Atmega328 — atmega328

Отличие от других плат

Сегодня на рынке можно встретить множество вариантов плат ардуино. Самыми популярными конкурентами Уно являются платы Nano и Mega. Первая пойдет для проектов, в которых важен размер.  Вторая – для проектов, где у схема довольно сложна и требуется множество выходов.

Отличия Arduino Uno от Arduino Nano

Современные платы Arduino Uno и Arduino Nano версии R3 имеют, как правило, на борту общий микроконтроллер: ATmega328. Ключевым отличием является размер платы и тип контактных площадок. Габариты Arduino Uno: 6,8 см x 5,3 см. Габариты Arduino Nano: 4,2 см x 1,85 см. В Arduino UNO используются коннекторы типа «мама», в Nano – «гребень» из ножек, причем у некоторых моделей контактные площадки вообще не припаяны.  Естественно, больший размер UNO по сравнению с Nano в некоторых случаях является преимуществом, а в некоторых – недостатком. С платой большого размера гораздо удобнее производить монтаж, но она неудобна в реальных проектах, т.к. сильно увеличивает габариты конечного устройства.

На платах Arduino Uno традиционно используется разъем TYPE-B (широко применяется также для подключения принтеров и МФУ). В некоторых случаях можно встретить вариант с разъемом Micro USB. В платах Arduino Nano стандартом является Mini или Micro USB.

Естественно, различия есть и в разъеме питания. В плате Uno есть встроенный разъем DC, в Nano ему просто не нашлось места.

Кроме аппаратных, существуют еще небольшие отличия в процессе загрузки скетча в плату. Перед загрузкой следует убедиться, что вы выбрали верную плату в меню «Инструменты-Плата».

Отличия от Arduino Mega

Плата Mega в полном соответствии со своим названием является на сегодняшний день самым большим по размеру и количеству пинов контроллеров Arduino. По сравнению с ней в Uno гораздо меньше пинов и памяти. Вот список основных отличий:

  • Плата Mega использует иной микроконтроллер: ATMega 2560. Но тактовая частота его равна 16МГц, так же как и в Уно.
  • В плате Mega большее количество цифровых пинов – 54 вместо 14 у платы Uno. И аналоговых – 16 / 6.
  • У платы Mega больше контактов, поддерживающих аппаратные прерывания: 6 против 2. Больше Serial портов – 4 против 1.
  • По объему памяти Uno тоже существенно уступает Megа. Flash -память 32/256, SRAM –  2/8, EEPROM – 4/1.

Исходя из всего этого можно сделать вывод, что для больших сложных проектов с программами большого размера и активным использованием различных коммуникационных портов лучше выбирать Mega. Но эти платы дороже Uno и занимают больше места, поэтому для небольших проектов, не использующих все дополнительные возможности Mega, вполне сойдет Uno – существенного прироста скорости при переходе на “старшего” брата вы не получите.

Программный код и программирование МК

В скетче Arduino используются библиотеки для работы с OLED экраном, отображения графических элементов и библиотека для ИК-датчика.

Для программирования микроконтроллера на плате предусмотрены контакты подключения внутрисхемного программатора, но можно в качестве программатора использовать другую плату Arduino Uno/Nano (Arduino as ISP; соответствующий скетч поставляется с Arduino IDE) [].

Изначально автор пытался использовать режим пониженного энергопотребления (sleep) МК в случае продолжительной работы, однако реализовать стабильную работу прибора с использованием режимов пониженного энергопотребления не удалось.

Точность измерения температуры зависит только от ИК-датчика и его состояния, поскольку калибруется он в заводских условиях. Зуммер срабатывает при превышении установленного порога температуры, значение которой задается в программе МК (установлено значение 120 °С).

Распиновка Atmega8

На следующей странице публикуется расположение выводов данного микроконтроллера при использовании разных типов корпусов:

Советую этот листок из даташита распечатать и иметь под рукой. В процессе разработки и сборки схемы очень полезно иметь эти данные перед глазами.

Внимание!

Обратите внимание на такой факт: микросхема микроконтроллера может иметь (и имеет в данной модели) несколько выводов для подключения источника питания. То есть имеется несколько выводов для подключения «земли» — «общего провода», и несколько выводов для подачи положительного напряжения

Изготовители микроконтроллеров рекомендуют подключать соответствующие выводы вместе, т.е., минус подавать на все выводы, помеченные как Gnd (Ground — Земля), плюс — на все выводы помеченные как Vcc.

При этом через одинаковые выводы МК не должны протекать токи, так как внутри корпуса МК они соединены тонкими проводниками! То есть при подключении нагрузки эти выводы не должны рассматриваться как «перемычки».

Загрузка первого скетча: разумеется, мигаем

  1. Чтобы подтвердить работоспособность макета простейшей схемы программирования и проверки работы, откройте скетч «Blink» из базовых примеров, включенных в Arduino IDE.

    Скетч «Blink«

  2. После выбора правильного COM порта скомпилируйте и загрузите в AT328P-PU скетч «Blink«.
    Скетч «Blink»
    Первая попытка прошивки скетча Blink не удалась; можете увидеть, почему произошел сбой? Подсказка: посмотрите на правый нижний угол окна IDE выше, и сравните его с тем же участком окон IDE на скриншотах ниже (на которых прошивка удалась).

    Компиляция скетча BlinkПрошивка скетча Blink
    Конечно, причина неудачи первой попытки прошивки заключается в неправильном выборе COM порта: был выбран COM3, вместо правильного COM6.

Плата Arduino Micro

Arduino Micro представляет собой устройство, основа которого построена на микроконтроллере ATmega 32u4, имеющем встроенный USB-контроллер. Это решение упрощает подключение платы к компьютеру, так как в системе устройство будет определяться как обычная клавиатура, мышь либо COM-порт. Состав устройства следующий:

  • количество входов/выходов – 20 (имеется возможность 7 из них использовать как ШИМ-выходы, а 12 – в роли входов аналогового типа); резонатор кварцевый, настроенный на 16 МГц;
  • micro-USB-разъём;
  • ICSP-разъём, предназначенный для проведения внутреннего программирования;
  • кнопка для сброса.

Все цифровые выводы изделия могут работать в качестве как входов, так и выходов благодаря наличию функций digital Read, pin Mode, digital Write. Напряжение на выводах составляет 5 вольт. Максимальная величина потребляемого или отдаваемого тока с одного вывода составляет 40 мА. Выводы сопрягаются с внутренними резисторами, которые по умолчанию находятся в отключенном состоянии. Они имеют номиналы в 20 кОм – 50 кОм. Отдельные выводы arduino micro, кроме основных, способны выполнять и ряд дополнительных функций:

  1. В последовательном интерфейсе выводы №0 (RX), №1 (TX) применяются для приёма (RX), а также передачи (TX) необходимых данных через встроенный аппаратный приёмопередатчик. Функция актуальна для arduino micro класса Serial. В других случаях связь осуществляется через соединение USB (CDC).
  2. Интерфейс TWI включает выводы микроконтроллера №2 (SDA) и №3 (SCL). Позволяют использовать данные библиотеки Wire.
  3. Выводы под номерами 0, 1, 2, 3 могут быть использованы в роли источников возникающих прерываний. К таковым относятся низкий уровень сигнала; прерывания по фронту, по спаду, при изменении уровня сигнала.
  4. Выводы под номерами 3, 5, 6, 9, 10, 11,13 при использовании функции analog Write способны выводить аналоговый ШИМ-сигнал в 8 бит.
  5. К SPI-интерфейсу относятся выводы на разъёме ICSP. Они не соединяются с цифровыми выводами на плате.
  6. Дополнительный вывод RX LED/SS, который соединён со светодиодом. Последний индицирует процесс по передаче данных с использованием USB. Этот вывод может быть использован при работе с интерфейсом SPI для вывода SS.
  7. Вывод №13 – светодиод, который включается при отправке данных HIGH и выключается при значениях LOW.
  8. Выводы A0 – A5 (отмечены на плате) и A6 – A11 (соответствуют цифровым выводам за номерами 4, 6, 8, 9, 10,12) являются аналоговыми.
  9. Вывод AREF позволяет изменять верхнее значение аналогового напряжения на вышеуказанных выводах. При этом используется функция analog Reference.
  10. С помощью вывода Reset формируется низкий уровень (LOW) и происходит перезагрузка микроконтроллера (кнопка сброса).

Описание пинов и распиновка платы Arduino Nano

На рисунке показаны номера и назначения контактов Arduino Nano (вид со стороны, на которой расположен микроконтроллер Atmega328):

Каждый из 14 цифровых контактов Nano может быть настроен как вход или выход с помощью функций pinMode (), digitalWrite () и digitalRead (). Контакты работают при 5 В. Каждый вывод имеет подтягивающий резистор 20-50 кОм и может выдерживать до 40 мА. Некоторые пины имеют специальные функции:

  • Последовательная шина: 0 (RX) и 1 (TX). Контакты используются для приема (RX) и передачи (TX) данных TTL. Эти контакты подключаются к соответствующим контактам последовательного чипа FTDI USB to TTL.
  • Внешнее прерывание: 2 и 3. Эти выводы могут быть настроены на запуск прерывания по наименьшему значению, по нарастающему или спадающему фронту или при изменении значения. Подробнее см. Функцию attachInterrupt().
  • ШИМ: 3, 5, 6, 9, 10 и 11. Любой вывод обеспечивает 8-битный ШИМ с помощью функции analogWrite().
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Эти контакты используются для связи SPI, которая, хотя и поддерживается оборудованием, не включена в язык Arduino.
  • Светодиод: 13. Встроенный светодиод, подключенный к цифровому выводу 13. Если вывод имеет высокий потенциал, светодиод горит.

Платформа Nano имеет 8 аналоговых входов, каждый с разрешением 10 бит (т. Е. Может принимать 1024 различных значения). Стандартно контакты имеют диапазон до 5 В относительно земли, однако верхний предел можно изменить с помощью функции analogReference (). Некоторые пины имеют дополнительные функции:

I2C: A4 (SDA) и A5 (SCL). Связь I2C (TWI) осуществляется через контакты. Для создания используется библиотека Wire.

Дополнительная пара штифтов платформы:

  • AREF. Опорное напряжение для аналоговых входов. Используется с analogReference().
  • Сброс настроек. Низкий уровень сигнала на выводе перезапускает микроконтроллер. Обычно он используется для подключения кнопки сброса на плате расширения, которая предотвращает доступ к кнопке на самой плате Arduino.

Расшифровка цвета

– серый цвет – физический вывод микроконтроллера Atmega328;

– светло-серый цвет (PD0, PD1 и т д.) – номер порта микроконтроллера, доступный для программ на ассемблере;

– зеленый цвет (ADC0 и т д.) – номера аналоговых выводов;

– синий цвет – контакты портов UART и SPI.

Назначение и обозначения выводов

USB – это USB-порт, предназначенный для подключения ардуины к компьютеру через USB-кабель (требуется разъем USB Mini-B).

VIN – сюда можно подавать питание от внешнего блока питания 7-12 В (блок питания приобретается отдельно). Напряжение будет подаваться на стабилизатор и упадет до 5 В. Поэтому оптимально на этот вывод подать примерно 9 В.

5V – через этот вывод можно запитать плату и от источника питания 5 вольт, однако напряжение должно быть более-менее стабильным, так как оно подается напрямую на микроконтроллер (стабилизатор не задействован), а значит высокое напряжение может убить основной микроконтроллер.

На этот вывод будет зафиксировано напряжение 3,3–3,3 В, которое генерируется внутренним стабилизатором платы. Этот вывод необходим для подключения некоторых внешних устройств, которым для работы требуется 3,3 В, обычно всех типов ЖК-дисплеев. Однако максимальный выходной ток не должен превышать 50 мА.

GND – Земля (заземляющий контакт).

AREF – это опорное напряжение для аналоговых входов. Используется по мере необходимости (настраивается с помощью analogReference()).

IOREF – позволяет узнать рабочее напряжение микроконтроллера. Редко используемый. На китайских столах он полностью отсутствует.

Reset – сбросить микроконтроллер, подать низкий уровень на этот вход.

SDA, SCL – вывод интерфейса TWI / I2C.

D0… D13 – цифровые входы / выходы. На контакте D13 висит встроенный светодиод, который загорается, если на контакте D13 ВЫСОКИЙ.

0 (RX), 1 (TX) – вывод порта UART (последовательный порт).

A1… A5 – аналоговые входы (также могут использоваться как цифровые).

Внешний вид платы Arduino Nano с подписанными выводами

Здесь:

Светодиоды RX + TX – светодиоды – мигают, когда данные передаются через последовательный порт UART (контакты RX и TX).

Кнопка сброса – кнопка перезапуска микроконтроллера;

(другие номиналы см выше)

FTDI USB Chip – микросхема FTDI FT323RL, используемая для подключения Arduino к компьютеру через USB-кабель. Со стороны Arduino это последовательный интерфейс. Этот интерфейс будет доступен на компьютере как виртуальный COM-порт (драйверы для микросхемы FTDI, обычно входящие в состав Arduino IDE, должны быть установлены).

Будет интересно Самые популярные проекты на Arduino

Схематично это выглядит так:

Номер пина, название, тип и описание пинов:

Микроконтроллер Atmel Atmega328p

Параметр

Значение

Тип процессора

8-битный AVR

Флэш-память

32 КБ

SRAM

2 КБ

EEPROM

1 КБ

Количество контактов

28 или 32 контакта:

Максимальная рабочая частота

20 МГц

Внешние прерывания

2

Интерфейс USB

Технические характеристики

8-разрядный микроконтроллер Atmel AVR на базе RISC сочетает в себе 32 КБ флэш- памяти ISP с возможностями чтения во время записи, 1 КБ EEPROM , 2 КБ SRAM , 23 линии ввода-вывода общего назначения, 32 рабочих регистра общего назначения , три гибких таймера / счетчики с режимами сравнения, внутренними и внешними прерываниями , последовательным программируемым USART , байтовым 2-проводным последовательным интерфейсом, последовательным портом SPI , 6-канальным 10-битным аналого — цифровым преобразователем (8 каналов в пакетах TQFP и QFN / MLF ) , программируемый сторожевой таймер с внутренним генератором и пять программно выбираемых режимов энергосбережения. Устройство работает в диапазоне 1,8-5,5 вольт. Пропускная способность устройства приближается к 1 MIPS на МГц. 

Микроконтроллер Atmega328p

Микроконтроллер состоит из нескольких вычислительных блоков:

Арифметико-логическое устройство (АЛУ) (англ. arithmetic logic unit, ALU) — блок процессора, который под управлением устройства управления служит для выполнения арифметических и логических преобразований над данными.

 Блок управления процессором (УУ) (control unit, CU) — блок, устройство, компонент аппаратного обеспечения компьютеров. Представляет собой конечный дискретный автомат. Структурно устройство управления состоит из: дешифратора команд (операций), регистра команд, узла формирования (вычисления) текущего исполнительного адреса, счётчика команд. УУ современных процессоров обычно реализуются в виде микропрограммного автомата и в этом случае УУ включает в себя ПЗУ микрокоманд. УУ предназначено для формирования сигналов управления для всех блоков машины.

Сумматорами называют логические устройства, выполняющие арифметические суммирование кодов двоичного числа

Микроконтроллер Atmega328P и Arduino

В классической линейке устройств Arduino в основном применяются микроконтроллеры Atmel AVR. Следующие МК можно встретить на указанных распространённых платах:

  • ATmega2560 (16 МГц, 256к Flash, 8к RAM, 54 порта, из них до 15 с ШИМ и 16 АЦП). Платы Mega.

  • ATmega32U4 (16 МГц, 32к Flash, 2,5к RAM, 20 портов, из них до 7 с ШИМ и 12 АЦП). Платы Leonardo, Micro, Yun.

  • ATmega328 (16 МГц, 32к Flash, 2к RAM, 14 портов, из них до 6 с ШИМ и 8 АЦП). Платы UnoR3, Mini, NanoR2, Pro, Pro mini, различные варианты плат uno и nano, такие как Wifi Uno и nano + nrf42l01

  • ATtiny85 (20Мгц, 8к Flash, 512б RAM, 6 портов, из них 4 ШИМ и 4 аналоговых). Платы Digispark, также часто применяются вне плат.

  • ATmega168(16Мгц, 16к Flash, 1к RAM, порты и распиновка аналогично ATmega328) Платы Uno R1, Uno R2, Pro mini, NanoR1.

Последовательность действий при сборке платформы Arduino

Чтобы загрузить системный загрузчик (boot loader) в «чистый» Atmega328 IC нам будет необходима какая-нибудь плата Arduino (подойдет любая). Последовательность действий по сборке платформы Arduino будет показана в виде следующей последовательности шагов. Также в конце статьи вы можете посмотреть видео, на котором наглядно представлены все продемонстрированные на рисунках процессы.

Шаг 1. Соберите вместе и аккуратно разложите все необходимые для сборки компоненты.

Шаг 2. Удалите “Arduino Original IC” с платы Arduino с помощью отвертки и вставьте “New Atmega328 IC” на плату Arduino.

Шаг 3. Откройте интегрированную среду разработки Arduino, выберите в ней пункт меню File -> example -> ArduinoISP.

После открытия ArduinoISP выберите Arduino UNO board из пункта меню Tools -> Board -> Arduino Uno.

Затем выберите COM PORT (последовательный порт) из пункта меню Tools -> Serial Port -> COM10.

Затем загрузите ArduinoISP Sketch (кусок программного кода).

Шаг 4. Теперь удалите New IC (ваш микроконтроллер) с платы Arduino и вставьте в нее оригинальный Arduino IC (тот, который был на ней изначально). Загрузите в нее тот же самый ArduinoISP sketch который мы загружали на шаге 3.

Шаг 5. Соберите приведенную ниже схему на макетной плате с New IC (вашим микроконтроллером Atmega328) и с оригинальным микроконтроллером на оригинальной плате Arduino.

Шаг 6. Теперь в интегрированной среде разработки Arduino выберите пункт Tool (инструменты) и выберите в нем пункт Burn Bootloader.

В это время вы увидите как светодиоды Rx и Tx на плате Arduino будут случайно мигать некоторое время. Это значит что Bootloader загружается в новый ATmega 328 IC. После этого интегрированная среда разработки Arduino (Arduino IDE) выдаст сообщение “Done burning bootloader” (то есть загрузка завершена). И теперь вы сможете использовать свой микроконтроллер Atmega328 (‘New IC’) на своей плате Arduino.

Шаг 7. Теперь соберите свою собственную плату Arduino на чистой макетной плате с использованием пайки и компонентов, перечисленных выше в данной статье, следуя схеме, представленной на ниже приведенном рисунке.

Вставьте ‘New IC’ (ваш микроконтроллер) в эту плату. Также вы сможете собрать всю эту систему сразу на печатной плате. Для подключения жидкокристаллического дисплея соедините вашу собранную плату Arduino с оригинальной платой Arduino, используя контакты Rx, Tx, RST and GND оригинальной платой Arduino, как показано ниже на мнемонической схеме или выше на схеме соединений. И загрузите приведенный ниже код.

Удалите оригинальный микроконтроллер с платы когда вы будете загружать код в ваш новый микроконтроллер на макетной плате. Вашу плату Arduino можно запитать с помощью контакта 5v с оригинальной платы Arduino как показано на выше приведенной мнемонической схеме.

Разработка проекта

На современном рынке представлено множество устройств Arduino, имеющих различную комплектацию. Но универсального решения «на все случаи жизни» не существует. В зависимости от поставленной задачи каждый комплект подбирается в индивидуальном порядке. Чтобы избежать ошибок, требуется разработка проекта.

Какие проекты можно создавать на Arduino?

Ардуино позволяет создавать множество уникальных проектов. Вот лишь некоторые из них:

  • Сборка кубика Рубика (система справляется за 0,887 с);
  • Контроль влажности в подвальном помещении;
  • Создание уникальных картин;
  • Отправка сообщений;
  • Балансирующий робот на двух колесах;
  • Анализатор спектра звука;
  • Лампа оригами с емкостным сенсором;
  • Рука-робот, управляемая с помощью Ардуино;
  • Написание букв в воздухе;
  • Управление фотовспышкой и многое другое.

https://youtube.com/watch?v=gVF_XUccMuo

Составление проекта для умного дома

Рассмотрим ситуацию, когда необходимо сделать автоматику для дома с одной комнатой.

Такое здание состоит из пяти основных зон — прихожей, крыльца, кухни, санузла, а также комнаты для проживания.

При составлении проекта стоит учесть следующее:

  • КРЫЛЬЦО. Включение света производится в двух случая — приближение хозяина к дому в темное время суток и открытие дверей (когда человек выходит из здания).
  • САНУЗЕЛ. В бойлере предусмотрен выключатель питания, который при достижении определенной температуры выключается. Управление бойлером производится в зависимости от наличия соответствующей автоматики. При входе в помещение должна срабатывать вытяжка, и загорается свет.
  • ПРИХОЖАЯ. Здесь требуется включение света при наступлении темноты (автоматическое), а также система обнаружения движения. Ночью включается лампочка небольшой мощности, что исключает дискомфорт для других жильцов дома.
  • КОМНАТА. Включение света производится вручную, но при необходимости и наличии датчика движения эта манипуляция может происходить автоматически.
  • КУХНЯ. Включение и отключение света на кухне осуществляется в ручном режиме. Допускается автоматическое отключение в случае продолжительного отсутствия перемещений по комнате. Если человек начинает готовить пищу, активируется вытяжка.

https://youtube.com/watch?v=HeBzkZZRrVQ

Отопительные устройства выполняют задачу поддержания необходимой температуры в помещении. Если в доме отсутствуют люди, нижний предел температуры падает до определенного уровня.

После появления людей в здании этот параметр поднимается до прежнего значения. Рекуперация воздуха осуществляется в случае, когда система обнаружила присутствие владельца. Продолжительность процесса — не более 10 минут в час.

Стоит обратить внимание, что если в доме планируется установка умных розеток, то для управления ими лучше использовать приложения на мобильных устройствах, WIFI или через SMS сообщения. Визуальное программирование для Arduino можно осуществлять с помощью специального приложения FLProg, которое можно скачать с официального сайта http://flprog.ru/

Визуальное программирование для Arduino можно осуществлять с помощью специального приложения FLProg, которое можно скачать с официального сайта http://flprog.ru/.

Распиновка Arduino Pro Mini

Каждый из 14 цифровых выводов Pro, используя функции , , и , может настраиваться как вход или выход. Выводы работают при напряжении 3,3 В. Каждый вывод имеет нагрузочный резистор (стандартно отключен) 20-50 кОм и может пропускать до 40 мА. Некоторые выводы имеют особые функции:

  • Последовательная шина: 0 (RX) и 1 (TX). Выводы используются для получения (RX) и передачи (TX) данных TTL. Данные выводы имеют соединение с выводами TX-0 и RX-1 блока из шести выводов.
  • Внешнее прерывание: 2 и 3. Данные выводы могут быть сконфигурированы на вызов прерывания либо на младшем значении, либо на переднем или заднем фронте, или при изменении значения. Подробная информация находится в описании функции .
  • ШИМ: 3, 5, 6, 9, 10, и 11. Любой из выводов обеспечивает ШИМ с разрешением 8 бит при помощи .
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Посредством данных выводов осуществляется связь SPI, которая, хотя и поддерживается аппаратной частью, не включена в язык Arduino.
  • LED: 13. Встроенный светодиод, подключенный к цифровому выводу 13. Если значение на выводе имеет высокий потенциал, то светодиод горит.

На платформе Pro Mini установлены 6 аналоговых входов, каждый разрешением 10 бит (т.е. может принимать 1024 различных значения). Четыре из них расположены на краю платформы, а другие два (входы 4 и 5) ближе к центру. Измерение происходит относительно земли до значения VCC.  Некоторые выводы имеют дополнительные функции:

I2C: A4 (SDA) и A5 (SCL). Посредством выводов осуществляется связь I2C (TWI), для создания которой используется библиотека Wire.

Существует дополнительный вывод на платформе:

Reset. Низкий уровень сигнала на выводе перезагружает микроконтроллер. Обычно применяется для подключения кнопки перезагрузки на плате расширения, закрывающей доступ к кнопке на самой плате Arduino.