Углеродистые стали
Углеродистые стали при комнатной температуре, как уже было сказано, имеют низкое удельное электросопротивление за счет высокого содержания железа. При 20°С значение их удельного сопротивления находится в диапазоне от 13·10 -8 (для стали 08КП) до 20·10 -8 Ом·м (для У12).
При нагревании до температур более 1000°С способность углеродистых сталей проводить электрический ток сильно снижается. Величина сопротивления возрастает на порядок и может достигать значения 130·10 -8 Ом·м.
э·10 8 , Ом·м Температура, °С Сталь 08КП Сталь 08 Сталь 20 Сталь 40 Сталь У8 Сталь У12 12 13,2 15,9 16 17 18,4 20 13 14,2 16,9 17,1 18 19,6 50 14,7 15,9 18,7 18,9 19,8 21,6 100 17,8 19 21,9 22,1 23,2 25,2 150 21,3 22,4 25,4 25,7 26,8 29 200 25,2 26,3 29,2 29,6 30,8 33,3 250 29,5 30,5 33,4 33,9 35,1 37,9 300 34,1 35,2 38,1 38,7 39,8 43 350 39,3 40,2 43,2 43,8 45 48,3 400 44,8 45,8 48,7 49,3 50,5 54 450 50,9 51,8 54,6 55,3 56,5 60 500 57,5 58,4 60,1 61,9 62,8 66,5 550 64,8 65,7 68,2 68,9 69,9 73,4 600 72,5 73,4 75,8 76,6 77,2 80,2 650 80,7 81,6 83,7 84,4 85,2 87,8 700 89,8 90,5 92,5 93,2 93,5 96,4 750 100,3 101,1 105 107,9 110,5 113 800 107,3 108,1 109,4 111,1 112,9 115 850 110,4 111,1 111,8 113,1 114,8 117,6 900 112,4 113 113,6 114,9 116,4 119,6 950 114,2 114,8 115,2 116,6 117,8 121,2 1000 116 116,5 116,7 117,9 119,1 122,6 1050 117,5 117,9 118,1 119,3 120,4 123,8 1100 118,9 119,3 119,4 120,7 121,4 124,9 1150 120,3 120,7 120,7 122 122,3 126 1200 121,7 122 121,9 123 123,1 127,1 1250 123 123,3 122,9 124 123,8 128,2 1300 124,1 124,4 123,9 — 124,6 128,7 1350 125,2 125,3 125,1 — 125 129,5
Выбор сечения кабелей
Для крупных расчетов можно использовать специализированный калькулятор на справочном сайте либо соответствующее программное обеспечение. Следующий алгоритм применяют для последовательного вычисления рабочих параметров по формулам:
- при передаче в подключенную нагрузку мощности P = 1 600 Вт в линии с напряжением U = 220 V постоянный ток (I) определяют следующим образом: I = P/U ≈ 7,27А;
- сопротивление медного проводника (в обе стороны) длиной 800 м и сечением 2,5 мм кв.: R = (2*I*p)/S = (2*800*0,0175)/2,5 = 11,2 Ом;
- потери по напряжению в этой трассе: ΔU = (2*L*I)/((1/p)*S) = (2*800*7,27)/((1/0,0175)*2,5) = 11 520/ 142,86 = 80,63 V.
Удельное сопротивление
При необходимости последнее выражение несложно математически преобразовать для выбора площади поперечного сечения проводника по суммарному значению подключаемой нагрузки:
S = (2*I*L)/((1/p)*ΔU.
В рассмотренном примере потери напряжения составляют более 36%. Этот результат свидетельствует о необходимости корректировки расчета сопротивления проводника. По действующим нормативам допустимо уменьшение контрольного параметра не более, чем на 5 %. Увеличив диаметр провода, можно получить необходимый результат. При сечении 19 мм кв. напряжение уменьшится до 209,41 V (4,81%).
С учетом увеличенного сопротивления алюминиевого провода предполагаются пропорциональные изменения потерь. Выполнив аналогичный расчет, можно получить рекомендованное сечение 31 мм кв. Использование такого проводника в аналогичных условиях снизит напряжение до 209,2 V, что позволит обеспечить соответствие нормативам – 4,92%.
К сведению. Для проверки расчетных данных можно использовать мультиметр. Измерения выполняют в соответствующем диапазоне с учетом амплитуды сигнала, переменного (постоянного) тока.
Измерение сопротивления кабеля мультиметром
При подключении источника питания переменного тока алгоритм вычислений усложняется. Для таких исходных условий пользуются формулой:
ΔU = ((Pа * Rа + Pр * Rи) *L)/ U,
где:
- Pа (Pр) – активная (реактивная) мощность;
- Rа (Rи) – относительное активное (индуктивное) сопротивление линии в Ом на километр.
Для определенных материалов проводников исходные данные берут из справочника. По аналогии с упомянутыми нормативами уменьшение напряжения не должно быть в общем случае более 5%. Дополнительные ограничения применяют с учетом особенностей электрических сетей и подключаемых потребителей (от 1% до 12%). Действующие правила уточняют по тексту последней редакции ПУЭ.
Приведенные итоги расчетов убедительно подтверждают преимущества меньшего удельного сопротивления медного провода. При использовании алюминиевого аналога значительно увеличивается количество материала для передачи электроэнергии с нормативными потерями. Для комплексного анализа следует учитывать лучшие показатели меди по прочности, гибкости.
Алюминий отличается меньшей стоимостью, легкостью. Но при работе с этим материалом следует исключить вибрационные воздействия и перемещения в процессе эксплуатации. Особо тщательно проектируют изгибы, чтобы сохранить целостность проводника. Электрический контакт нарушается образованием окислов на поверхности изделий, изготовленных из этого металла.
К сведению. В определенных ситуациях многое будет значить свободное место для прокладки трассы. По экономии пространства преимущественными параметрами обладает медь.
Выбор сечения проводника по допустимому нагреву
По мере увеличения силы тока повышается температура проводящего металла. На определенном уровне повреждается слой защитной изоляции, созданный из полимеров. Это провоцирует короткие замыкания и образование пламени. Опасные ситуации предотвращают корректным расчетом площади поперечного сечения. Определенное значение имеет способ прокладки (совместный/ раздельный).
Выбор кабельных изделий с учетом нагрева
Выбор сечения по потерям напряжения
Как показано в расчетах, при большой длине трасы нужно учитывать снижение напряжения и соответствующие энергетические потери. В крупных проектах рассматривают всю цепь тока с распределительными устройствами и подключаемыми нагрузками.
Выбор по допустимым потерям
Для точного определения подходящей кабельной продукции рассматривают особенности процесса эксплуатации. Делают необходимый запас, чтобы предотвратить аварийные ситуации при подключении новых потребителей и бросках напряжения в сети питания.
Железо как проводник в электротехнике
Железо — самый распространенный в природе и технике металл (после водорода, который металлом тоже является). Он и самый дешевый, и имеет прекрасные прочностные характеристики, поэтому применяется повсюду как основа прочности различных конструкций.
В электротехнике в качестве проводника железо используется в виде стальных гибких проводов там, где нужна физическая прочность и гибкость, а нужное сопротивление может быть достигнуто за счет соответствующего сечения.
Имея таблицу удельных сопротивлений различных металлов и сплавов, можно посчитать сечения проводов, выполненных из разных проводников.
В качестве примера попробуем найти электрически эквивалентное сечение проводников из разных материалов: проволоки медной, вольфрамовой, никелиновой и железной. За исходную возьмем проволоку алюминиевую сечением 2,5 мм.
Нам нужно, чтобы на длине в 1 м сопротивление провода из всех этих металлов равнялось сопротивлению исходной. Сопротивление алюминия на 1 м длины и 2,5 мм сечения будет равно
Где R – сопротивление, ρ – удельное сопротивление металла из таблицы, S – площадь сечения, L – длина.
Подставив исходные значения, получим сопротивление метрового куска провода алюминия в омах.
После этого разрешим формулу относительно S
Будем подставлять значения из таблицы и получать площади сечений для разных металлов.
Так как удельное сопротивление в таблице измерено на проводе длиной в 1 м, в микроомах на 1 мм 2 сечения, то у нас и получилось оно в микроомах. Чтобы получить его в омах, нужно умножить значение на 10 -6 . Но число ом с 6 нулями после запятой нам получать совсем не обязательно, так как конечный результат все равно находим в мм 2 .
Как видим, сопротивление железа достаточно большое, проволока получается толстая.
Но существуют материалы, у которых оно еще больше, например, никелин или константан.
Про закон Ома многие слышали, но не все знают, что это такое. Изучение начинается со школьного курса физики. Более подробно проходят на физфаке и электродинамике. Рядовому обывателю эти знания маловероятно пригодятся, но они необходимы для общего развития, а кому-то для будущей профессии. С другой стороны, элементарные знания об электричестве, его устройстве, особенностей в домашних условиях помогут предостеречь себя от беды. Недаром закон Ома называют основным законом электричества. Домашнему мастеру нужно обладать знаниями в области электричества, чтобы не допустить перенапряжения, что может повлечь увеличению нагрузки и возникновению пожара.
Физика явления[ | ]
Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока — электронов проводимости
, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.
В других средах (полупроводниках, диэлектриках, электролитах, неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях.
Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления
материала, из которого он состоит.
Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:
R = ρ ⋅ l S , {\displaystyle R={\frac {\rho \cdot l}{S}},}
где ρ — удельное сопротивление
вещества проводника, Ом·м,l — длина проводника, м, аS — площадь сечения, м².
Сопротивление однородного проводника также зависит от температуры.
Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения.
Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры (в некотором диапазоне) растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.
Проводимость меди и алюминия: удельная проводимость
Электрическая проводимость или электропроводность — это способность тела проводить электрический ток.
Это понятие крайне важно в электротехнике: металлы, хорошо проводящие ток, используются в проводах, плохие проводники или диэлектрики — для защиты людей от электричества. Лучшим проводником является серебро, на втором месте стоит медь (она совсем немного уступает серебру), далее идут золото и алюминий
Лучшим проводником является серебро, на втором месте стоит медь (она совсем немного уступает серебру), далее идут золото и алюминий.
Достоинства и недостатки медных проводов
Медь — это пластичный переходный металл. Имеет золотисто-розовый цвет, встречается в природе в виде самородков. Используется человеком с давних времен — в его честь была названа целая эпоха.
https://youtube.com/watch?v=z1_2swK_Thg
В таблице дано удельное электрическое сопротивление стали и других металлов
Сегодня медные провода часто используют в электронных устройствах. К их достоинствам относятся:
- Высокая электропроводность (металл занимает второе место по этому показателю, уступая только серебру). По сравнению с алюминием медь эффективнее в 1,7 раза: при равном сечении медный кабель пропускает больше тока.
- Сварку, пайку и лужение можно проводить без использования дополнительных материалов.
- Провода обладают хорошей эластичностью и гибкостью, их можно сворачивать и сгибать без особого вреда.
Медь лишь немного уступает серебру
Однако до недавнего времени медные провода проигрывали алюминиевым из-за нескольких недостатков:
- Высокая плотность: при разных размерах медный провод будет весить больше, чем алюминиевый;
- Цена: алюминий в несколько раз дешевле;
- Медь окисляется на открытом воздухе: впрочем, это не влияет на ее работу и легко устраняется.
Какое сопротивление меди и алюминия
Алюминий — это легкий металл, который легко поддается обработке и литью. Обладает высокой электропроводностью: он стоит на 4 месте после серебра, меди и золота.
Важно! Несмотря на ряд достоинств (невысокую стоимость, малый вес, простоту обработки и другие) в долгосрочной перспективе алюминиевые провода менее выгодны, чем медные. В электротехнике значение имеют 2 термина:
В электротехнике значение имеют 2 термина:
- Электропроводность: отвечает за передачу тока от одной точки к другой. Чем выше проводимость металла, тем лучше он передает электричество. При +20 градусах проводимость меди составляет 59,5 миллионов сименс на метр (См/м), алюминия — 38 миллионов См/м. Проводимость медного кабеля практически не зависит от температуры.
- Электросопротивление: чем выше это понятие, тем хуже вещество будет пропускать ток. Удельное сопротивление меди составляет 0,01724-0,0180 мкОм/м, алюминия — 0,0262-0,0295.
Алюминиевые кабели востребованы не меньше медных
Иными словами, медь обладает более высокой проводимостью и меньшим сопротивлением, чем алюминий.
Какое удельное сопротивление стали
Сталь — это металлический сплав железа с углеродом и другими элементами. В ее состав входит не менее 45% железа, содержание углерода колеблется от 0,02% до 2,14%. В зависимости от точного состава сталь используется в строительстве, машиностроении и приборостроении, а также во многих областях, например, в транспорте, народном хозяйстве, при производстве бытовых приборов.
Стальные провода отличаются невысокой проводимостью
Проводимость стали составляет всего 7,7 миллионов См/м, удельное сопротивление — 0,13 мкОм/м, то есть оно довольно высоко. Сталь плохо проводит электричество и не применяется при производстве непосредственно кабелей.
Однако нередко можно встретить внешнюю оцинкованную стальную оплетку, которая защищает провода от механического растяжения.
Также из стали делают ПНСВ — провод нагревательный со стальной жилой, имеющий изоляцию из винила. Его размещают внутри конструкции до заливания бетона и используют в дальнейшем для электрообогрева готового блока. Электричество кабель практически не проводит.
Из стали производят провод ПНСВ
https://youtube.com/watch?v=WK6tWWj1T34
2 Технические показатели – самые главные цифры
Удельный вес аустенитных и жаропрочных сплавов равняется 7,95 гр/см, ферритных и других – 7,7, коэффициент электросопротивления – 0,72–0,9 для всех сталей, кроме ферритных. Электрическое сопротивление последних составляет 0,6. Коэффициент твердости нержавеющих сплавов следующий:
- По шкале Роквелла – 70–88 единиц для жаростойких и аустенитных сталей, 75–88 для ферритных.
- По шкале Бринелля – 120–190 (аустенитные), 135–180 (магнитные) и 145–210 (жаропрочные).
Предел прочности нержавеющих сплавов с аустенитной микроструктурой варьируется от 500 до 690 Н/мм 2 . Все зависит от конкретной марки стали. А вот прочностной предел ферритных сплавов обычно выше – до 900 Н/мм 2 . Другие характеристики рассматриваемых сталей:
- предел упругости – 195–400 Н/мм 2 ;
- вязкость (ударная) – 120–160Дж/см 2 (для ферритных композиций – не более 50);
- температура появления окалины – 840–1120 °С;
- магнитная проницаемость ферритных сплавов – 1,008 единиц (при комнатной температуре).
Предел текучести большинства марок нержавеющих сталей за минуту равняется около 205 МПа. Эта величина справедлива для всех категорий сплавов за исключением ферритных. Показатель текучести последних обычно ниже на 10–20 МПа.
Еще одна важная характеристика рассматриваемых коррозионностойких сплавов – их теплопроводность. Под ней понимают возможность материала пропускать через себя тепловую энергию (передавать ее). Теплопроводность нержавейки равняется 16–20 Вт/м*К. Это очень малый показатель. Для сравнения скажем, что теплопроводность алюминия находится на уровне 200, а меди – 400 Вт/м*К.
https://youtube.com/watch?v=VtdBEPO84mU
Особенности вычислений электросопротивления
Измерение электросопротивления металлов осуществляется при помощи специальных измерительных приборов — микроомметров. На сегодняшний день они выпускаются в цифровом формате, поэтому информация, полученная с их помощью, отличается высокой достоверностью. Объясняется это тем, что металлические изделия характеризуются высокой степенью проводимости и обладают предельно низким сопротивлением.
При использовании микроомметров появляется возможность быстро и безошибочно установить качество контакта и понять, какое электросопротивление оказывают катушки трансформаторов, генераторов, электрических шин, а также электродвигателей.
Используя данные электроприборы, можно с легкостью определить наличие включений других металлов в заготовке. К примеру, вольфрамовый слиток, обработанный золотым напылением, будет показывать проводимость наполовину меньшую, чем слиток золота, не имеющий примесей. Применяя данную методику, можно диагностировать внутренние неисправности и пустоты в проводниках.
https://youtube.com/watch?v=T_O_TF6nI6w
Нормативные данные для расчетов железобетонных конструкций:
Таблица 2.1. Начальные модули упругости бетона согласно СНиП 2.03.01-84*(1996)
Примечания: 1. Над чертой указаны значения в МПа, под чертой — в кгс/см 2 .
2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.
3. Для ячеистого бетона неавтоклавного твердения значения Еb принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.
4. Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент a = 0,56 + 0,006В.
5. Приведенные в скобках марки бетона не точно соответствуют указанным классам бетона.
Физика для средней школы
Сопротивление проводников. Удельное сопротивление
Как уже отмечалось, сила тока в цепи зависит не только от напряжения на концах участка, но также и от свойств проводника, включенного в цепь. Зависимость силы тока от свойств проводников объясняется тем, что разные проводники обладают различным электрическим сопротивлением.
Электрическое сопротивление R — физическая скалярная величина, характеризующая свойство проводника уменьшать скорость упорядоченного движения свободных носителей зарядов в проводнике. Обозначается сопротивление буквой R. В СИ единицей сопротивления проводника является ом (Ом).
1 Ом — сопротивление такого проводника, сила тока в котором равна 1 А при напряжении на нем 1 В.
Применяются и другие единицы: килоом (кОм), мегаом (МОм), миллиом (мОм): 1 кОм = 103 Ом; 1 МОм = 106 Ом; 1 мОм = 10-3 Ом.
Физическую величину G, обратную сопротивлению, называют электрической проводимостью
Единицей электрической проводимости в СИ является сименс: 1 См — это проводимость проводника сопротивлением 1 Ом.
Проводник содержит не только свободные заряженные частицы — электроны, но и нейтральные частицы и связанные заряды. Все они участвуют в хаотическом тепловом движении, равновероятном в любых направлениях. При включении электрического поля под действием электрических сил будет преобладать направленное упорядоченное движение свободных зарядов, которые должны двигаться с ускорением и их скорость должна была бы со временем возрастать. Но в проводниках свободные заряды движутся с некоторой постоянной средней скоростью. Следовательно, проводник оказывает сопротивление упорядоченному движению свободных зарядов, часть энергии этого движения передается проводнику, в результате чего повышается его внутренняя энергия. Из-за движения свободных зарядов искажается даже идеальная кристаллическая решетка проводника, на искажениях кристаллической структуры рассеивается энергия упорядоченного движения свободных зарядов. Проводник оказывает сопротивление прохождению электрического тока.
Сопротивление проводника зависит от материала, из которого он изготовлен, длины проводника и площади поперечного сечения. Для проверки этой зависимости можно воспользоваться той же электрической схемой, что и для проверки закона Ома (рис. 2), включая в участок цепи MN различные по размерам проводники цилиндрической формы, изготовленные из одного и того же материала, а также из разных материалов.
Результаты эксперимента показали, что сопротивление проводника прямо пропорционально длине l проводника, обратно пропорционально площади S его поперечного сечения и зависит от рода вещества, из которого изготовлен проводник:
где — удельное сопротивление проводника.
Удельное сопротивление проводника — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника, изготовленного из данного вещества и имеющего длину 1 м и площадь поперечного сечения 1 м2, или сопротивлению куба с ребром 1 м. Единицей удельного сопротивления в СИ является ом-метр (Ом·м).
Удельное сопротивление металлического проводника зависит от
- концентрации свободных электронов в проводнике;
- интенсивности рассеивания свободных электронов на ионах кристаллической решетки, совершающих тепловые колебания;
- интенсивности рассеивания свободных электронов на дефектах и примесях кристаллической структуры.
Наименьшим удельным сопротивлением обладает серебро и медь. Очень велико удельное сопротивление у сплава никеля, железа, хрома и марганца — «нихрома». Удельное сопротивление кристаллов металлов в значительной степени зависит от наличия в них примесей. Например, введение 1 % примеси марганца увеличивает удельное сопротивление меди в три раза.
Воздействие температур на замеры
Некоторые проводники при низких или высоких температурах могут оказывать существенное воздействие на показатели измерительной аппаратуры. Например, если подсоединить к гальваническому элементу свернутую по спирали проволоку и затем подключить к данной цепи амперметр, будет заметно, как уменьшаются показания измерительного прибора по мере нагревания проводника.
Силе тока присуща обратно пропорциональная зависимость от противодействия. Можно прийти к заключению, что вследствие повышения температуры электропроводимость металла сокращается. Такими свойствами обладают все металлические проводники в той или иной степени, однако у отдельных сплавов изменения электропроводимости практически не происходят.
Интересно отметить, что у жидких проводников и некоторых твердых неметаллов имеется тенденция к уменьшению своего сопротивления при повышении температуры. Но и это свойство металлов ученым удалось обратить в свою пользу. Располагая данными о температурном коэффициенте сопротивления (α) при нагревании отдельных материалов, возможно определять наружную температуру.
Металлопленочные резисторы обладают отличными свойствами термостабильности. Это можно достичь не только благодаря низкому удельному сопротивлению материала, но и благодаря механическому устройству самого терморезистора. Для производства резисторов используется большое количество разнообразных сплавов и металлов.
https://youtube.com/watch?v=oItt1IFg3kM
Химический состав
Химический состав стали С245 по плавочному анализу ковшовой пробы должен соответствовать нормам, приведенным в табл. 1 (табл. 1-2 ГОСТ 27772-88).
углерода | марганца | кремния | серы | фосфора | хрома | никеля | меди | мышьяка |
Массовая доля элемента, %, не более | ||||||||
---|---|---|---|---|---|---|---|---|
0,22 | 0,65 | 0,05-0,15 | 0,050 | 0,040 | 0,30 | 0,08 | ||
Предельные отклонения по массовой доле элементов, % | ||||||||
— | +0,050−0,030 | +0,030−0,020 | +0,005 | — |
- Примечания:
- Допускается увеличение массовой доли марганца до 0,85 %.
- При выплавке стали из керченских руд массовая доля мышьяка — не более 0,15 %.
Допускается обработка стали синтетическими шлаками, вакуумирование, продувка аргоном, модифицирование стали кальцием и редкоземельными элементами из расчета введения в металл не более 0,02 % кальция и 0,05 % редкоземельных элементов (п. 2.10 ГОСТ 27772-88).
Допускается химический анализ стали на содержание хрома, никеля, меди и мышьяка изготовителю не проводить. Требуемый химический состав гарантируются изготовителем. В стали, выплавляемой из керченских руд, определение мышьяка обязательно (п. 2.13.1 ГОСТ 27772-88).
Свариваемость стали гарантируется изготовителем (п. 2.18 ГОСТ 27772-88).
Удельное сопротивление разных материалов
Важно отметить, что сопротивление у металлических монокристаллов с металлами и сплавами разные. Значения различаются из-за химической металлической чистоты, способов создания составов и их непостоянства
Также стоит иметь в виду, что значения меняются при изменении температуры. Иногда сопротивляемость падает до нуля. В таком случае явление называется сверхпроводимостью.
Интересно, что под термической обработкой, например, отжигом меди, значение вырастает в 3 раза, несмотря на то, что доля примесей в проном, антикоррозийном и легком составе, как правило, равна не больше 0,1%.
Обратите внимание! Что касается отжига алюминия, свинца или железа, значение в таких же условиях вырастает в 2 раза, несмотря на наличие примесей в количестве 0,5% и необходимости большей энергии на плавление. Таблица значений составов при температуре 20 градусов Цельсия
Таблица значений составов при температуре 20 градусов Цельсия
В целом, удельное электросопротивление представляет собой физическую величину, которая характеризует способность вещества препятствовать тому, чтобы проходил электроток. По СИ измеряется в омах, перемноженных на метры. Зависит от увеличения температуры вещества. Отыскать значение можно по формуле соотношения общего сопротивления и площади поперечного сечения, поделенного на длину проводника. Что касается удельного сопротивления сплавов, согласно изучениям разных ученых состав их непостоянный, может быть изменен под термообработкой.
Расчетные сопротивления листового проката и труб
Таблица В.5 — Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе листового, широкополосного универсального и фасонного проката
Сталь по ГОСТ 27772 | Толщина проката*, мм | Нормативное сопротивление** проката, Н/мм 2 | Расчетное сопротивление*** проката, Н/мм 2 | ||
Ryn | Run | Ry | Ru | ||
С235 | От 2 до 8 | 235 | 360 | 230/225 | 350/345 |
С245 | » 2 » 20 | 245 | 370 | 240/235 | 360/350 |
Св. 20 » 30 | 235 | 370 | 230/225 | 360/350 | |
С255 | От 2 » 20 | 245 | 370 | 240/235 | 360/350 |
Св. 20 » 40 | 235 | 370 | 230/225 | 360/350 | |
С285 | От 2 » 10 | 275 | 390 | 270/260 | 380/370 |
Св. 10 » 20 | 265 | 380 | 260/250 | 370/360 | |
С345 | От 2 » 20 | 325 | 470 | 320/310 | 460/450 |
Св. 20 » 40 | 305 | 460 | 300/290 | 450/440 | |
» 40 » 80 | 285 | 450 | 280/270 | 440/430 | |
» 80 » 100 | 265 | 430 | 260/250 | 420/410 | |
С345К | От 4 » 10 | 345 | 470 | 335/330 | 460/450 |
С375 | » 2 » 20 | 355 | 490 | 345/340 | 480/465 |
Св. 20 » 40 | 335 | 480 | 325/320 | 470/455 | |
С390 | От 4 » 50 | 390 | 540 | 380/370 | 525/515 |
С440 | » 4 » 30 | 440 | 590 | 430/420 | 575/560 |
Св. 30 » 50 | 410 | 570 | 400/390 | 555/540 | |
С590, С590К | От 10″ 40 | 590 | 685 | 575/560 | 670/650 |
* За толщину фасонного проката следует принимать толщину полки.
** За нормативное сопротивление приняты гарантированные значения предела текучести и временного сопротивления, приводимые в государственных стандартах или технических условиях. В тех случаях, когда эти значения в государственных стандартах или технических условиях приведены только в одной системе единиц — (кгс/мм 2 ), нормативные сопротивления (Н/мм 2 ) вычислены умножением соответствующих величин на 9,81 с округлением до 5 Н/мм 2 . По согласованию с организацией — составителем норм допускается применение значений нормативных сопротивлений, отличных от приведенных в настоящей таблице В.5. *** Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, определенные в соответствии с 3.2, с округлением до 5 Н/мм 2 . В числителе представлены значения расчетных сопротивлений проката, поставляемого по ГОСТ 27772 (кроме стали С590К) или другой нормативной документации, в которой используется процедура контроля свойств проката по ГОСТ 27772 (γm=1,025), в знаменателе — расчетное сопротивление остального проката при γm=1,050. |
Таблица В.6 — Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе труб
Марка стали | ГОСТ | Толщина стенки, мм | Нормативное сопротивление, Н/мм | Расчетное сопротивление, Н/мм | ||
ВСт3кп, ВСт3пс, ВСт3сп | ГОСТ 10705 | До 10 | 225 | 370 | 215 | 350 |
ВСт3пс4, Ст3сп4, 20 | ГОСТ 10706 | 4-15 | 245 | 370 | 235 | 350 |
ГОСТ 8731 | 4-36 | 245 | 410 | 225 | 375 | |
Примечания
1 Нормативные сопротивления для труб из стали марки 09Г2С по ГОСТ 8731 устанавливаются по соглашению сторон в соответствии с требованиями этого стандарта; расчетные сопротивления — согласно 5.2 настоящих норм. Источник Расчетное сопротивление сталинаверное, мой вопрос глуп. но я не понимаю, am glad если объясните Почему в новом металлическом СНиПе II-23-81* в конце даны нормативные и расчетные сопротивления универсального и фасонного проката, а в старом — кроме них еще и нормативные/расчетные сопротивления ПРОФИЛЕЙ по группе конструкций . Например, для стали 09Г2С Ry=3200кг/см^2, но для ТРУБЫ из этой стали Ry=2550кг/см^2 как это так? Ведь трубы — это тоже прокат.. мне так казалось. и, вроде, новый СНиП отменил старый, так почему же вся контора считает трубы на изгиб при Ry=2550кг/см^2 ?? Я — не против, запас — дело хорошее. Но, когда с завода приходят тех. характеристики на трубы и там какая-то хитрая сталь, — зато даны предел текучести и временное сопротивлени, что мне делать? рассчитывать по их данным , деля на гамма М или понижать еще, в расчете на неведомые мне причины по которым трубы несут не 3200 , а 2550 . |
||||||
Ох, странная штука: у меня в руках 2 СНиПа , оба II-23-81*, токо один издания 1990года, а другой — 1988.
тот, кот 1990 — там нет 09Г2С, там в табл. 51* на стр. 64 С345 и Ry=3200,
а тот, кот 1988 — там там в табл. 51* на стр. 66 (продолжение таблицы, начало на с. 63) — трубы из 09Г2С и там Ry=2550