились с требованиями, которым должен отвечать ваш постой блок питания регулируемого типа, а также была выбрана подходящая схема, можно начинать саму сборку. Но прежде всего запасемся нужными нам деталями. Для сборки вам понадобятся:
- мощный трансформатор. Например, ТС-150–1. Он способен выдавать напряжение в 12 и 24 В;
- конденсатор. Можно использовать модель на 10000 мкФ 50 В;
- микросхема для стабилизатора;
- обвязки;
- детали схемы (в нашем случае — схема, которая указана выше).
После этого по схеме собираем своими руками регулируемый блок питания в точном соответствии со всеми рекомендациями. Последовательность действий должна быть соблюдена.
Готовый БП
Для сборки БП используются следующие детали:
- германиевые транзисторы (в большинстве своем). Если вы захотите заменить их на более современные кремневые элементы, тогда нижний МП37 обязательно должен остаться германиевым. Здесь используются МП36, МП37, МП38 транзисторы;
- на транзисторе собирается токоограничительный узел. Он обеспечивает отслеживание падения на резисторе напряжения.
- стабилитрон Д814. Он определяет регулировку максимального выходного напряжения. На себя он забирает половину от выходного напряжения;
- нижний предел в собранном блоке питания имеет показатель напряжения всего 0,05 В. Такой показатель редкость для более сложных схем сборки преобразователя;
- стрелочные индикаторы отображают показатели тока и напряжения.
Детали для сборки
Для размещения всех деталей необходимо выбрать стальной корпус. Он сможет экранировать трансформатор и плату блока питания. В результате вы избежите ситуации появления различного рода помех для чувствительной аппаратуры.
Получившийся преобразователь можно спокойно использовать для питания любой бытовой аппаратуры, а также экспериментов и проверок, проводимых в домашней лаборатории. Также такой прибор можно применять для оценки работоспособности автомобильного генератора.
Выпрямитель лабораторного блока питания
На схеме выпрямитель отсутствует. Автор схемы предусматривает его расчет индивидуально, под необходимые параметры.
Диодный мост я установил с токовым запасом. Мост KBU610 рассчитан на 6А 1000В, а также на его корпусе есть отверстие для крепления теплоотвода. Также подойдет и любой другой диодный мост на 4А и мощнее. При выборе рекомендую взять запас, цена от этого возрастет незначительно.
Емкость фильтра выпрямителя для лабораторного блока питания также рассчитывается индивидуально, исходя из требований пульсаций и параметров трансформатора. На моей печатной плате имеются два посадочных места под электролитические конденсаторы 3300мкФ 50В. Можно обойтись и грубым расчетом – 1000мкФ на каждый 1А.
Трансформатор, примененный мною, имеет две обмотки по 25В, и каждая обмотка рассчитана на 1,8А. Эти обмотки я соединил параллельно (соблюдая фазировку).
Вообще ток обмотки должен быть рассчитан на превышение тока нагрузки в √2 раз, то есть для нагрузки 2А обмотка должна быть рассчитана на 2,8А.
Не стоит забывать и про выпрямленное напряжение, которое после выпрямления, на холостом ходу, на конденсаторе фильтра будет иметь значение в √2 раз больше. То есть, для трансформатора напряжением 25В после выпрямления на емкости фильтра (C4 и C5) получится примерно 35В постоянного тока.
Внимание! Для данного лабораторного блока питания я настоятельно рекомендую не применять трансформатор с напряжением вторичной обмотки более 27В. Это обусловлено напряжением перехода коллектор-эмиттер транзисторов BC547/BC557 (оно составляет 45В) и другими предельными параметрами примененных компонентов
Регулятор напряжения
Как правило, в самодельных небольших электронных устройствах питание обеспечивает типовой ИБП ПК, выполненный на TL494CN. Схема включения БП ПК общеизвестна, а сами блоки легкодоступны, поскольку миллионы старых ПК ежегодно утилизируются или продаются на запчасти. Но как правило, эти ИБП вырабатывают напряжения не выше 12 В. Этого слишком мало для частотно-регулируемого привода. Конечно, можно было бы постараться и использовать ИБП ПК повышенного напряжения для 25 В, но его будет трудно найти, и слишком много мощности будет рассеиваться на напряжении 5 В в логических элементах.
Однако на TL494 (или аналогах) можно построить любые схемы с выходом на повышенную мощность и напряжение. Используя типичные детали из ИБП ПК и мощные МОП-транзисторы от материнской платы, можно построить ШИМ-регулятор напряжения на TL494CN. Схема преобразователя представлена на рисунке ниже.
На ней можно увидеть схему включения микросхемы и выходной каскад на двух транзисторах: универсальном npn- и мощном МОП.
Основные части: T1, Q1, L1, D1. Биполярный T1 используется для управления мощным МОП-транзистором, подключенным упрощенным способом, так наз. «пассивным». L1 является дросселем индуктивности от старого принтера HP (около 50 витков, 1 см высота, ширина 0,5 см с обмотками, открытый дроссель). D1 — это диод Шоттки от другого устройства. TL494 подключена альтернативным способом по отношению к вышеописанному, хотя можно использовать любой из них.
С8 – конденсатор малой емкости, чтобы предотвратить воздействие шумов, поступающих на вход усилителя ошибки, величина 0,01uF будет более или менее нормальной. Большие значения будут замедлять установку требуемого напряжения.
С6 — еще меньший конденсатор, он используется для фильтрации высокочастотных помех. Его емкость — до нескольких сотен пикофарад.
↑ Особенности импульсного варианта ЭН
Аналоговые электронные нагрузки безусловно хороши и многие из тех, кто использовал ЭН при наладке силовых устройств, оценили ее преимущества. Импульсные ЭН имеют свою изюминку, давая возможность для оценки работы блока питания при импульсном характере нагрузки таком, как, например, работа цифровых устройств. Мощные усилители звуковых частот так же оказывают характерное влияние на питающие устройства, а потому, неплохо было бы знать, как поведет себя блок питания, расчитанный и изготовленный для конкретного усилителя, при определенном заданном характере нагрузки. При диагностике ремонтируемых блоков питания эффект применения импульсной ЭН так же заметен. Так, например, с помощью импульсной ЭН была найдена неисправность современного компьютерного БП. Заявленная неисправность данного 850-ваттного БП была следующей: компьютер при работе с этим БП выключался произвольно в любое время при работе с любым приложением, независимо от потребляемой, на момент выключения, мощности. При проверке на обычную нагрузку (куча мощных резисторов по +3В, +5В и галогенных лампочек по +12В) этот БП отработал на «ура» в течении нескольких часов при том, что мощность нагрузки составила 2/3 от его заявленной мощности. Неисправность проявилась при подключении импульсной ЭН к каналу +3В и БП начал отключаться, едва стрелка амперметра доходила до деления 1А. При этом токи нагрузки по каждому из прочих каналов положительного напряжения не превышали 3А. Неисправной оказалась плата супервизора и была заменена на аналогичную (благо, был такой же БП с выгоревшей силовой частью), после чего БП заработал нормально на максимальном токе, допустимом для используемого экземпляра импульсной ЭН (10А), которая и является предметом описания в данной статье.
Как усилить выходной сигнал?
Выход TL494CN является довольно слаботочным, а вы, конечно же, хотите большей мощности. Таким образом, мы должны добавить несколько мощных транзисторов. Наиболее просто использовать (и очень легко получить — из старой материнской платы компьютера) n-канальные силовые МОП-транзисторы. Мы должны при этом проинвертировать выход TL494CN, т. к. если мы подключим n-канальный МОП-транзистор к нему, то при отсутствии импульса на выходе микросхемы он будет открытым для протекания постоянного тока. При этом МОП-транзистор может попросту сгореть… Так что достаем универсальный npn-транзистор и подключаем согласно нижеприведенной схеме.
Мощный МОП-транзистор в этой схеме управляется в пассивном режиме. Это не очень хорошо, но для целей тестирования и малой мощности вполне подходит. R1 в схеме является нагрузкой npn-транзистора. Выберите его в соответствии с максимально допустимым током его коллектора. R2 представляет собой нагрузку нашего силового каскада. В следующих экспериментах он будет заменен трансформатором.
Если мы теперь посмотрим осциллографом сигнал на выводе 6 микросхемы, то увидите «пилу». На № 8 (К1) можно по-прежнему видеть прямоугольные импульсы, а на стоке МОП-транзистора такие же по форме импульсы, но большей величины.
Конструкция
Мощность того блока питания, который я вытащил из-под кровати – 250Вт. Если я сделаю БП 5В/10А, то пропадает драгоценная моща! Не дело! Подымем напряжение до 25В, может сгодится, к примеру, для зарядки аккумуляторов – там нужно напряжение порядка 15В.
Для дальнейших действий нужно сначала найти схему на исходный блок. В принципе, все схемы БП известны и гуглятся. Что именно нужно гуглить – написано на плате.
Мне мою схему подкинул друг. Вот она. (Откроется в новом окне)
Да-да, нам придется лазить во всех этих кишках. В этом нам поможет даташит на TL494
tl494.pdf
Итак, первое, что нам нужно сделать – проверить, какое максимальное напряжение может выдать блок питания по шинам +12 и +5 вольт. Для этого удаляем предусмотрительно помещенную производителем перемычку обратной связи.
Резисторы R49-R51 подтянут плюсовой вход компаратора к земле. И, вуаля, у нас на выходе – максимальное напряжение.
Пытаемся стартовать блок питания. Ага, без компьютера не стартует. Дело в том, что его нужно включить, соединив вывод PS_ON с землей. PS_ON обычно подписан на плате, и он нам еще понадобится, поэтому не будем его вырезать. А вот непонятную схему на Q10, Q9 и Q8 отключим – она использует выходные напряжение и, после их вырезания не даст нашему БП запуститься. Мягкий старт у нас будет работать на резисторах R59, R60 и конденсаторе C28.
Итак, бп запустился. Появились выходные максимальные напряжения.
Внимание! Выходные напряжения – больше тех, на которые рассчитаны выходные конденсаторы, и, поэтому, конденсаторы могут взорваться. Я хотел поменять конденсаторы, поэтому мне их было не жалко, а вот глаза не поменяешь
Аккуратно!
Итак, подучилось по +12В – 24В, а по +5В – 9.6В. Похоже, запас по напряжению ровно в 2 раза. Ну и прекрасно! Ограничим выходное напряжение нашего БП на уровне 20В, а выходной ток – на уровне 10А. Таким образом, получаем максимум 200Вт мощи.
С параметрами, вроде бы, определились.
Теперь нужно сделать управляющую электронику. Жестяной корпус БП меня не удовлетворил(и, как оказалось, зря) – он так и норовит поцарапать что-то, да еще и соединен с землей (это помешает мерить ток дешевыми операционниками).
В качестве корпуса, я выбрал Z-2W, конторы Maszczyk
Я измерил излучаемый блоком питания шум – он оказался вполне небольшим, так что, вполне можно использовать пластиковый корпус.
После корпуса я сел за Corel Draw и прикинул, как должна выглядеть передняя панель:
Ремонт блока АТХ/АТ (методика)
Ремонт блока АТХ/АТ (методика)Ремонт блока АТХ/АТ (методика)
Типовую схему можно взять тут: AT и ATX Все работы с импульсным блоком питания проводить отключив его от сети ~220V !!! Схема управления. Проверку блока начинают со схемы управления. (ШИМ-контроллер TL494CN) Описание микросхемы можно взять тут Для этого понадобится стабилизированный блок питания 12В. Подключаем к схеме испытуемого ИБП как показано на схеме рис.1 и смотрим наличае осциллограмм на соответсвующих выводах. Показания осциллографа снимать относительно общего провода. Рис.1 Проверка работоспособности TL494CN После проверки не забудь вывод 4 вернуть в схему !!!Высоковольтная цепь. Для этого последовательно проверяем: предохранитель, защитный терморезистор, катушки, диодный мост, электролиты высокого напряжения, силовые транзисторы (2SC4242), первичную обмотку трансформатора, элементы управления в базовой цепи силовых транзисторов.
(смотри рис.2 и рис.3) Первыми обычно сгорают силовые транзисторы. Лучше заменить на аналогичные: 2SC4242, 2SC3039, КТ8127(А1-В1), КТ8108(А1-В1) и т.п. Элементы в базовой цепи силовых транзисторов.(проверить резисторы на обрыв) Как правило, если сгорает диодный мост (диоды звонятся накоротко), то соответственно от поступившего в схему переменного тока вылетают электролиты высокого напряжения. Обычно мост — это RS205 (2А 500В) или хуже. Рекомендуемый — RS507 (5А 700В) или аналог. Ну и последним всегда горит предохранитель.
.52В. Рис.2 Проверка входной цепи. Если всё в порядке, то можно переходить к следующему пункту.Проверка работы силовых транзисторов. Проверку режимов работы в принципе можно и не делать. Если первые два пункта пройдены, то на 99% можно считать БП исправным. Однако, если силовые транзисторы были заменены на другие аналоги или если вы решили заменить биполярные транзисторы на полевые (напрмер КП948А, цоколёвка совпадает), то необходимо проверить как транзистор держит переходные процессы. Для этого необходимо подключить испытуемый блок как показано на рис.1 и рис.2. Осциллограф отключить от общего провода! Осциллограммы на коллекторе силового транзистора измерять относительно его эмиттера. (как показано на рис.3, напряжение будет меняться от 0 до 51В) При этом процесс перехода от низкого уровня к высокому должен быть мгновенным. (ну или почти мгновенным).
Это во многом зависит от частотных харрактеристик транзистора и демпферных диодов (на рис.3 FR155. аналог 2Д253, 2Д254). Если переходной процесс происходит плавно (присутствует небольшой наклон), то скорее всего уже через несколько минут радиатор силовых транзисторов очень сильно нагреется. (при нормальной работе — радиатор длжен быть холодный) Рис.3 Проверка работы силовых транзисторов.Проверка выходных параметров блока питания. После всех вышеперечисленных работ необходимо проверить выходные напряжения блока. Нестабильность напряжения при динамической нагрузке, собственные пульсации и т.п. Можно на свой страх и риск воткнуть испытуемый блок в рабочую системную плату или собрать схему рис. 4 Рис.4 Упрощенная схема нагрузки БП. Данная схема собирается из резисторов ПЭВ-10. Резисторы монтировать на алюминиевый радиатор.
(для этих целей очень хорошо подходит швеллер 20х25х20) Блок питания без вентилятора не включать ! Также желательно обдувать резисторы. Пульсации смотреть осциллографом непосредственно на нагрузке. (от пика до пика должно быть не более 100 мВ, в худшем случае 300 мВ) Вообще не рекомендуется нагружать БП более 1/2 заявленной мощности. (например: если указано, что БП 200 Ватт, то нагружать не более 100 Ватт) При желании схему нагрузки можно усложнить: Рис.4.1 Экстремальная нагрузка блока питания.Автогенераторный вспомогательный источник. Используется для питания TL494CN и стабилизатора +5Vsb (смотри схему АТХ блока) Варианты вспомогательных источников в недорогих блоках: Рис.5 Вариант 1 Рис.6 Вариант 2 В более дорогих БП дополнительные источники реализуют на микросхемах серии TOPSwitch.
KA1H0165R KA1H0165RN …или второй вариант: .
Part | Value | Part | Value |
R101 | 100 kOm | D101 | UF4007 |
R102 | 500 kOm | D102 | 1N4937 |
R103 | 120 Om | D103 | 1N4948 |
R104 | 1,2 kOm | D201 | Shottoky |
C101 | 222/630V | C202 | 470mF / 10V |
C103 | 222 uF | R201 | 500 Om |
ZD101 | 12V / 0.
5W |
D201 | 20mH |
Описание на русском языке смотрите на сайте www.compitech.ru вот тут или воспользоваться поисковиком www.av.com Назад
Импульсный блок питания TL494
Обнаружена недоработка, прошу прощения, но поищите пока себе что то другое!
Один товарищ попросил сделать для него импульсный блок питания для какой то штуки у него в гараже. Как бы питание у этого приборчика не стандартное и нужно 17-18В током до 5 А. Что бы собрать этот блок питания, решил использовать запчасти от старых разобранных ATX, трансформаторов таких у меня просто куча и есть с чего выбрать. Схему питальника использовал ту же, что и в прошлый раз собирал, вот ссылка на ИИП из ATX, только немного ее переделал. Первым делом что я сделал, это немного переделал схему. Пересчитал делители на ОУ под нужные выходные напряжения, убрал фильтр на входе, ну а все остальные компоненты остались такие же.
Вот схема силовой части и драйвера
Вот схема управляющей части на TL494
Разберусь с используемыми компонентами, большинство были заказаны с Китая. Цены на товар с Китая в десятки раз дешевле чем заказывать в интернет магазинах России
Диодный мост KBU1010 заказан был с Китая Две емкости 330мкФ 200В и шунтирующие конденсаторы 0.1мкФ 1000В из блока питания ATX, они еще нормально себя чувствуют Силовые ключи использовал 13007 вот ссылка, мелкие 2SC945 вот ссылка Силовой XZYEI-28C и развязывающий трансформаторWYEE-16C из ATX Выходной сдвоенный диод S10C40 на 10А 40В из того же ATX Дроссель для стабилизации размотал и намотал 24 витка проводом 1мм Все резисторы из Китая, 0,25Вт ссылка, 2Вт ссылка, подстроечный резистор 1кОм ссылка, токоизмерительный резистор 0,1Ом ссылка Конденсаторы электролитические разной емкости ссылка, а так же пленочные ссылка Ну и диоды 1N4148 тоже Китай ссылка, остальные диоды были выбраны из всякого хлама Управляющая TL494 заказана с Китая
Когда все детали определены, пора перейти к разводке печатной платы. Снял все размеры компонентов и принялся за разводку печатки, все заняло часа 3-4.
Печатная плата силовой части и драйвера
Вот печатная плата управляющей части
Силовая часть схемы и развязывающий драйвер буду собирать на печатной плате размером 80*101мм, управляющая часть собрана на отдельном куске текстолита размерами 45*50мм.Скачать печатную плату Прочитайте Получить пароль от архива Ну и пора переходить к сборке, печатных плат. На это было потрачено еще пару часов. Первый пуск источника питания как всегда через лампу, я тут описывал для чего это нужно. Далее испытания проводил уже без лампы, но через предохранитель 1,5А. Вот что у меня получилось
С помощью подстроечного резистора установил напряжение 17,5В, в качестве нагрузки пока выступает вентилятор 12В через балластный резистор 33Ом. Забыл на плате разместить этот балластный резистор, поэтому придется навесом его оставить
Расположение всех компонентов на плате выглядит так, для разрядки высоковольтных конденсаторов балластные резисторы по 120кОм установлены с другой стороны на вывод конденсаторов
Управляющая плата установлена на коротких проводниках из медной проволоки, на плате есть переменный резистор для точной настройки выходного напряжения
Диод и силовые ключи установлены на общий радиатор через прокладки для гальванической развязки, одного радиатора при принудительном охлаждения будет достаточно
Вот перемотанный дроссель для стабилизации напряжения
Две платы собранны максимально плотным монтажем, проверенны в условиях мастерской и готовы отправится в гараж знакомого
Импульсные выпрямители
Рис.3. Обобщенная структурная схема однотактного ИБП с бестрансформаторным входом.
Рассмотрим работу обобщенной однотактной схемы ИБП, приведенной на рис. 3. Переменное напряжение сети выпрямляется диодным мостом и сглаживается конденсатором большой емкости. В результате на выходе выпрямителя появляется постоянное положительное напряжение Uep = +310В. Этим напряжением запитывается схема пуска, которая вырабатывает питающее напряжение для схемы управления сразу после включения ИБП. На выходе схемы управления вырабатывается управляющее напряжение в виде последовательности прямоугольных импульсов с частотой порядка несколько десятков килогерц. Эти импульсы управляют состоянием (открыт/закрыт) мощного ключевого высокочастотного транзистора, нагрузкой которого является первичная обмотка импульсного высокочастотного трансформатора. В результате переключении транзисторного ключа во вторичных обмотках трансформатора наводятся импульсные ЭДС прямоугольной формы, которые затем выпрямляются и сглаживаются. Силовая часть однотактного преобразователя с бестрансформаторным входом может быть выполнена одним из двух возможных способов.
Поэтому следует различать проточные (прямоходовые) и запорные (обратноходовые) преобразователи. В проточных преобразователях ток подзарядки накопительных емкостей во вторичной цепи (ток через диоды выпрямителя) протекает во время открытого состояния ключевого транзистора, а в запорных — во время закрытого состояния этого транзистора.
Тип преобразователя определяется выбором определенной полярности подключения выпрямительных диодов ко вторичным обмоткам импульсного трансформатора и конструктивными особенностями самого импульсного трансформатора.
В прямоходовых преобразователях (преобразователя с пропускающим диодом) энергия в цепь нагрузки передается через диод во время открытого состояния транзистора. Одновременно в сердечнике дросселя накапливается магнитная энергия (токи через дроссель и первичную обмотку трансформатора линейно нарастают), которая затем во время закрытого состояния транзистора выдается в нагрузку через диод. При этом ток дросселя линейно уменьшается. Магнитная энергия, накопленная в сердечнике трансформатора за время открытого состояния, снова возвращается в источник во время закрытого состояния. Этот возврат (рекуперация) осуществляется с помощью обмотки размагничивания и диода. В противном случае сердечник трансформатора оказался бы в состоянии насыщения, что при следующем открывании транзистора привело бы к выводу его из строя чрезмерно большим током первичной обмотки, индуктивность которой была бы очень мала. Таким образом, в прямоходовом преобразователе трансформатор служит только для трансформации энергии. Исходя из этого принципа трансформатор прямоходового преобразователя должен выполняться таким, чтобы запасаемая в его сердечнике магнитная энергия за время открытого состояния транзистора была бы минимальной.
Стабилизатор на К142ЕН5 — с регулируемым выходным напряжением
В заметке С. Савина «Вариант включения стабилизатора К142ЕН5», опубликованной в «Радио» 1989, № 12, с, 66, речь шла о том, что если вывод 8 этой микросхемы подключить к общему проводу через стабилитрон, то напряжение на выходе стабилизатора увеличится на напряжение стабилизации включенного стабилитрона. Подобный совет повторил А. Гвоздак в статье «Доработка радиоконструктора «Юниор-1», помещенной в «Радио» № 6, с. 81—83 за 1991 г. Опыт показывает, что подборкой соответствующего стабилитрона можно в необходимой мере повысить выходное напряжение стабилизатора, но оно, как и при традиционном включении стабилизатора К142ВН5, фиксированное. Вместе с тем читатели нашего журнала сообщают, что аналогичный способ включения микросхемных стабилизаторов К142ЕН5 позволяет получить на выходе стабилизатора повышенное регулируемое напряжение. Об этом, в частности, рассказывают в своих письмах радиолюбители А. Чумаков из г. Йошкар-Ола и А. Черкасов из Караганды.