Чем заменить варистор в блоке питания

Содержание

Преимущества и недостатки варисторов

Важными преимуществами нелинейного резистора (варистора) является его стабильная и надежная работа с высокими частотами и большими нагрузками. Он применяется во многих устройствах, работающих с напряжениями от 3 В до 20 кВ, относительно прост и дешёв в производстве и эффективен в эксплуатации. Дополнительными важными преимуществами являются:

  • высокая скорость срабатывания (наносекунды);
  • длительный срок службы;
  • возможность отслеживания перепадов напряжения (безынерционный метод).

Несмотря на то, что данный электронный компонент имеет достаточно много преимуществ, он имеет и недостатки, которые влияют на его применение в различных системах. К ним можно отнести:

  • низкочастотный шум при работе;
  • старение компонента (утрата параметров со временем);
  • большая емкость: зависит от напряжения и типа элемента, находится в диапазоне от 70 до 3200 пФ и влияет на работоспособность устройства;
  • при максимальных значениях напряжения мощность не рассеивается – значительно перегревается и выходит из строя при длительных максимальных значениях напряжения.

Проверка по сопротивлению

Перед проверкой нам нужно выпаять один из выводов варистора, делает это для того, чтобы предотвратить утечку тока по другим элементам цепи, что сделает наши измерения не верными, а результат будет ложным.

Теперь переключим наш мультиметр в режим измерения сопротивления на максимальное значение и измерим сопротивление варистора. Если тестер показывает единицу, либо очень высокое сопротивление(МоМы) – то варистор исправен. Но если там низкое сопротивление, то такой радиоэлемент использовать не стоит, иначе в аварийном режиме может сгореть вся схема.

Будет интересно Как проверить исправность симистора

ВАХ, схема замещения и параметры варисторов

Обычно ВАХ варисторов в документации изображают в логарифмическом масштабе (рисунок 4). При этом на ней можно отметить три характерных области: область токов утечки, область нормальной работы и критическая область. В области токов утечки характеристика имеет линейный вид, а изменение напряжения в широких пределах слабо влияет на величину тока. В области нормальной работы происходит открытие варистора: даже незначительное увеличение напряжения приводит к изменению тока на несколько порядков. Критическая область характеризует работу варистора на пределе его возможностей.

Рис. 4. ВАХ варистора в логарифмическом масштабе

Для того чтобы воспроизвести ВАХ варистора, можно использовать упрощенную схему замещения (рисунок 5). Roff имеет большое сопротивление (сотни МОм) и характеризует сопротивление варистора в режиме малых токов (область токов утечки). Roff достаточно сильно зависит от температуры, поэтому в этой области также явно проявляется температурная зависимость тока утечки. Rx – переменное нелинейное сопротивление с диапазоном значений 0…∞ Ом. В режиме малых токов величиной Rx можно пренебречь, зато в режиме ограничения это сопротивление шунтирует Roff и, по сути, определяет сопротивление варистора. Сопротивление Ron характеризует сопротивление варистора при максимальных токах в критических режимах работы. Индуктивность L характеризует паразитную индуктивность выводов. Паразитная емкость С наравне с паразитной индуктивностью определяет динамические свойства варисторов.

Рис. 5. Эквивалентная схема замещения варистора

Собственные динамические свойства варистора оказываются замечательными. Например, на рисунке 6 представлены диаграммы импульса напряжения на нагрузке без варистора и с параллельно включенным варистором. Скорость срабатывания варистора столь высока, что он практически без задержки реагирует на перенапряжение фронтом всего 500 пс. К сожалению, в данном случае в качестве варистора выступает пластина ZnO, подключенная напрямую к коаксиальной линии. В реальности выводные варисторы имеют огромную паразитную индуктивность, которая практически полностью сводит на нет реальное быстродействие ZnO.

Рис. 6. Собственное быстродействие варистора очень высоко

Паразитная индуктивность вносит задержку, которая выражается в небольшом начальном перенапряжении. Чем выше скорость нарастания импульса, тем выше перенапряжение. На рисунке 7 демонстрируется увеличение напряжения включения варистора при увеличении скорости нарастания импульса.

Рис. 7. Напряжение включения варистора зависит от формы импульса

Варисторы имеют значительную паразитную емкость, которая негативно влияет на работу быстродействующих цепей. Это одна из причин, по которой варисторы не используют для защиты сигнальных линий высокочастотных интерфейсов. Очевидно, что чем больше диаметр диска варистора, тем больше будет его паразитная емкость.

Еще одним важным параметром варисторов является ток утечки. Во многих приложениях, например, в измерительных схемах, высокий ток утечки может существенно ухудшить метрологические характеристики. Кроме того, ток утечки негативно сказывается на общем потреблении схемы, что критично для малопотребляющих устройств.

При выборе варисторов необходимо учитывать различные температурные зависимости. Мы уже отмечали, что в области токов утечки наблюдается сильная зависимость сопротивления варистора от температуры. Кроме того, следует помнить о дерейтинге – уменьшении предельной рассеиваемой мощности при увеличении температуры окружающей среды (рисунок 8).

Рис. 8. Снижение предельной рассеиваемой мощности при увеличении температуры (дерейтинг)

Одним из крупнейших производителей варисторов является компания Littelfuse. Рассмотрим номенклатуру варисторов производства этой компании подробнее.

Назначение и характеристики

Изготавливаются такого типа резисторы путём спекания при высокой температуре полупроводника и связующего материала. В качестве полупроводника используется карбид кремния, находящийся в порошкообразном состоянии, или оксид цинка, а связующего вещества — стекло, лак, смола. Полученный после спекания элемент подвергается металлизации с дальнейшим формированием выводов. По своей конструкции приборы выполняются в форме, похожей на диск, таблетку, цилиндр, или плёночного вида.

Обладая свойством резко уменьшать своё сопротивление при возникновении на его выводах определённого напряжения, варистор применяется в электронных схемах в качестве защитного элемента. При возникновении броска напряжения определённой величины полупроводниковый прибор мгновенно снижает своё внутреннее сопротивление до десятков Ом, тем самым практически закорачивая цепь, не давая импульсу повредить остальные элементы схемы. Поэтому важным параметром варистора является значение напряжения, при котором наступает пробой устройства.

Принцип работы элемента подразумевает его включение параллельно цепи питания. После его срабатывания и уменьшения напряжения на входе он самовосстанавливается до первоначального значения. Из-за малой инерционности это происходит мгновенно.

Основные параметры

Перед тем как проверить варистор на исправность, необходимо понимать не только принцип его действия, но и знать, какими характеристиками он обладает. Как и любой электронный элемент, варистор имеет ряд характеристик, которые позволяют его использовать в различных схемах. Основным параметром является вольт-амперная характеристика (ВАХ). Она наглядно показывает, как меняется ток при той или иной величине напряжения. Изучая ВАХ, можно увидеть что варистор, обладая симметрично-двунаправленной характеристикой, работает как в прямой, так и обратной зоне синусоиды, напоминая стабилитрон.

  • Um — наибольшее допустимое рабочее напряжение для тока переменной или постоянной величины.
  • P — мощность, которую может рассеять на себе элемент без ухудшения своих параметров.
  • W — допустимая энергия в джоулях, которую может поглотить радиоэлемент при воздействии одиночного импульса.
  • Ipp — наибольшее значение импульсного тока, для которого определена форма импульса.
  • Co — ёмкость, значение которой измеряется у варистора в нормальном состоянии.

Но на практике особое внимание уделяется в основном параметру Um. Эта характеристика показывает уровень напряжения, при котором происходит пробой элемента и начинает течь ток

Виды устройств

Разнообразие встречаемых видов варисторов обусловлено тем, что производители стремятся в первую очередь повысить их быстродействие. Поэтому и используются SMD технологии безвыводного монтажа, что позволяет добиваться малого времени срабатывания при скачке входного напряжения. Типовое время срабатывания элементов с выводами находится в пределе 15−25 наносекунд, а SMD — 0,5 наносекунд.

https://youtube.com/watch?v=UYyZf836geE

Маркировка элементов

Независимо от производителя существует стандарт маркировки варисторов. На сам элемент принято наносить цифробуквенный код, в котором зашифровываются основные параметры. Например, для дискового типа это обозначение выглядит как S6K210, где:

  • S — материал, из которого изготовлен варистор;
  • 6 — диаметр корпуса элемента, указывается в миллиметрах;
  • K — величина допуска отклонения;
  • 210 — значение рабочего напряжения, выраженное в вольтах.

На схемах радиоэлемент графически обозначается как перечёркнутый прямоугольник. На перечёркивающей палочке делается полочка, над которой ставится буква U. Подписывается на схемах элемент латинскими буквами RU.

Изготовление варистора

Объясняется все это устройством варистора. Состоит варистор из полупроводника и различных материалов для связывания. Распространена такая связка – карбид кремния и эпоксидная смола. Их сплавляют при высоких температурах. Затем, поверхность варистора покрывается металлом и припаиваются выходы.

Конструкция варистора

Способность проводить большое напряжение через себя варистором обеспечивается материалом – кремнием. При нагревании кристаллы карбида кремния значительно уменьшают свое сопротивление. И ток может спокойно проходить по ним.

Однако, все большее распространение получают варисторы из оксида цинка. Они проще в изготовление и могут пропускать через себя более высоковольтные импульсы. Техника их производства схожа с производством керамических варисторов.

Варисторы бывают различных форм – колбочки, палочки, диски. Все зависит от производителя.

Разные формы варисторов

Информация о варисторах

Для новичков, немного расскажу о варисторах. Варистор — это такой тип резисторов, которые меняют свое сопротивление, в зависимости от напряжения, которое к них подается.

Покажу на примере.

Схема работы варистора при нормальном напряжении

Предположим, что в схеме установлен варистор, к примеру который начинает срабатывать от 270 вольт. Пока напряжение ниже данного значения, сопротивление варистора слишком велико, и напряжение свободно питает плату, минуя варистор.

Схема, как отрабатывает варистор при завышенном напряжении

При подаче около 300 вольт, сопротивление варистора резко уменьшается, после чего он начинает принимать всю нагрузку на себя. При этом, завышенное напряжение не попадает на схему, в чем и проявляется эффект защиты платы.

Когда варистор срабатывает, то вся нагрузка передается на предохранитель, после чего тот сгорает, и спасает плату от дальнейших перегрузок.

Так и случилось в моем примере. Варистор сгорел, чем спас плату блока пттания. Номинал варистора в моей плате был TVR10431. Это варистор, классификационное напряжение которого является 430 вольт. По даташиту, данный варистор начинает срабатывать при напряжении 270 вольт переменного тока.

Проверка варистора мультиметром

Теперь о том, как правильно проверить данный радиоприбор на его пригодность. Самый лучший вариант – это проверка мультиметром. Варисторы проверяются на сопротивление. Если эта характеристика, показываемая мультиметром, большая, то сам прибор находится в отличном состоянии. Если величина малая, то этот элемент лучше нигде не использовать.

Итак, давайте рассмотрим, как пользоваться мультиметром, для определения сопротивления. Запомните, что этот тестовый прибор может измерять напряжение и силу тока. Напомним, что при проверке постоянного напряжения, тестер выставляется в позицию «ACV», при проверке переменного в позицию «DCV». Но нас интересует именно проверка сопротивления.

Если варистор впаян в схему, то его один конец надо обязательно отпаять, чтобы другие элементы цепи не влияли на корректность снятия показаний. Тестер переключается в режим сопротивления. С помощью рукоятки на мультиметре выставляется величина, обозначенная в кОм, соответствующая величине сопротивления самого варистора, которое указывается на корпусе прибора. Обязательно надо учитывать допуск величины. К примеру, если данный показатель варистора составляет 200 кОм, то с учетом допуска (15%) проверку можно проводить в пределах от 170 до 230 кОм. Если выявляется, что параметр элемента больше или меньше этих значений, то его можно считать неисправным.

Принцип работы варистора

Варисторы, Varistors (название образовано от двух слов Variable Resistors — изменяющиеся сопротивления) — это полупроводниковые (металлооксидные или оксидноцинковые) резисторы, обладающие свойством резко уменьшать свое сопротивление с 1000 МОм до десятков Ом при увеличении на них напряжения выше пороговой величины.

В этом случае сопротивление становится тем меньше, чем больше действует напряжение. Типичная вольт-амперная характеристика варистора имеет резко выраженную нелинейную симметричную форму (рисунок 1), то есть он может работать и на переменном напряжении.

Рис. 1. Вольт-амперная характеристика варистора.

Варисторы подсоединяют параллельно нагрузке, и при броске входного напряжения основной ток помехи протекает через них, а не через аппаратуру.

Таким образом, варисторы рассеивают энергию помехи в виде тепла. Так же, как и газоразрядник, варистор является элементом многократного действия, но значительно быстрее восстанавливает свое высокое сопротивление после снятия напряжения.

Достоинством варисторов, по сравнению с газоразрядниками, являются:

  • большее быстродействие;
  • безынерционное отслеживание перепадов напряжений;
  • выпускаются на более широкий диапазон рабочих напряжений (от 12 до 1800 В); о длительный срок эксплуатации;
  • имеют более низкую стоимость.

Варисторы широко применяются в промышленном оборудовании и приборах бытового назначения:

  • для защиты полупроводниковых приборов: тиристоров, симисторов, транзисторов, диодов, стабилитронов;
  • для электростатической защиты входов радиоаппаратуры;
  • для защиты от электромагнитных всплесков в мощных индуктивных элементах;
  • как элемент искрогашения в электромоторах и переключателях.

Как же найти на плате варистор?

По схеме приведённой выше, видно что этот элемент находится рядом с предохранителем в месте прихода на плату проводов питания. Обычно это диск жёлтого или тёмно-зелёного цвета.

На фото варистор указан красной стрелкой. Можно было подумать что варистор это синяя деталь, покрытая чёрной копотью, но на увеличении видно трещины на корпусе варистора, от которого покрылись нагаром расположенные рядом детали.Хорошо это видно и с обратной стороны, где написаны условные обозначения. Даже если их не будет, распознать варистор можно, зная что он подсоединён параллельно нагрузке или по маркировке на его корпусе.

VA1- это варистор, а синяя деталь рядом это конденсатор-С70.

Не путайте их, по форме они одинаковые, так что ориентируйтесь на маркировку и условные обозначения на плате.

После того как вы нашли варистор, его нужно выпаять, чтобы потом на его место установить новый.Для выпаивания варисторов я обычно использую газовый паяльник, потому что не всегда в месте ремонта есть электропитание — на строящемся объекте, на крыше, например.Ещё очень удобно пользоваться оловоотсосом -разогреть место пайки и оловоотсосом удалить расплавившийся припой.

Но для этих целей вполне подойдёт пинцет или обычные плоскогубцы-нужно захватить ножку детали и вытянуть когда припой расплавится.Если у вас плохо плавится припой, то скорее всего он на плате высокотемпературный-так называемый бессвинцовый (может заметили на моей плате надпись PbF — плюмбум фри). В этом случае нужно или увеличить температуру жала паяльника или же капнуть сверху другого более низкотемпературного, место пайки расплавится и можно будет удалить деталь. После этого вставляем новый варистор и припаиваем его.

Для пайки очень удобно пользоваться припоем в виде проволоки у которого внутри уже есть флюс.

Ещё обратите внимание, что большинство плат — двусторонние, поэтому припаивать ножки детали нужно с обеих сторон платы, так как нередко бывает что ножка детали выполняет роль перемычки между дорожками с разных сторон платы. После замены варистора остаётся только поставить новый предохранитель и установить плату на место

После замены варистора остаётся только поставить новый предохранитель и установить плату на место.

Обычно в платах кондиционера стоят варисторы на напряжение 470 В, и предохранители номиналом от 0.5 А до 5 А. Поэтому рекомендую всегда иметь при себе небольшой запас этих деталей.

Для тех, кто хочет нагляднее увидеть процесс , выкладываю видео урок:

https://youtube.com/watch?v=xq7MI14Dldo

Для тех кому требуется отремонтировать плату, путём замены варистора, помогут наши сервисные специалисты, цены смотрите здесь.

Использование пайки волной при монтаже TMOV

На рисунке 7 показан температурный профиль пайки волной, который можно использовать при монтаже TMOV-варисторов. Температурные показатели этого профиля являются типовыми для данного способа автоматизированного монтажа. В то же время допустимый температурный профиль для монтажа TCO оказывается существенно ниже. Фактически профиль, представленный для TCO, соответствует предельному варианту, при котором TCO выходит из строя (срабатывает). Это говорит о том, что для монтажа TCO (даже с высоким значением Tf, например, 142°C) не может использоваться пайка волной.

Уход от ручной пайки TCO позволяет обеспечить существенное снижение стоимости изделия.

Рис. 7. Температурные профили пайки волной для варистора TMOV и TCO (Tf = 142°C)

Принцип работы варистора

Варисторы, Varistors (название образовано от двух слов Variable Resistors — изменяющиеся сопротивления) — это полупроводниковые (металлооксидные или оксидноцинковые) резисторы, обладающие свойством резко уменьшать свое сопротивление с 1000 МОм до десятков Ом при увеличении на них напряжения выше пороговой величины.

В этом случае сопротивление становится тем меньше, чем больше действует напряжение. Типичная вольт-амперная характеристика варистора имеет резко выраженную нелинейную симметричную форму (рисунок 1), то есть он может работать и на переменном напряжении.

Рис. 1. Вольт-амперная характеристика варистора.

Варисторы подсоединяют параллельно нагрузке, и при броске входного напряжения основной ток помехи протекает через них, а не через аппаратуру.

Таким образом, варисторы рассеивают энергию помехи в виде тепла. Так же, как и газоразрядник, варистор является элементом многократного действия, но значительно быстрее восстанавливает свое высокое сопротивление после снятия напряжения.

Достоинством варисторов, по сравнению с газоразрядниками, являются:

  • большее быстродействие;
  • безынерционное отслеживание перепадов напряжений;
  • выпускаются на более широкий диапазон рабочих напряжений (от 12 до 1800 В); о длительный срок эксплуатации;
  • имеют более низкую стоимость.

Варисторы широко применяются в промышленном оборудовании и приборах бытового назначения:

  • для защиты полупроводниковых приборов: тиристоров, симисторов, транзисторов, диодов, стабилитронов;
  • для электростатической защиты входов радиоаппаратуры;
  • для защиты от электромагнитных всплесков в мощных индуктивных элементах;
  • как элемент искрогашения в электромоторах и переключателях.

Принцип действия варистора

Симметричность нелинейной характеристики по показателям вольтамперности определяет основную особенность варистора. Возможность работы при токах постоянного и переменного вида видна по форме данного параметра. В схематическом виде это выглядит следующим образом.

Ток утечки, проходящий через прибор, имеет предельно низкую величину. В данном случае речь идет об имеющем фиксированную емкость диэлектрическом компоненте не пропускающем через себя ток. При этом, в некоторых ситуациях прохождение тока становится возможным, если напряжение резко меняется в диапазоне ±60 Вольт.

Все происходящее во многом аналогично функционированию разрядника. Отличие в том, что результатом становится резкая перемена напряжения, а не возникновение разряда дугового типа. Скачок от нескольких единиц до тысяч Ампер происходит для параметров тока при снижении напряжения. На схеме варистор обычно изображается так:

Графически все это напоминает стандартный резистор с линией, которая перечеркивает его по диагонали. Иногда на нее наносят символ U. Поиск данного компонента на схемах и платах производится при помощи обозначений VA и RU.

Защита определенной цепи происходит при параллельном варианте подключения варистора. Резкий импульс изменения рабочего напряжения сопровождается тепловым рассеиванием энергии в данном элементе, а не его поступлением в электрическое устройство. При аномально больших параметрах импульса варистор сгорит. Обычно это происходит или в виде разрушения его кристалла с коротким замыканием электродов, или разрывом элемента на мелкие части.

Предотвратить такую ситуацию можно методом последовательной установки перед варистором предохранителя на питающем или сигнальном проводе цепи. Таким образом, гарантируется при возникновении мощного импульса разрыв цепи из-за перегорания предохранителя.

Можно говорить о том, что свойства варистора обеспечивают защиту цепи на электро- и информационных линиях от аномальных всплесков напряжения.

Достоинства и недостатки

Для использования варистора следует ознакомиться с его положительными и отрицательными сторонами, поскольку от этого зависит защита электроники. К положительным качествам следует отнести следующие:

  1. Высокое время срабатывания.
  2. Отслеживание перепадов при помощи безинерционного метода.
  3. Широкий диапазон напряжений: от 12 В до 1,8 кВ.
  4. Длительный срок службы.
  5. Низкая стоимость.

У варистора, кроме его достоинств, существуют серьезные недостатки, на которые следует обратить внимание при разработке какого-либо устройства. К ним относятся:

  1. Большая емкость.
  2. Не рассеивают мощность при максимальном значении напряжения.

Емкость полупроводникового прибора находится в пределах от 70 до 3200 пФ и, следовательно, существенно влияет на работу схемы. Эта величина зависит от конструкции и типа прибора, а также от напряжения. Однако в некоторых случаях этот недостаток является достоинством при использовании его в фильтрах. Значение большей емкости ограничивает величину напряжения.

При максимальных значениях напряжения для рассеивания мощности следует применять варисторы-разрядники, поскольку обыкновенный полупроводниковый прибор перегреется и выйдет из строя. Каждому радиолюбителю следует знать алгоритм проверки варистора, поскольку при обращении в сервисные центры существует вероятность заплатить за ремонт больше, чем он стоит в действительности.

Как проверить варистор мультиметром

Существует подробная инструкция по диагностике работоспособности, расписанная до мельчайших деталей. В первую очередь ознакомимся с перечнем инструментов:

  1. Необходимая для разборки корпуса крестовая отвертка. Без нее не получится проникнуть к плате питания.
  2. Очистка производится щеткой. Скопление пыли в этом месте происходит достаточно быстро, что особенно характерно для устройств с компонентами охлаждения.
  3. Паяльник с мощностью до 75 Вт – для работы с силовой частью блока питания.
  4. Припой и канифоль.
  5. Необходимый для замера напряжения мультиметр.

Алгоритм тестирования включает такие операции:

в инструкции, прилагаемой к конкретному устройству, указана схема разборки корпуса. Для каждого варистора данная процедура будет индивидуальной. Нужную информацию можно также получить на сайтах производителей, форумах определенной тематики;
очистка от пыли является обязательным мероприятием после вскрытия печатной платы

Процедура выполняется очень осторожно во избежание повреждений на расположенных в этой зоне деталях. При большом усилии нередки случаи нанесения вреда тиристорам и транзисторам;
после окончания очистки нужно найти варистор

Внешне он может показаться похожим на конденсатор, поэтому внимательно изучите маркировку;

после того, как вы окончательно убедились в том, что нужный элемент найден, проведите тщательный визуальный осмотр. Неисправность довольно часто обнаруживается именно так, ведь сколы и трещины сразу видны. Фактором неполадок будут также почернение в отдельных местах и наличие нагара. В такой ситуации сразу выпаиваем и заменяем устройство. Выбор нового варистора поможет сделать консультант в радиоотделе магазина или расшифровка маркировки изделия;

  • не обнаружив внешних нарушений, производим выпайку варистора для его проверки мультиметром. Без этого получить объективные данные не удастся. Ведь варистор соединен с любым модулем системы параллельным способом;
  • щупы подключаются к зеленым гнездам тестера для выполнения требуемых измерений. Далее следует перевод по красному кругу в режим наибольшего сопротивления при измерении. Есть приборы другого типа, рассматриваемую операцию делают согласно прилагаемой к ним инструкции;
  • делаем соприкосновение щупов к выводам и начинаем замер сопротивления нашего устройства. Данный параметр при правильной настройке всегда бесконечно большой. Если данное условие не выполняется, можно утверждать, что варистор непригоден к работе. Исправить ситуацию может только его замена,

При четком соблюдении всех пунктов инструкции по тестированию вы сумеете сберечь дорогостоящие электронные приборы от поломок и не понесете непредвиденных финансовых расходов.

ЧИТАТЬ ДАЛЕЕ: Токарный станок по дереву: виды, устройство, критерии выбора

Маркировка варисторов

Существует огромное количество варисторов разных производителей, с разным пороговым напряжение срабатывания и рассчитанные на разный ток. Узнать какой стоял варистор можно по его маркировке. Например маркировка варисторов CNR: CNR-07D390K, где:

  • CNR-серия, полное название CeNtRa металлоксидные варисторы
  • 07- диаметр 7мм
  • D — дисковый
  • 390 — напряжение срабатывания, рассчитываются умножением первых двух цифр на 10 в степени равной третьей цифре, то есть 39 умножаем на 10 в нулевой степени получатся 39 В, 271-270 В и т. д.
  • K — допуск 10 %, то есть разброс напряжения может колебаться от номинального на 10 % в любую сторону.

Разборка блока питания и поиск неисправности

Ремонт начал с разборки, и проверки предохранителя. При проверке, мультиметр показал бесконечность, что свидетельствует о обрыве предохранителя.

Блок питания после разборки. Расположение предохранителя на плате.

Зачастую, сгоревший предохранитель является лишь следствием, а причину поломки предстоит еще найти. Для этих целей, я использовал лампу накаливания номиналом 100Вт, подкинув ее вместо предохранителя. В нормальном состоянии, она должна загореться (в момент зарядки сетевых конденсаторов), а потом притухнуть. В дежурном режиме, когда потребление блока питания небольшое, лампа может немного загораться, после чего погаснуть. Такое поведение будет циклично повторятся.

Если лампа ярко загорается, то это может говорить о том, что короткое замыкание в первичной цепи, или же на выходах блока питания есть излишняя нагрузка.

Подкинув лампу, та ярко загорелась.

Лампа накаливания ярко горит при подключении.

Что бы проверить, выдает ли блок питания какие то напряжения, я снова подключил тестер к его выходу. В итоге, тот показал присутствие выходных напряжений .

Выходные напряжения с блока питания

Это был хороший знак, осталось лишь определить причину повышенного потребления тока. Сначала, я было подумал на диодный мост, но в самом начале схемы,немного присмотревшись, я увидел подгоревший варистор. Его неисправность было тяжело заметить, так как он был закрыт термоизоляционной трубкой, сняв которую все стало на свои места. Варистор был прогоревший, и явно вышедший из строя.

Варистор после выпаивания с платы

После снятия термоизоляционной трубки все стало на свои места

Падение напряжения на варисторе. В идеале тестер не должен ничего показать.

Выбор варистора

Чтобы эффективно и гарантированно защитить вашу технику, к выбору варистора необходимо подойти с умом.
Как правило, для защиты бытовой техники используют варисторы с пороговым значением напряжения от 275 до 430 В. Особо углубляться в подбор варисторов с учетом других значений (емкость и т.п) мы вдаваться не будем. Тут есть множество нюансов, которые в формате этой статьи просто не удастся рассмотреть. Для более точного подбора варистора можем посоветовать использование справочников по варисторам. В них указаны все характеристики, которыми обладает тот или иной варистор. Что позволит вам выбрать наиболее подходящий для ваших целей и задач.

Еще одним важным параметром при выборе варистора является скорость срабатывания. Как правило, у большинства варисторов она составляет около 25 нс. Но не всегда этого хватает.

Тогда вам подойдут варисторы с меньшим временем срабатывания. Недостижимым идеалом по скорости срабатывания являются варисторы, изготовленные по технологии многослойной структуры SIOV-CN. Их скорость срабатывания может составлять менее 1 не.

Такие варисторы необходимы для защиты от статического электричества. В бытовой технике, такие варисторы практически не применяются.

Слышали, наверно, про случаи, когда сразу у множества людей сгорала электроника? Это происходит как раз из-за того, что по проводам идет только фаза. Варистор предохраняет и от этого.

Принцип работы варистора

Сопротивление варистора зависит от того, какое напряжение на него поступает. Как правило, до порогового значения, сопротивление варистора велико (более 1-2 мегаОм). При переходе порогового значения напряжение, сопротивление варистора стремительно снижается. Эта особенность варистора отлично помогает в защите электроники от импульсных скачков высокого напряжения. Ведь ток импульса в таком случае идет через варистор и рассеивается в виде тепла.
Однако, если пороговое значение напряжения поддерживается длительное время, то варистор перегревается и “сгорает”.

“Сгорает” в кавычках, так как варистор зачастую взрывается. Или его коротит, и тогда может произойти воспламенение. Для этого и ставят предохранитель перед варистором.

Кстати, при замене плавкого предохранителя, советуем заодно проверить и варистор. Очень часто, что выходом из строя предохранителя бывает умерший варистор. Если этого не сделать, при следующем же скачке напряжения вы рискуете большим, чем варистор и предохранитель.

Для избежания случаев возгорания в варисторы начали впаивать термисторы. Термистор поглощает излишнюю тепловую энергию, что дополнительно предохраняет вашу технику от сгорания. Такие варисторы продаются сразу в сборе.

Параметры

Говоря про варистор, что это такое, нельзя обойти вниманием его характеристики, которые важны в работе:

  1. Классификационное напряжение. Так называют величину, при которой ток в 1 мА протекает через устройство.
  2. Максимальное допустимое переменное напряжение. Под этим понимается величина, при которой варистор срабатывает и начинает выполнять возложенные на него защитные функции.
  3. Максимальное допустимое постоянное напряжение. То же, что и с предыдущим вариантом. Но в данном случае этот параметр касается работы с постоянным током.
  4. Максимальное напряжение ограничения. Это величина, при которой варистор может работать без повреждений. Как правило, указывается отдельно для разных значений тока. Если превысить эту величину, то варистор треснет надвое или даже разлетится на куски.
  5. Максимальная поглощаемая энергия. Указывается в джоулях. Является величиной максимальной энергии импульса, которая может быть рассеяна варистором в виде тепла без угрозы разрушить само устройство.
  6. Время срабатывания. Это промежуток, за который устройство переходит из одного состояния в другое, если было превышено максимальное допустимое напряжение. Как правило, измеряется в десятках наносекунд.
  7. Допустимое отклонение. Это величина, изменение на которую квалификационного напряжения варистора считается нормой. Всегда указывается в процентах. Как можно было понять из статьи ранее, данный параметр обозначается буквой в конце маркировки.

Как же найти на плате варистор

Выглядит обозначение варистора на схеме как классический резистор, перечеркнутый прямой, а в левом углу имеется обозначение буквы U. Обычно данный элемент подписан, как RU или VA.

Основной целью изобретения варистора является обеспечение защиты электрическим цепям. За счет изменения сопротивления структуры полупроводников во время действия большого напряжения элемент берет на себя нагрузку возросшего тока, что позволяет избежать в работе и быту электрического перенапряжения, поломок приборов и возгораний. Сейчас наилучшим видом варистора является многослойный элемент. Он обеспечит лучшую защиту от статического напряжения благодаря максимально короткому времени срабатывания (менее 0,5 нс).