Щеточный двигатель или бесщеточный что лучше

Содержание

Устройство и принцип действия

Основными элементами БДПТ являются:

  • ротор, на котором укреплены постоянные магниты;
  • статор, на котором установлены обмотки;
  • электронный контроллер.

По конструкции такой двигатель может быть двух типов:

с внутренним расположением ротора (inrunner)

с внешним расположением ротора (outrunner)

В первом случае ротор вращается внутри статора, а во втором – ротор крутится вокруг статора.

Двигатель типа inrunner используется в том случае, когда необходимо получить большие обороты вращения. Этот двигатель имеет более простую стандартную конструкцию, которая позволяет использовать неподвижный статор для крепления двигателя.

Двигатель типа outrunner подходит для получения большого момента при низких оборотах. В этом случае крепление двигателя производится с использованием неподвижной оси.

Двигатель типа inrunner — большие обороты, низкий крутящий момент. Двигатель типа outrunner — маленькие обороты, высокий крутящий момент.

Число полюсов в БДПТ может быть разным. По числу полюсов можно судить о некоторых характеристиках двигателя. Например, двигатель с ротором, имеющим 2 полюса, имеет большее число оборотов и малый момент. Двигатели с увеличенным количеством полюсов имеют больший момент, но меньшее число оборотов. Изменением числа полюсов ротора можно менять число оборотов двигателя. Таким образом, изменяя конструкцию двигателя, производитель может подобрать необходимые параметры двигателя по моменту и числу оборотов.

Где применяются бесколлекторные двигатели

Сфера применения таких электродвигателей досрочно широка. Они используются как для привода мелких механизмов: в дисководах CD, DVD-приводах, жёстких дисках, так и в мощных устройствах: аккумуляторе и сетевом электроинструменте (с питанием порядка 12В), радиоуправляемых моделях (например, квадрокоптерах), станках ЧПУ для привода рабочего органа (обычно моторчики с номинальным напряжением 24В или 48В).

Широкое применение БДПТ нашли в электротранспорте, почти все современные мотор-колеса электросамокатов, велосипедов, мотоциклов и автомобилей — это бесколлекторные двигатели. К слову, номинальное напряжение электродвигателей для транспорта лежит в широком пределе, например, мотор-колесо для велосипеда зачастую работает от 36В или от 48В, за редким исключением и больше, а в автомобилях, например, на Toyota Prius порядка 120В, а на Nissan Leaf – доходит до 400, при том что заряжается от сети 220В (это реализуется с помощью встроенного преобразователя).

На самом деле область применения бесколлекторных электродвигателей очень обширна, отсутствие коллекторного узла позволяет его применять опасных местах, а также в местах с повышенной влажностью, без опасений замыканий, искрения или возгорания из-за дефектов в щеточном узле. Благодаря высокому КПД и хорошим массогабаритным показателям они нашли применение и в космической промышленности.

Терминология бесколлекторного привода

Драйвера всегда неподвижно зафиксированы на статоре. В тоже время сетевой коммутатор или сетевой переключатель оснащен полупроводниковыми триодами, которых всего шесть.

Именно они направляют напряжение тока на те или другие витки провода электро-двигателя.

В узкопрофильных публикациях для электромехаников бесколлекторный тип двигателя имеет название вентильный, потому что транзисторы иначе называют именно вентилями.

Кроме того, устройства разделяют не несколько типов в зависимости от конструкции и электродвижущей силы.

В американских источниках один из типов электро-двигателя маркируется буквами BLDC, которые являются аббревиатурой термина, который в дословном значении переводится как «двигатель бесщеточный постоянного тока».

Преимущества использования

Изготовить своими руками бесколлекторный электродвигатель сложно, а реализовать микроконтроллерное управление практически невозможно. Поэтому лучше всего использовать готовые промышленные образцы. Но обязательно учитывайте достоинства, которые получает привод при использовании бесколлекторных электродвигателей:

  1. Существенно больший ресурс, нежели у коллекторных машин.
  2. Высокий уровень КПД.
  3. Мощность выше, нежели у коллекторных моторов.
  4. Скорость вращения набирается намного быстрее.
  5. Во время работы не образуются искры, поэтому их можно использовать в условиях с высокой пожарной опасностью.
  6. Очень простая эксплуатация привода.
  7. При работе не нужно использовать дополнительные компоненты для охлаждения.

Среди недостатков можно выделить очень высокую стоимость, если учитывать еще и цену контроллера. Даже кратковременно включить для проверки работоспособности такой электродвигатель не получится. Кроме того, ремонтировать такие моторы намного сложнее из-за их особенностей конструкции.

Схема коллекторного двигателя — переменного тока

В данном рисунке представлена универсальная схема коллекторного двигателя рис.2. Схема имеет три вывода проводов от двух обмоток статора, для подключения как к переменному так и к постоянному напряжениям, то-есть, двигатель способен работать как от постоянного так и от переменного тока. рис.2

На схеме даны следующие обозначения:

Два конца провода из трех выводов обмоток статора необходимы так-же для подключения сглаживающего фильтра конденсатора.

Сопротивление обмоток — коллекторного двигателя

Для замера сопротивлений обмоток статора коллекторного двигателя нужно соединить поочередно щупы измерительного прибора с выводами проводов фото 2.

Замеры сопротивлений обмоток статора выполняются с целью определения их целостности либо разрыва перегорания провода в обмотке.

Чтобы измерить сопротивление обмоток ротора коллекторного двигателя, — выполняется замер сопротивления ламелей начала и концы обмоток ротора, соединенные с металлическими пластинами — на коллекторе фото 3, рис. 3.

И чтобы проверить отсутствие либо замыкание обмотки на корпус магнитопровода ротора, нужно соединить один конец щупа прибора с пластиной коллектора и второй щуп соединить с магнитопроводом рис. 4.

При замыкании обмотки ротора на корпус магнитопровода — сопротивление для данного участка приймет нулевое значение.

В данной теме Вы ознакомились с устройством и способами проведения диагностики коллекторного электродвигателя, и это далеко еще не все.

В конструкции современного автомобиля задействован коллекторный двигатель, агрегат, использующий контакты с целью определения положения нахождения ротора.Текущие тенденции на мировом рынке автомобилестроения сводятся к полной замене силовых установок, работающих за счет внутреннего сгорания топлива на электрические моторы. За последние годы, призывы к увеличению планки по количеству вредных выбросов в атмосферу, звучат, чуть ли не ежедневно, а это укрепляет позиции электрических агрегатов.

Принцип работы электрического двигателя, преобразовать электрическую энергию в механическую работу. Если сравнивать агрегаты с двигателями внутреннего сгорания, электрические моторы предпочтительней, преимущество: компактность, простота, долговечность, экологически безвредны и масса других плюсов.

В конструкции современного автомобиля задействован коллекторный двигатель, агрегат, использующий контакты с целью определения положения нахождения ротора.

Электромобиль Tesla model S:

Генераторы с компаундным возбуждением и компенсирующей ёмкостью

Наиболее простым по технической реализации является бесщёточный генератор с компаундным возбуждением и компенсирующей ёмкостью, подключенной к дополнительной обмотке. Такой генератор представляет собой явнополюсную синхронную машину с обмоткой возбуждения в роторе.

Обмотка возбуждения разбита на две секции, концы каждой из которых замкнуты через диод. Таким образом, индуцированный ток в обмотке возбуждения может протекать только в одном направлении, создавая постоянное магнитное поле.

Статор имеет две обмотки: основную и дополнительную. К основной обмотке подключается нагрузка. К дополнительной обмотке подключается компенсирующий конденсатор. Основная обмотка занимает 2/3 пазов статора, а дополнительная 1/3 пазов.

Работает генератор следующим образом. При начале вращения ротора тока в обмотках нет. Однако магнитопроводы статора и ротора имеют остаточную намагниченность. За счёт последней в обмотках начинает индуцироваться ток. Так как за счёт диодов ток в обмотке ротора может протекать только в одном направлении, магнитопровод ротора начинает намагничиваться. При этом вращающееся магнитное поле, создаваемое ротором, индуцирует в обмотках статора электродвижущую силу. Поскольку дополнительная обмотка статора нагружена на конденсатор, через неё начинает протекать переменный ток. Этот переменный ток создаёт переменное, но не вращающееся магнитное поле статора, которое индуцирует электродвижущую силу в обмотке ротора. Под действием этой электродвижущей силы в обмотке ротора возникает ток, который выпрямляется диодами и ещё сильнее намагничивает ротор. Это в свою очередь вызывает увеличение электродвижущей силы и тока в обмотках статора, что в свою очередь ещё сильнее намагничивает ротор. Процесс возбуждения развивается лавинообразно до входа магнитопроводов статора и ротора в режим насыщения. В основной обмотке статора возникает электродвижущая сила номинальной величины. Генератор готов к подключению нагрузки.

При подключении нагрузки к основной обмотке в ней появляется ток, который создает своё магнитное поле. Если бы возбуждение генератора осталось на прежнем уровне, то напряжение на его выходных зажимах снизилось бы по двум причинам: падение напряжения на внутреннем сопротивлении и смещение магнитного поля относительно оси обмотки статора. Однако обмотки статора расположены таким образом, что их магнитные оси повернуты на 90 градусов. За счёт этого происходит поворот магнитного поля ротора в направлении основной обмотки, что увеличивает ЭДС индукции в ней. Чем больше ток основной обмотки — тем больше поворот магнитного поля ротора. Таким образом происходит стабилизация выходного напряжения генератора. Такой способ регулирования называется компаундным.

Генератор с компаундным возбуждением прост по конструкции, обладает малым весом и стоимостью, что обусловило его широкое применение в переносных бензиноэлектрических агрегатах («бензиновые электростанции»). В то же время этому типу генераторов присущ ряд недостатков, а именно:

  • генератор может быть только однофазным;
  • в случае подключения к генератору нагрузки с нелинейным характером сопротивления (например, нагреватель, включенный через диод) процесс компаундирования нарушается — напряжение на выходе генератора может оказаться сильно завышенным.
  • коэффициент полезного действия генератора относительно невысок, так как существенная часть энергии переменного магнитного поля теряется на перемагничивание магнитопроводов, работающих в режиме близком к насыщению.

Управление БДПТ

Регулятор оборотов, внешний вид

Для управления бесколлекторным двигателем используется специальный контролер — регулятор скорости вращения вала двигателя постоянного тока. Его задачей является генерация и подача в нужный момент на нужную обмотку необходимого напряжения. В контроллере для приборов с питанием от сети 220 В чаще всего используется инверторная схема, в которой происходит преобразование тока с частотой 50 Гц сначала в постоянный ток, а затем в сигналы с широтно-импульсной модуляцией (ШИМ). Для подачи питающего напряжения на обмотки статора используются мощные электронные ключи на биполярных транзисторах или других силовых элементах.

Регулировка мощности и числа оборотов двигателя осуществляется изменением скважности импульсов, а, следовательно, и действующим значением напряжения, подаваемого на обмотки статора двигателя

Принципиальная схема регулятора оборотов. К1-К6 — ключи D1-D3 — датчики положения ротора (датчики Холла)

Важным вопросом является своевременное подключение электронных ключей к каждой обмотке. Для обеспечения этого контроллер должен определять положение ротора и его скорость. Для получения такой информации могут быть использованы оптические или магнитные датчики (например, датчики Холла), а также обратные магнитные поля.

Более распространено использование датчиков Холла, которые реагируют на наличие магнитного поля. Датчики размещаются на статоре таким образом, чтобы на них действовало магнитное поле ротора. В некоторых случаях датчики устанавливают в устройствах, которые позволяют изменять положение датчиков и, соответственно, регулировать угол опережения (timing).

Регуляторы оборотов вращения ротора очень чувствительны к силе тока, проходящего через него. Если вы подберете аккумуляторную батарейку с большей выдаваемой силой тока, то регулятор сгорит! Правильно подбирайте сочетания характеристик!

Бесщеточное возбудительное устройство

Бесщеточное возбудительное устройство представляет собой синхронный генератор переменного тока, в дальнейшем именуемый возбудитель ВС. Вращающаяся часть возбудителя ВС ( рис. 38) состоит из якоря с трехфазной обмоткой и соединенного с ней блока диодного выпрямителя-преобразователя переменного тока в постоянный ток. Якорь возбудителя ВС вместе с выпрямителем жестко насажен на консольный конец вала ротора синхронного двигателя СД и вращается вместе с ним. Соединение это происходит через специальное отверстие на валу ротора синхронного двигателя СД напрямую, без коммутирующих колец и щеточного устройства. Статор возбудителя ( неподвижная часть) установлен на плите двигателя СД.

Бесщеточное возбудительное устройство не имеет вращающихся частей и щеток, оно состоит из станции управления и синхронного возбудителя, ротор которого находится на одном валу с электродвигателем и имеет 3-фазную обмотку якоря.

Бесщеточные возбудительные устройства серии БВУ обеспечивают пуск, автоматическую синхронизацию СД в функции тока статора, автоматическое и ручное регулирование тока возбуждения.

В типовых проектах БКНС применено бесщеточное возбудительное устройство серии БВУ , которое поставляется заводом-изготовителем комплектно с электродвигателем.

СТД выполнены для глухого подключения бесщеточного возбудительного устройства , сопротивление обмоток которого в пусковом режиме равно нулю.

Возбуждение осуществляется одним из следующих устройств: тиристорным возбудительным устройством серии ТВУ-2; бесщеточным возбудительным устройством серии БВУ и электромашинным возбудителем серии ВТ.

На компрессорных станциях установлены турбокомпрессоры К-345-92-1 с электроприводом от синхронного электродвигателя мощностью 3200 кВт, напряжением 10 кВ, частотой вращения 3000 об / мин с бесщеточными возбудительными устройствами , состоящими из возбудителя iBC — 40 — ЗООО мощностью 40 мВт и станции управления им.

Обычно подвод тока к обмотке возбуждения синхронного двигателя осуществляется через кольца и щетки. Вследствие низкой надежности щеточного контакта применяют бесщеточные возбудительные устройства , содержащие синхронный возбу — Дительный обращенный генератор с вращающейся обмоткой переменного тока и вращающийся неуправляемый выпрямитель с разрядным резистором. Обмотка возбуждения синхронного двигателя присоединена наглухо к выпрямителю. Управление током возбуждения синхронного двигателя осуществляется путем изменения тока в обмотке возбуждения синхронного возбудителя, расположенной на его неподвижных полюсах. Схемы бесщеточных возбудителей рассмотрены в гл.

Бесщеточные возбудители обычно встраивают в конструкцию двигателя. В сериях СТД и СТДП применяют бесщеточное возбудительное устройство , которое является самостоятельным изделием и пристраивается к двигателю.

Обычно ток подводится к обмотке возбуждения синхронного двигателя через кольца и щетки. Вследствие низкой надежности щеточного контакта применяют бесщеточные возбудительные устройства , содержащие синхронный возбудительный обращенный генератор с вращающейся обмоткой переменного тока и вращающийся неуправляемый выпрямитель с разрядным резистором. Обмотка возбуждения синхронного двигателя присоединена наглухо к выпрямителю.

В отдельных случаях, когда имеется избыток реактивной энергии в подключаемом узле энергосистемы, для привода подпорных насосов следует применять и асинхронные двигатели во взрывозащищен-ном или нормальном исполнении, устанавливаемые через герметическую перегородку. Следует предусматривать простейшие схемы соединения возбудительных устройств с приводным синхронным электродвигателем, при этом рекомендуется применять бесщеточные возбудительные устройства для возбуждения быстроходных синхронных электродвигателей.

Воздух, охлаждающий двигатель и циркулирующий по замкнутому контуру, охлаждается в свою очередь водяными охладителями, установленными по бокам статора вдоль его оси. Наружные щиты двигателя и возбудителя уплотнены изоляционным материалом, исключающим протекание подшипниковых токов и возникновение фрикционного искрения. Возбуждение двигателей осуществляется от бесщеточного возбудительного устройства .

Возможные поломки и способы их ремонта

В результате работы коллекторного двигателя могут возникнуть неисправности. Большинство из них самостоятельно сможет устранить человек не имеющий специализированных технических знаний и оборудования. Ниже представлены наиболее часто возникающие неисправности.

Повышенный шум при работе узла. Сильный уровень шума при работе мотора может свидетельствовать о выходе из строя подшипников, на которые установлен якорь.

При выходе из строя подшипников качения необходимо заменить изношенные детали новыми.

Износ щёток. Критическая изношенность щёток сопровождается повышенным уровнем шума при работе. Несвоевременная замена может привести к поломке коллектора. При возникновении неисправности необходимо заменить графитовые щётки

При выборе щёток необходимо обратить внимание на их толщину. Новые детали не должны застревать в держателях

Отсутствие вращения якоря при подключении мотора к сети питания. Отсутствие вращения может возникнуть в результате обрыва цепи питания. Обрыв может произойти в результате поломки пружины прижимающей щётку к коллектору или при обрыве провода. При поломке пружины необходимо заменить ее новой деталью. При обрыве провода необходимо восстановить его целостность.

Отсутствие вращения ротора может возникнуть в результате выхода из строя предохранителя. Для восстановления работоспособности необходимо установить новый предохранитель. Перед установкой предохранителя необходимо определить причину, по которой старое устройство вышло из строя. После устранения причины можно установить предохранитель и провести испытание двигателя.

Отсутствие регулировки вращения вала якоря. После запуска агрегат работает на максимальных оборотах. Такая неисправность возникает в результате поломки реостата. Для восстановления работоспособности двигателя необходимо заменить регулятор.

Медленное вращение ротора. Снижение частоты вращения вала может возникнуть в результате низкого напряжения в сети питания. Необходимо проверить напряжение. Снижение оборотов якоря может быть спровоцировано высокой нагрузкой. Необходимо снизить нагрузку на якорь.

Из вышеперечисленного следует, что коллекторный мотор преобразовывает электрическую энергию в физическую силу. Для передачи напряжения к обмоткам якоря используются щётки. Моторы отличаются простотой конструкции и небольшими габаритно массовыми параметрами.

Достоинства и недостатки

Из достоинств можно выделить:

  • Возможность регулировать частоту вращения. При этом у пользователя появляется широкий диапазон настройки данного показателя, в зависимости от выполняемой работы и рабочей поверхности.
  • В конструкции такого агрегата отсутствует коллекторно-щеточный узел, соответственно инструмент ломается реже при правильном использовании, а техническое обслуживание не вызывает проблем.
  • Шуруповерт лучше справляется с большой нагрузкой, связанной с увеличением крутящего момента.

  • Энергия аккумуляторной батареи расходуется экономно.
  • Коэффициент полезного действия у такого оборудования составляет 90%.
  • Возможность использовать шуруповерт в опасной среде с присутствием взрывоопасной газовой смеси, поскольку отсутствует искрение.
  • Миниатюрные габариты и небольшой вес.
  • В обоих направлениях работы поддерживается одна мощность.
  • Даже увеличенная нагрузка не является причиной снижения скорости.

Недостатки:

  • Внушительная стоимость.
  • Большие размеры шуруповерта, что мешает работать на вытянутой руке и в труднодоступных местах.

Типы коллекторных электродвигателей

По конструкции статора коллекторный двигатель может быть с постоянными магнитами и с обмотками возбуждения.

Коллекторный двигатель с постоянными магнитами

Коллекторный двигатель постоянного тока (КДПТ) с постоянными магнитами является наиболее распространенным среди КДПТ. Индуктор этого двигателя включает постоянные магниты, которые создают магнитное поле статора. Коллекторные двигатели постоянного тока с постоянными магнитами (КДПТ ПМ) обычно используются в задачах не требующих больших мощностей. КДПТ ПМ дешевле в производстве, чем коллекторные двигатели с обмотками возбуждения. При этом момент КДПТ ПМ ограничен полем постоянных магнитов статора . КДПТ с постоянными магнитами очень быстро реагирует на изменение напряжения. Благодаря постоянному полю статора легко управлять скоростью двигателя. Недостатком электродвигателя постоянного тока с постоянными магнитами является то, что со временем магниты теряют свои магнитные свойства, в результате чего уменьшается поле статора и снижаются характеристики двигателя.

Преимущества:лучшее соотношение цена/качество
высокий момент на низких оборотах
быстрый отклик на изменение напряжения

постоянные магниты со временем, а также под воздействием высоких температур теряют свои магнитные свойства

Коллекторный двигатель с обмотками возбуждения

  • По схеме подключения обмотки статора коллекторные электродвигатели с обмотками возбуждения разделяют на двигатели:
  • независимого возбуждения
  • последовательного возбуждения
  • параллельного возбуждения
  • смешанного возбуждения

Двигатели независимого и параллельного возбуждения

В электродвигателях независимого возбуждения обмотка возбуждения электрически не связана с обмоткой якоря (рисунок выше). Обычно напряжение возбуждения UОВ отличается от напряжения в цепи якоря U. Если же напряжения равны, то обмотку возбуждения подключают параллельно обмотке якоря. Применение в электроприводе двигателя независимого или параллельного возбуждения определяется схемой электропривода. Свойства (характеристики) этих двигателей одинаковы .

В двигателях параллельного возбуждения токи обмотки возбуждения (индуктора) и якоря не зависят друг от друга, а полный ток двигателя равен сумме тока обмотки возбуждения и тока якоря. Во время нормальной работы, при увеличении напряжения

питания увеличивается полный ток двигателя, что приводит к увеличению полей статора и ротора. С увеличением полного тока двигателя скорость так же увеличивается, а момент уменьшается.При нагружении двигателя ток якоря увеличивается, в результате чего увеличивается поле якоря. При увеличении тока якоря, ток индуктора (обмотки возбуждения) уменьшается, в результате чего уменьшается поле индуктора, что приводит к уменьшению скорости двигателя, и увеличению момента.

Преимущества:практически постоянный момент на низких оборотах
хорошие регулировочные свойства
отсутствие потерь магнетизма со временем (так как нет постоянных магнитов)

Недостатки:дороже КДПТ ПМ
двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный электродвигатель параллельного возбуждения имеет механическую характеристику с уменьшающимся моментом на высоких оборотах и высоким, но более постоянным моментом на низких оборотах. Ток в обмотке индуктора и якоря не зависит друг от друга, таким образом, общий ток электродвигателя равен сумме токов индуктора и якоря. Как результат данный тип двигателей имеет отличную характеристику управления скоростью. Коллекторный двигатель постоянного тока с параллельной обмоткой возбуждения обычно используется в приложениях, которые требуют мощность больше 3 кВт, в частности в автомобильных приложениях и промышленности. В сравнении с КДПТ ПМ, двигатель параллельного возбуждения не теряет магнитные свойства со временем и является более надежным. Недостатками двигателя параллельного возбуждения являются более высокая себестоимость и возможность выхода двигателя из под контроля, в случае если ток индуктора снизится до нуля, что в свою очередь может привести к поломке двигателя .

Коллекторный двигатель

Начнём с того, что двигатель — это устройство, которое преобразует какой-либо вид энергии в механический и наоборот. Эффективность данного процесса зависит от внутренней конструкции двигателя, которая в свою очередь зависит от источника тока (постоянного или переменного).

Устройство коллекторного двигателя

Якорь.

Стержнем всей конструкции является якорь, он же металлический вал. Вал является движущимся элементом, от которого зависит крутящий момент. На нём также располагается ротор.

Ротор.

Связан с ведущим валом. Его внешняя конструкция напоминает барабан, который вращается внутри статора. Задача ротора получать или отдавать напряжение рабочему телу.

Подшипники.

Они расположены на противоположных концах якоря для его сбалансированного вращения.

Щётки.

Выполнены обычно из графита. Их задача предавать напряжение через коллектор в обмотки.

Коллектор (коммутатор).

Он выполнен в виде соединенных между собой медных контактов. Во время процесса вращения он принимает на себя энергию с щёток и направляет её в обмотки.

Обмотки.

Расположены на роторе и статоре разных полярностей. Их функция в генерировании собственного магнитного поля под воздействием разных полярностей, за счёт чего якорь приходит в действие.

Сердечник статора.

Выполнен из металлических пластин. Может иметь катушку возбуждения с полярным напряжением обмотки ротора. Или — постоянные магниты. Данная конструкция зависит от источника напряжения. Является статичным элементом всего механизма.

  • Стоимость меньше, чем у бесколлекторных двигателей (БД).
  • Конструкция относительно проще конструкции БД.
  • В виду этого, техническое обслуживание проще.

На высоких оборотах увеличивается трение щёток. Отсюда вытекает:

  • Быстрый износ щёток.
  • Снижение мощности инструмента.
  • Появление искр.
  • Задымление инструмента.
  • Выход из строя инструмента раньше его «жизненного цикла».

Трёхфазный бесколлекторный электродвигатель постоянного тока

Большинство БД выполняются в трехфазном исполнении. Для управления таким приводом в контролере имеется преобразователь постоянного напряжения в трехфазное импульсное (см. рис.7).

Рисунок 7. Диаграммы напряжений БД

Чтобы объяснить, как работает такой вентильный двигатель, следует вместе с рисунком 7 рассматривать рисунок 4, где поочередно изображены все этапы работы привода. Распишем их:

  1. На катушки «А» подается положительный импульс, в то время как на «В» — отрицательный, в результате якорь сдвинется. Датчиками зафиксируется его движение и подастся сигнал для следующей коммутации.
  2. Катушки «А» отключается, и положительный импульс идет на «С» («В» остается без изменения), далее подается сигнал на следующий набор импульсов.
  3. На «С» — положительный, «А» — отрицательный.
  4. Работает пара «В» и «А», на которые поступают положительный и отрицательный импульсы.
  5. Положительный импульс повторно подается на «В», и отрицательный на «С».
  6. Включаются катушки «А» (подается +) и повторяется отрицательный импульс на «С». Далее цикл повторяется.

В кажущейся простоте управления есть масса сложностей. Нужно не только отслеживать положение якоря, чтобы произвести следующую серию импульсов, а и управлять частотой вращения, регулируя ток в катушках. Помимо этого следует выбрать наиболее оптимальные параметры для разгона и торможения. Стоит также не забывать, что контроллер должен быть оснащен блоком, позволяющим управлять его работой. Внешний вид такого многофункционального устройства можно увидеть на рисунке 8.

Рис. 8. Многофункциональный контроллер управления бесколлекторным двигателем