Как получить электричество из воздуха своими руками

Содержание

Солнечные паруса

В 2019 году Планетарное общество развернуло парус LightSail 2 на одной из ракет от SpaceX, и он успешно прошел испытания.

LightSail 2 во время развертывания

(Фото: The Planetary Society)

Солнечный парус — почти то же самое, что и обычный парус на кораблях. Только в движение его приводит не ветер, а солнечная энергия — поток заряженных частиц, которые выделяет Солнце. Если поймать этот поток энергии, можно долгое время путешествовать в космосе по заданному маршруту, а топливо для этого не понадобится.

Как это применять: используя наработки Планетарного общества, в 2021 году NASA с помощью паруса планирует долететь до Луны, а затем отправиться к околоземному астероиду 1991 VG.

Съедобная упаковка и солнечный парус: новинки космических эко-технологий

Электрический потенциал атмосферы

Разность потенциалов между поверхностью земли и ионосферой составляет около 300 000 Вольт. Напряженность электрического поля вблизи поверхности достигает 150 Вольт на метр (В/м) и снижается по экспоненте с увеличением высоты. На высоте 30 км величина напряженности составляет около 1 В/м. На уровне ионосферы напряженность поля стремится к нулю, из-за увеличения проводимости среды в результате ионизации под воздействием солнечного излучения.

Многие из нас ощущали на себе эффект накопления атмосферного заряда. Например, в сухую ветреную погоду, выходя из автомобиля, можно почувствовать разряд статического напряжения. Дело в том, что электрический заряд накапливается на автомобиле благодаря шинам. Резиновые шины являются хорошим изолятором, который предотвращает стекание заряда на землю. При выходе из автомобиля накопленный заряд с кузова уходит в землю через наше тело в виде искры и лёгкого, но неприятного удара током.

Заманчиво выглядит идея обуздания энергии молнии, но на этом пути масса технических сложностей. Огромная энергия, заключенная в молнии очень кратковременна и непостоянна. Нужно поймать разряд и направить энергию в какой-то накопитель. Поскольку место попадания молнии непредсказуемо а пиковая мощность очень велика, современная техника не обладает достаточными возможностями, чтобы справиться с этой задачей.

Теоретически, если взять два листа металла площадью 1 м2 и разнести их на расстояние 500 м по вертикали относительно поверхности земли, то напряжение между ними составит около 80 В. Очевидно, что целесообразность и эффективность такой «электростанции» весьма сомнительна, учитывая масштаб необходимого сооружения для разнесения листов.

Несмотря на то, что атмосфера Земли буквально пропитана электричеством, какого либо действенного способа извлечения и использования этой энергии на сегодняшний день не существует.

Электричество от земли и нулевого провода

Данное явление тоже возникает не от магнитного поля Земли, а вследствие того, что часть тока «стекает» через заземление в часы наибольшего потребления электроэнергии. Большинству пользователей известно, что напряжение для дома подается через 2 проводника: фазный и нулевой. Если имеется третий проводник, присоединенный к хорошему заземляющему контуру, то между ним и нулевым контактом может «гулять» напряжение до 15 В. Этот факт можно зафиксировать, включив меж контактами нагрузку в виде лампочки на 12 В. И что характерно, проходящий из земли на «ноль» ток абсолютно не фиксируется приборами учета.

Воспользоваться таким бесплатным напряжением в квартире затруднительно, поскольку надежного заземления там не найти, трубопроводы таковым считаться не могут. А вот в частном доме, где априори должен быть заземляющий контур, электричество получить можно. Для подключения применяется простая схема: нулевой провод – нагрузка – земля. Некоторые умельцы даже приспособились сглаживать колебания тока трансформатором и присоединять подходящую нагрузку.

Способ получения электричества по Белоусову

Валерий Белоусов несколько лет изучает молнии и защиту от них. Он считается автором книг о бесплатной энергии и разработал ряд решений, дабы получить электричество из земли.

На схеме вы можете увидеть два условных определения заземления. Тут один из них – это заземлитель, а второй, рядом с которым буква «А» – ноль домашней электрической сети. На другом видео показывается работа данной установки и описываются результаты, полученные при помощи нее:

Получившейся энергии достаточно чтобы запитать LED-лампу на 220 Вольт небольшой мощности. Этот метод хорошо применять на даче, он может быть легко воспроизведён дома.

Получение бесплатного электричества из земли собственными руками возможно. Но говорить о функциональном использовании и подсоединении мощных потребителей тяжело. Холодильник вы так не запустите. На данное время единственным отлично изученным источником электрической энергии из земных недр являются натуральные ресурсы, например уголь, газ, горючее для АЭС и т.д.

Халявное электричество из солнца

Большой популярностью в Европе пользуются солнечные батареи. Вы наверняка слышали об этом способе добычи электричества. И это действительно работает, и не является вариантом, как заработать на стекле.

Конечно, чтобы пользоваться такой энергией, нужно сначала серьезно потратиться, ведь солнечные батареи стоят недешево, а чтобы обеспечить такой энергией весь дом, их нужно будет купить много. Также нужно учитывать, что если ваш дом в лесу преобразовать солнечную энергию в электричество не получится. Проблемы могут возникнуть и в холодное время года. Однако у солнечных станций есть несколько весомых преимуществ.

Преимущества солнечных электростанций:

  • Солнечная энергия вечная;
  • Она не выделяет в среду вредных веществ и не способствует накоплению радиоволн;
  • Вы сможете заранее рассчитать, сколько сможете получить энергии от того или иного количества батарей;
  • Цена потраченная на батареи со временем окупится за счет сэкономленных на электроэнергии средств.

Солнечная электроэнергия – это отличная альтернатива централизованному электричеств. С ее помощью может быть обеспечена вся ваша электрика.

Плюсы и минусы

Не просто так выбор многих покупателей падает на этот тип светильников, рассмотрим, чем они так привлекательны:

  • Светодиодные LED-лампы — какие лучше? Обзор самых популярных и надежных моделей, с фото и видео!

  • Как выбрать цветовую температуру — смотрите здесь! Таблица, инструкция, обзор яркой и оптимальной цветовой температуры для комнаты

  • Подключение светильника своими руками — пошаговая инструкция с фото и видео. Правила монтажа + схема подключения

  • Автономность работы – важнейший плюс. Никаких проводов, никакой зависимости от перепадов напряжения;
  • Легкость монтажа тоже привлекает. Нет необходимости портить стены и потом ремонтировать их или же нагружать коробами для проводов;
  • Свобода выбора размещения. Прибор одинаково хорошо будет работать как в комнате, так и в беседке во дворе;
  • Датчик движения – полезная функция, позволяющая освещению появляться там, где присутствует человек и выключаться, когда он уходит. Таким образом, этот вариант экономичен и удобен, т.к. не нужно искать выключатель в темноте.

Единственным, наверное, минусом приобретения такого светильника будет то, что батарейки всё-таки придется менять. Он может подвести в самый неудачный момент, если не контролировать этот вопрос, держа заряженный аккумулятор или комплект батареек про запас.

Известные способы добычи электричества

В первом случае получение электричества из земли осуществляется с помощью двух стержней, изготовленных из разнородных металлов. Данный способ никак не связан с электрическим или магнитным полем Земли. Стержни используются в качестве гальванической пары, помещенной в солевой раствор. Если проводить эксперимент в чистом виде, то на концах металлических прутков, погруженных в раствор электролита, образуется разность потенциалов, то есть, электрический ток.

Величина получаемого тока будет разной в зависимости от таких факторов, как размеры электродов, характеристики электролита, глубина закладки и прочее.

По такой же схеме можно получить электричество из земли. Для этой цели берутся стержни из меди и алюминия, которые будут использоваться в качестве гальванической пары. Их нужно заглубить в землю примерно на 50 см, расположив на расстоянии 20-30 см друг от друга. На площадь грунта, расположенную между стержнями, выливается большое количество солевого раствора, и уже через 5-10 минут можно проводить контрольные замеры с помощью электронного вольтметра.

Вольтметр показывает разные значения, максимальный результат составил 3 вольта. Раствор электролита готовится из дистиллированной воды и поваренной соли.

Второй вариант добычи тока также не связана с магнитным полем Земли. Суть заключается в извлечении электричества, стекающего по проводу «земля» во время максимального энергопотребления. В этом процессе участвует и проводник «ноль».

Всем известно, что подача напряжения потребителям осуществляется по фазному и нулевому проводам. При наличии третьего провода, соединенного с контуром заземления, между ним и нулевым проводником нередко возникает напряжение, иногда доходящее до 15 вольт. Подобное состояние можно определить с помощью лампы накаливания на 12 вольт, подключенной к обоим проводникам. Другим способом зафиксировать невозможно, поскольку приборы учета никак на это не реагируют и ток, идущий от «земли» к нулю не определяют.

Данный способ непригоден для квартиры, поскольку в них как правило отсутствует заземление, способное выполнить свою функцию. Подобные эксперименты хорошо получаются в частных домах с классическим заземляющим контуром. Схема подключения осуществляется от нулевого проводника к нагрузке и далее – к проводу заземления. В процессе добычи электричества из земли своими руками, некоторые домашние электрики используют трансформаторы для сглаживания токовых колебаний и затем подключают наиболее оптимальную нагрузку.

Категорически запрещается, чтобы фаза подключалась вместо нулевого проводника, во избежание смертельно опасных ситуаций.

Ветрогенератор из комнатного вентилятора

Простейший ветровой генератор можно изготовить из обычного бытового вентилятора.
Для этого потребуется небольшой генератор от автотехники или двигатель-генератор, которые необходимо закрепить на стойке комнатного вентилятора. Для этого можно использовать любую пластиковую емкость, внутрь которой и помещается преобразующее устройство. Кромке этого, в емкость помещается диодный мост, к которому присоединяются провода, которые выводятся на наружную поверхность емкости.

На вал генератора (двигателя-генератора) одеваются лопасти вентилятора, а к пластиковой емкости крепится хвостовик, который можно изготовить из подручных материалов (пластик, фанера, оргстекло и т.д.).

Вся собранная конструкция помещается на стойку вентилятора, для этого можно использовать обрезок пластиковой или иной легкой трубы, диаметром несколько меньшим, чем отверстие в стойке. Это позволит конструкции вращаться вокруг своей оси, в зависимости от направления ветра.

Крепление деталей и узлов проверяется, при необходимости выполняется их укрепление. К выведенным проводам подсоединяется нагрузка. Устройство готово к работе.

Трансформатор. Передача Электроэнергии

Трансформатор

— это устройство для повышения или понижения переменного напряжения. Простейший трансформатор состоит из двух обмоток, одна из которых называетсяпервичной , а другая —вторичной . Обмотки трансформатора расположены на общем сердечнике из электротехнической стали; обычно он изготовляется наборным из листов для уменьшения потерь на вихревые токи.

Принцип действия трансформатора основан на явлении электромагнитной индукции. Когда на первичную обмотку подается переменное напряжение, возникающий в результате этого переменный магнитный поток возбуждает во вторичной обмотке (катушке) переменное напряжение той же частоты. Однако напряжение на обмотках будет различным в зависимости от числа витков в каждой из них.

Согласно закону Фарадея, ЭДС индукции на вторичной обмотке равна

1;

11

Разделив эти выражения одно на другое, получим:

Это уравнение трансформатора, показывающее, как напряжение на вторичной обмотке связано с напряжением на первичной обмотке. Если n2>n1; то трансформатор повышающий, если n2l, то — понижающий.

Из закона сохранения энергии следует, что выходная мощность трансформатора не может превышать его входную мощность.

Грамотно сконструированный трансформатор может иметь КПД порядка 99%; столь низки потери энергии в нем. Таким образом, выходная мощность трансформатора практически равна входной, и, поскольку мощность равна р = IU, имеем:

Трансформатор может работать только на переменном токе.

Трансформаторы играют важную роль в передаче энергии на расстояние. Электростанции часто располагаются далеко от промышленных городов, гидроэлектростанции строятся на больших реках, для атомных электростанций требуется большое количество охлаждающей воды, тепловые электростанции тоже часто строят вдали от городов, чтобы уменьшить загрязнение воздуха.

В любом случае электроэнергию часто приходится передавать на большие расстояния, и в линиях электропередачи всегда неизбежны потери энергии.

Потери энергии можно уменьшить, если использовать в линиях электропередачи высокое напряжение.

Чем выше напряжение, тем меньше сила тока, и тем меньшая доля мощности теряется в линии электропередачи.

Рассмотрим следующую задачу: поселок потребляет электрическую мощность в среднем 120 кВт от электростанции, расположенной в 10 км. Полное сопротивление линии электропередачи равно 0,40 Ом. Следует определить потери мощности при напряжении на линии: а) 240 В; б) 24 000 В.

Решение

а) Если передать мощность 120 кВт при напряжении 240 В, то сила тока в линии составит

Потери мощности в линии достигнут

Свыше 80% общей мощности будет теряться в линии выделяться в виде тепла. то] б) При U = 24 000 В,

Потери мощности составят:

Меньше 1% общей мощности будет теряться в линии, если энергию передавать высоким напряжением.

Процедура

Немного ниже рассматриваются варианты получения бесплатного электричества.

Ветроэлектростанция. Голландия рекомендует выстроить ветряную ферму очень больших размеров в Северном море, и ненастоящий, оборудованный сопутствующим оборудованием остров, который возьмёт на себя роль энергетического хаба, распределяя электричество между 5 странами.

Саудовская Аравия предложила создать турбины в виде «бумажных змеев», и разместить их в воздухе, а не на земля. Несколько стран имеют свои поля с ветряными генераторами.

Электростанция работающая от солнца. В продаже имеется крыши, которые состоят из фотоэлектрических батарей, а еще панели из фотогальванического стекла, которыми можно декорировать фасадные стены домов. Американские учёные выпустили фотоэлектрические панели в форме прозрачных плиток, которыми можно остеклить окна, чтобы генерировать электричество для дома.

Грозовая батарея — накопитель энергии от разрядов в атмосфере. Молнии перенаправляются в электрическая сеть.

Тороидальный генератор TPU состоит из 3 катушек. Магнитный вихрь и резонансные частоты являются основой возникновения тока. Изобрёл его С.Марк.

Приливные электрические станции — работа зависит от приливов и отливов, положения Земли и Луны.

Тепловая электростанция — в качестве ресурса применяются высокотемпературные подземные воды.

Сила человеческих мускулов — люди также вырабатывают энергию во время движения, что можно применять.

Термоядерный синтез — процессом можно управлять. Синтезируются намного тяжёлее ядра из более лёгких. Способ не используется, так как очень опасен.

Плюсы автономного электроснабжения

Казалось бы, смысл в автономной системе электроснабжения только один – это когда рядом с домом нет ЛЭП, а тянуть собственную линию слишком дорого. Однако многие домовладельцы создают собственную систему электроснабжения даже в том случае, если уже подключены к общей системе.

Так в чем же выгода автономного электроснабжения?

  • В независимости. Своя система защитит от отключений электроэнергии по различным поводам. Автономная система тоже не застрахована от аварий и других неприятностей, но если создать дублирующие устройства, то защищённость от случайностей достигнет максимума.
  • В экономичности. Электроэнергия, подаваемая по единой системе, дорогая. Создание автономной системы тоже дело не дешёвое, но многие домовладельцы считают, что окупается она очень быстро, и столь же быстро становится делом не просто дешёвым, но и выгодным.
  • В мобильности. Автономная система, построенная на нескольких источниках электроэнергии, позволяет быстро реагировать на ситуацию, оставаясь при свете в любых ситуациях.

Ток из воздуха: ТОП-3 способа

Получать бесплатное электричество для дома из воздуха — желание большинства экономных людей. Как оказалось, эта мечта осуществима.

Вариантов получения тока из воздуха множество, но наиболее популярные среди них — это:

  • ветрогенераторы;
  • грозовые батареи;
  • генератор тороидального электричества Стивена Марка.

Ветряные генераторы уже сейчас используются в странах Европы, Азии и Америки. Поля с этими гигантскими приспособлениями занимают огромные площади и способны обеспечивать энергией техническое предприятие или завод. Единственный минус такого способа — непостоянство ветра. Из-за изменчивости погоды нельзя сказать точно, сколько выработается и накопится энергии.

Грозовые батареи тоже зависят от погодных условий, поскольку накапливают потенциал из разрядов молний. Эти системы — самые непредсказуемые и опасные в применении, ведь молнии контролировать нельзя.

Еще один прибор, позволяющий получать бесплатную электроэнергию дома, — это генератор тороидального электричества, изобретенный Стивеном Марком. Основу генератора составляют три катушки. Они создают резонансные частоты и магнитные вихри, благодаря которым и появляется электрический ток.

Альтернативные источники энергии позволяют заботиться о природе и использовать ее восполняемые ресурсы по максимуму. Однако стоит помнить, что любые эксперименты с электричеством могут быть опасны

Если у вас нет опыта, то проводите их в присутствии мастера или электрика и с соблюдением всех норм предосторожности

  • Понизить тепловые потери
  • Ваш интерьер в новом магическом свете
  • Электрический автобус подзаряжается за 10 секунд
  • Информационный бюллетень «Оптимизация освещения»

Вам нужно войти, чтобы оставить комментарий.

Мифы и реальность

На просторах интернета есть большое количество видеороликов, где люди зажигают от земли лампы мощностью 150 Вт, запускают электродвигатели и так далее. Еще больше есть различных текстовых материалов, подробно рассказывающих о земляных батареях. К подобной информации не рекомендуется относиться слишком серьезно, ведь написать можно что угодно, а перед съемкой видеоролика провести соответствующую подготовку.

Просмотрев или прочитав эти материалы, вы действительно можете поверить в разные небылицы. Например, что электрическое или магнитное поле Земли содержит океан дармовой электроэнергии, получение которой довольно легко. Правда заключается в том, что запас энергии действительно огромен, но вот извлечь ее вовсе не просто. Иначе никто бы уже не пользовался двигателями внутреннего сгорания, не обогревался природным газом и так далее.

Если в соответствии с теорией провести некий виртуальный эксперимент, то можно убедиться, насколько непросто заполучить электричество из магнитного поля земли. Возьмем 2 металлических электрода, для чистоты эксперимента – в виде квадратных листов со сторонами 1 м. Один лист установим на поверхности земли перпендикулярно силовым линиям, а второй – поднимем на высоту 500 м и сориентируем его в пространстве таким же образом.

Теоретически между электродами возникнет разность потенциалов порядка 80 вольт. Тот же эффект будет наблюдаться, если второй лист расположить под землей, на дне самой глубокой шахты. А теперь представьте такую электростанцию – в километр высотой, с огромной площадью поверхности электродов. Кроме того, станция должна противостоять ударам молний, что обязательно будут бить именно по ней. Возможно, это реальность далекого будущего.

Тем не менее получить электричество от земли – вполне возможно, хотя и в мизерных количествах. Его может хватить на то, чтобы зажечь светодиодный фонарик, включить калькулятор или немного зарядить сотовый телефон. Рассмотрим способы, позволяющие это сделать.

Бесплатное электричество из земли

Почва – благоприятная среда для извлечения электричества. В грунте присутствуют три среды:

  • влажность — капли воды;
  • твердость — минералы;
  • газообразность — воздух между минералами и водой.

Кроме того, в почве постоянно проходят электрические процессы, так как ее основной гумусовый комплекс представляет собой систему, на внешней оболочке которой формируется отрицательный заряд, а на внутренней – положительный, что влечет за собой постоянное притягивание положительно заряженных электронов к отрицательным.

Метод похож на тот, что используется в обычных батарейках. Для получения электричества из земли следует погрузить в грунт на глубину полуметра два электрода. Один медный, второй из оцинкованного железа. Расстояние между электродами должно быть примерно 25 см. Грунт между проводниками заливается солевым раствором, а к проводникам подключаются провода, на одном будет положительный заряд, на втором отрицательный.

В практических условиях выходная мощность такой установки составит приблизительно 3Вт. Мощность заряда также зависит от состава грунта. Конечно, такой мощности недостаточно для того, чтоб обеспечить энергоснабжение в частном доме, но установку можно усилить, изменяя размер электродов или последовательно соединив между собой необходимое количество. Проведя первый опыт, можно примерно просчитать, сколько понадобится таких установок, чтоб обеспечить 1 кВт, а далее рассчитать необходимое количество на основе среднего потребления в сутки.

Электричество от двух стержней

Данный способ основан совсем на другой теории и никакого отношения к магнитному или электрическому полю Земли не имеет. А теория эта – о взаимодействии гальванических пар в солевом растворе. Если взять два стержня из разных металлов, погрузить их в такой раствор (электролит), то на концах появится разница потенциалов. Ее величина зависит от многих факторов: состава, насыщенности и температуры электролита, размеров электродов, глубины погружения и так далее.

Такое получение электричества возможно и через землю. Берем 2 стержня из разных металлов, образующих так называемую гальваническую пару: алюминиевый и медный. Погружаем их в землю на глубину ориентировочно полметра, расстояние между электродами соблюдаем небольшое, хватит 20—30 см. Участок земли между ними обильно поливаем солевым раствором и спустя 5—10 мин производим измерение электронным вольтметром. Показания прибора могут быть разными, но в лучшем случае вы получите 3 В.

Примечание. Показания вольтметра зависят от влажности почвы, ее природного солесодержания, размеров стержней и глубины их погружения.

В действительности все просто, получившееся бесплатное электричество – это результат взаимодействия гальванической пары, при котором влажная земля служила электролитом, принцип похож на работу солевой батарейки. Реальный эксперимент о разнице потенциалов на электродах, забитых в землю, можно посмотреть на :

Реальность бесплатной электроэнергии

Каждый нет-нет да задумывается не только об экономии, но и о чём-то бесплатном. Люди вообще любят что-либо получить на халяву. Но основной вопрос на сегодня, . Ведь если мыслить глобально, то скольким приходится человечеству жертвовать, чтобы получить лишний киловатт электричества. А ведь природа не терпит столь жестокого обращения с собой и постоянно напоминает, что следует быть осторожнее, дабы остаться в живых человеческому виду.

В погоне за прибылью человек не особо задумывается о пользе для окружающей среды и уж совсем забывает об альтернативных источниках энергии. А их существует достаточно, чтобы изменить нынешнее положение вещей в лучшую сторону. Ведь используя халявную энергию, которую без труда можно конвертировать в электричество, последнее может стать для человека бесплатным. Ну, или почти бесплатным.

И рассматривая, как получить электричество в домашних условиях, сразу всплывают в памяти самые простые и доступные методы. Хотя для их осуществления и потребуются некоторые средства, в результате само электричество не будет стоить пользователю ни копейки. Причём таких методов не один, и не два, что позволяет выбрать наиболее приемлемый в конкретных условиях способ добычи бесплатной электроэнергии.

https://youtube.com/watch?v=klsLuwAKvt0