Литий-ионные аккумуляторы в автомобиле Tesla
Вообразите мир, в котором все машины оснащены электродвигателями, а не двигателями внутреннего сгорания. Электромоторы превосходят ДВС практически по всем техническим показателям, да к тому же намного дешевле и надежнее. У ДВС есть существенный недостаток: он выдает достаточный крутящий момент лишь в узком диапазоне скоростей. В общем, электродвигатель – однозначно лучший выбор для автомобиля. Об этом мы писали еще в статье про автомобиль Тесла.
Сравнение электромобилей и автомобилей с ДВС
Но есть одно «узкое место», из-за которого электрическая революция в автопроме постоянно откладывается – это источники питания. Долгое время громоздкие, тяжелые, недолговечные и ненадежные аккумуляторы электромобилей никак не могли составить конкуренцию полному баку бензина. Но все изменилось, когда на рынок вышел производитель электромобилей Тесла.
Именно литий-ионные аккумуляторы использует компания Тесла для своих электрокаров.
Стандартный элемент выдает напряжение 3,7 – 4,2 В. Множество таких элементов, соединенных последовательно и параллельно, образуют модуль.
батарейный модуль Тесла
Литий-ионные элементы при работе выделяют много тепла. При этом высокая температура снижает срок службы и эффективность самих элементов. Для контроля температуры, а также их уровня заряда, защиты от перезаряда и общего состояния элементов питания, служит специальная система управления батареями (Battery management system, сокращенно BMS). В батареях Tesla используется спиртовая система охлаждения. BMS регулирует скорость движения спирта в системе, поддерживая оптимальную температуру батарей.
радиатор для аккумуляторов Тесла
Еще одна важнейшая функция BMS – защита от перезаряда. Допустим, есть три элемента с разной емкостью. Во время зарядки элемент с большей емкостью зарядится сильнее двух остальных. Чтобы этого не допустить, BMS использует так называемое выравнивание заряда элементов (cell balancing). При этом все элементы заряжаются и разряжаются равномерно и защищены от чрезмерного или недостаточного заряда.
равномерный заряд аккумуляторов , благодаря технологии BMS
И в этом преимущество Tesla над технологией аккумуляторов Nissan. У Nissan Leaf серьезная проблема с охлаждением аккумулятора из-за большого размера элементов и отсутствия системы активного охлаждения.
батарея Nissan Leaf и Tesla
Почему нельзя отремонтировать аккумулятор самостоятельно?
Для ремонта контроллера батареи необходим не только специальный инструментарий, но и навыки и знания. Недостаточно понимать азы процессов физики и знать технику безопасности: вы не только подвергнете свою жизнь и здоровье опасности, но и также с большой вероятностью навредите аккумулятору и доведете его до состояния, когда ремонтировать уже будет нечего.
Если вам нужно провести ремонт литиевых аккумуляторов а так же ремонт корпуса аккумулятора в Москве, обращайтесь в сервис по ремонту аккумуляторов Voltbikes. Среди прочего мы делаем ремонт аккумуляторов сигвеев и роботов пылесосов, также мы даём гарантию на свою работу и реанимируем батареи даже в самых тяжелых случаях. Кроме того, мы выполняем ремонт корпуса аккумулятора для погрузчика, делаем ремонт контактов аккумулятора и предоставляем другие услуги по восстановлению целостности и работы батарей питания. Если вам требуется ремонт и зарядка электрических батарей, то оставьте заявку ниже, мы Вам поможем!
Отправить заявку
Консультация в WhatsApp
Как заряжать аккумулятор, правила
Литий-ионные аккумуляторы похожи на людей тем, что они не ведут себя одинаково и работают лучше всего при температурах, которые не являются ни слишком жаркими, ни холодными.
Эти батареи работают лучше при высоких температурах, чем при низких, так как тепло снижает внутреннее сопротивление и ускоряет химическую реакцию внутри батареи. Побочным эффектом этого процесса является то, что он создает нагрузку на батарею, что может привести к сокращению срока службы в жарких условиях в течение продолжительных периодов.
С другой стороны, низкие температуры увеличивают внутреннее сопротивление, что увеличивает нагрузку на аккумулятор и сокращает его емкость. Батареи, которые обеспечивают 100% -ную емкость при 27 ° C, обычно уменьшаются на 50% при -18 ° C и так далее.
Li ion аккумуляторы как правильно заряжать?
Не разряжать полностью
Несоблюдение этих советов и инструкций может привести к повреждению аккумулятора до такой степени, что он станет непригодным для использования. Вы также можете поставить под угрозу свою безопасность и безопасность других людей, если батарея не используется должным образом. В сочетании с несовпадающим зарядным устройством может произойти перегрев или перезарядка, и существует риск возгорания.
Полная разрядка производится не чаще раза в 3 месяца
Как правильно заряжать литий ионные аккумуляторы?
Зарядка ионно-литиевых батарей очень отличается от зарядки никель-кадмиевых или никель-металлогидридных батарей.
Различия заключаются в том, что литий-ионные аккумуляторы имеют более высокое напряжение на элемент. Они также требуют гораздо более жестких допусков на напряжение при обнаружении полной зарядки, а после полной зарядки они не допускают или требуют подзарядки
Особенно важно иметь возможность точно определять состояние полной зарядки, поскольку литий-ионные аккумуляторы не допускают перезарядки
Хранение с небольшим зарядом
Большинство литий-ионных аккумуляторов, ориентированных на потребителя, заряжаются до напряжения 4,2 В на элемент, и это допускает отклонение около ± 50 мВ на элемент. Зарядка сверх этого вызывает напряжение в элементе и приводит к окислению, что сокращает срок службы и производительность. Это также может вызвать проблемы с безопасностью.
Заряжать только оригинальной зарядкой
Зарядку литий-ионных аккумуляторов можно разделить на два основных этапа:
- Заряд постоянного тока: на первой стадии зарядки литий-ионного аккумулятора или элемента тока заряда контролируется. Как правило, это составляет от 0,5 до 1,0 С. (Примечание: для батареи емкостью 2000 мАч скорость зарядки будет равна 2000 мА для скорости зарядки С). Для потребительских элементов LCO и батарей рекомендуется скорость зарядки не более 0,8 ° C.На этом этапе напряжение на ионно-литиевом элементе увеличивается для заряда постоянного тока. Время зарядки может быть около часа для этой стадии.
- Заряд насыщения: Через некоторое время напряжение достигает пика в 4,2 В для элемента LCO. В этот момент элемент или батарея должны войти во вторую стадию зарядки, известную как заряд насыщения. Поддерживается постоянное напряжение 4,2 В, и ток будет постоянно падать. Конец цикла зарядки достигается, когда ток падает примерно до 10% от номинального тока. Время зарядки может быть около двух часов для этой стадии в зависимости от типа элемента и производителя и т. Д.
Эффективность заряда, то есть величина заряда, удерживаемого батареей или элементом, относительно количества заряда, поступающего в элемент, является высокой. Эффективность зарядки составляет от 95 до 99%. Это отражает относительно низкие уровни повышения температуры клеток.
Не перегревать аккумулятор при зарядке
Есть моменты, когда вы не можете использовать аккумулятор в течение длительного периода времени. Вот советы по поддержанию максимальной емкости батареи для длительного хранения.
Наиболее распространённые типы литий-ионных аккумуляторов
Преимущества и недостатки наиболее распространённых типов Li-Ion в относительном представлении (многое зависит от форм-фактора, добавок и конкретной ситуации).
Разделение на типы и маркировка обычно выбирается по катоду. Реже по аноду. Ещё реже по электролиту.
LCO | Литий-кобальтовые с катодом LiCoO2
Наиболее распространённый тип Li-Ion благодаря отличным характеристикам ёмкости (самая высокая энергоёмкость после NCA), мощности и цены. В LCO хуже, чем в других системах: безопасность (требуется хорошая защита и контроль заряда-разряда) и долговечность (но её обычно хватает на цикл жизни одной модели потребительского устройства, такого как смартфон или ноутбук). Из-за дефицита кобальта ячейкам LCO стремительно ищут замену.
LFP | Литий-железо-фосфатные с катодом LiFePo4
Лучшие стороны — безопасность, высокие токи нагрузки и долговечность. В жертву идёт цена и ёмкость. Катоды LFP отличаются по содержанию углерода и удельной поверхности: одни лучше себя показывают при низких температурах (например, электробусы), а другие обеспечивают лучшие показатели по устойчивому сопротивлению и стабильности в высокотемпературных режимах (например, те же источники бесперебойного питания и системы хранения энергии).
NMC | Литий-никель-марганец-кобальт-оксидные с катодом LiNiMnCoO2
Наиболее сбалансированный по характеристикам материал с относительно высокой ёмкостью (примерно, как у LCO без графита на аноде) и уравновешенными свойствами безопасности, мощности, стоимости и долговечности. Наиболее распространённая формула катодного материала: 33% никеля + 33% марганца + 33% кобальта (или 1:1:1). В маркировке может добавляться трёхзначная цифра, обозначающая как раз это соотношение (например, NMC 333 или NMC 811).
NCA | Литий-никель-кобальт-алюминий-оксидные с катодом LiNiCoAlO2
Литий-ионные аккумуляторы с маркировкой NCA особенно востребованы в электротранспорте из-за лучшего сочетания характеристик энергоёмкости (лучше всех в Li-Ion) и долговечности. Основной недостаток — высокая цена. Также бОльших усилий относительно других электрохимических систем требует контроль заряда, разряда, температуры.
LMO | Литий-марганцево-оксидные с катодами LiMn2O4 и Li2MnO3
Литий-марганцевая шпинель на катоде LMO обеспечивает литий-ионному аккумулятору высокую термическую стабильность, сравнительно высокую ёмкость и низкую себестоимость. Подвержен быстрому старению и разрушению при перегреве выше 60°C. На исправление недостатков направлены усилия по усовершенствованию гетероструктуры, чтобы предотвратить воздействие высокоактивного электролита на катод при эксплуатации и в моменты нагрева.
LTO | Литий-титанат-оксидные с анодом Li4Ti5O12
При безупречных характеристиках безопасности, долговечности, температурной стойкости (эффективнее других в морозы -30°C) и при высоком токе разряда (в десять раз превышает его ёмкость, то есть «10C»), быстрой зарядке, напряжении всего ~1,8-2,8В литий-титанат невероятно дорогой и обладает относительно невысокой ёмкостью. Считается многообещающей и перспективной технологией с точки зрения скорости усовершенствования производственных линий (удешевление продукции) и улучшения электрохимических процессов (увеличение ёмкости). Используется сейчас в основном в силовых агрегатах (например, электропоезда, водный и спецтранспорт) и в энергонакопителях (аккумуляция энергии от возобновляемых источников и аварийное питание).
Следует сказать, что на этих электрохимических системах разновидности аккумуляторов и маркировки Li-Ion не заканчиваются. Каждый год появляются новые типы катодов и анодов, разрабатываются добавки в целях улучшения характеристик технологии.
Основное препятствие на пути к массовому распространению и коммерциализации инновационных литий-ионных элементов — дороговизна производства чего-то «необкатанного». Ещё осложняет внедрение усовершенствованных катодов отсутствие заметного прогресса в электролитах (очень часто многообещающие изобретения откладывают до лучших времён, когда появится подходящий электролитический материал).
Характеристики
Компоненты литий-ионного аккумулятора будут влиять на общие характеристики, а химический состав его компонентов создает определенный коридор минимальных и максимальных нагрузок.
Параметр постоянного разряда
Разрядное напряжение Li-ion АКБ довольно высокое, составляет от 3,4 В и выше. Параметр напрямую зависит от того, какие электроды использует производитель для батареи. Саморазряд при этом достаточно низкий, не более 3% в 30 дней.
Емкость
Материалы для производства аккумуляторных батареек 18650 напрямую влияют на его емкость. Минимальный показатель для литий-ионного аккумулятора – 1600 мАч, а максимальная – 3600 мАч.
Вольтаж
Напряжение аккумулятора 18650 намного выше, чем у батареек классов АА или ААА. Именно по этой причине производители выпускают их в больших габаритах, чтобы пользователь случайно не повредил устройство, вставив мощную батарею, вместо классической батарейки. Минимальное напряжение аккумулятора li ion 18650 составляет 2,5 В, а максимальное 4,2 В, в отличие от никелевых аккумуляторов 18650, имеющих вольтаж всего 1,5 В.
Внутреннее сопротивление
Литий-ионные аккумуляторы разделяют на высокомощные, промежуточные и высокоемкие. Зависят эти показатели от количества электродной массы и толщины основы электрода, которая проводит ток. Сопротивление напрямую зависит от количества электродной массы в изделии. В результате производители выпускают аккумулятор 18650 с нормой внутреннего сопротивления от 4 до 15 мОм*Ач.
Срок службы (от чего зависит)
Наиболее важным при хранении литий-ионного аккумулятора является температура и внешние контакты. Следует исключить любое прикосновение 18650 к металлическим предметам, а температуру поддерживать в промежутке от +5 С до +15 С. При этом оптимальная рабочая температура называется +23 С, но работать будет от -20 до +60 градусов Цельсия.
Отдаваемая емкость аккумулятора снизится на 20% только после тысячного цикла работы. Также может происходить саморазряд батареи, к примеру, хранение при +25 градусах Цельсия и стопроцентной зарядке модель 18650 – аккумулятор, характеристики которого соответствуют заявленным производителем, ежемесячно будет терять порядка 1,5% своего заряда.
Устройство и состав литиевой батарейки
Здесь описываются гальванические элементы, работающие на необратимой реакции окисления. Отданный заряд не восстанавливается, батарейка называется одноразовой. Элемент состоит из анода, выполненного из металлического лития, катода из твердых MnO2, Fes2, Cuo, CFx, жидких SO2, SOCl2. Продолжается поиск других солей с высоким сродством к восстановлению. Окислителем выступает активный литий, отдающий электроны. Корпус аккумулятора герметичный, с выводами клемм и их маркировкой. Надпись «do not recharge»- повторно не заряжать, предупредит, что литиевая батарейка одноразовая.
Существует 2 типа батареек по конструкции:
- бобинные;
- спиральные.
Бобинные литиевые батарейки служат до 20 лет, применяются потребителями, не превышающими запрос в 150 мА. Срок службы элементов до 20 лет.
Спиральные конструкции имеют большую поверхность лития, импульсно дают до 4 А, при постоянном токе — 0,1-1,8 А. Но саморазряд этих устройств достигает 10 % в год от первоначальной емкости. Элементы с любым составом катода выпускают в двух типах. Литиевые батарейки могут быть круглыми, призматическими или в форме таблеток.
Крупными и признанными производителями литиевых батареек считают EVE, Minamoto, SAFT, Robiton, Varta, Tekcell. Небольшие производства есть в Китае.
Свойства литиевых батареек с разными анодными парами
В зависимости от химического состава катода в связке с металлическим литием, меняется емкость и напряжение на клеммах элемента, их саморазряд и способность работать в диапазоне температур.
- Li/MnO2 — батарейка литиевая маркируется как «CR». Электролитом является перхлорат лития. Номинальное напряжение 3 В, саморазряд 2,5 % за год, срок годности до 10 лет. Температура рабочей среды -20 +55 С. Форма – преобладает таблетка.
- Li/CuO, по рабочему напряжению 1,2-1,5 В идентичны щелочным, но заряд она вмещает в 3 раза больше. Рабочий температурный интервал -10 +70. Срок службы 10 лет.
- Li/SO2 — одни из самых распространенных видов литиевых батареек. Катод представляет пластификатор с графитом и сажей. Электролитом служит диоксид жидкий с компонентами для электропроводности. Рабочее напряжение 2,6-2,9 В. В конструкции не смогли избежать повышения давления в корпусе и сильный разогрев при КЗ, пришлось ставить предохранитель давления. Литиевые батарейки хорошо работают на морозе до -60 и в жару +70 , сохраняют заряд до 10 лет.
- Li/I2 — тип батарейки без электролита. Химическая реакция 2Li+I2 >2LiI происходит в твердом составе, диффузией. Полученная соль тоже твердая, выступает в роли сепаратора. Работает батарейка до 15 лет, надежны, используются в кардиостимуляторах.
- Li/FeS2 – лучшие литиевые батарейки, востребованы, несмотря на высокую цену. Такие элементы работают с устройствами большой мощности, имеют защиту по току, предохранитель, срабатывающий на 85-90 и клапан сброса давления. Чаще используются в форм-факторе АА.
- Li/CFx – разновидность литиевых батареек, работающих при высокой температуре, до +85 . За 10 лет на саморазряд уходит 20 % емкости. Используются в дефибрилляторах, кардиостимуляторах и портативной электронике.
- Li/SOCl2 – самая энергоемкая литиевые батарейки. Напряжение без нагрузки больше, чем 3,6 В. При работе поддерживается 3,3- 3,5 В. В качестве электролита применен тионилхлорид, агрессивный компонент. Верхний предел работоспособности +(85-130) С. Нижний – минус 60, но при сильно упавшей емкости элемента. Предусмотрена защита от взрыва в виде термовыключателя, плавких предохранителей и клапана избыточного давления.
Особенности литий-ионных аккумуляторов
Прежде чем переходить к разговору о том, возможно ли восстановить такой тип батарей, следует ознакомиться с определенными особенностями их внутреннего устройства. Как и любая АКБ, Li ion аккумулятор превращает химическую энергию в электрическую, благодаря чему становится возможной подача тока для работы того или иного бытового устройства.
Кроме электролита любая литий-ионная батарея снабжена специальной защитной платой, главная задача которой — контролировать уровень нагрева АБК и циклы заряда-разряда. Если батарея перегрелась, контроллер автоматически прекратит ее работу. Также, если напряжен ие внутри неиспользуемого Ion аккумулятора 18650 упадет ниже 2,7 вольт, система сработает так, что АКБ прекратит свое функционирование.
Такая защитная плата установлена внутри литий-ионных батарей по причине их высокой взрывоопасности. Если батарейки использовать правильно, то никаких неприятных вещей не произойдет, потому что технически они рассчитаны на большое количество «заряд-разрядных» циклов. Следует иметь в виду, что если литиевую батарею долго не использовать, после глубокого разряда восстанавливать ее будет довольно проблематично : в таких случаях, она сама по себе разряжается через два-три года. Восстановление литий-ионных аккумуляторов можно попытаться сделать, но долго они после этого проработать не смогут. Однако любителям электроники известны довольно интересные способы «реанимирования» таких аккумуляторов, несмотря на проблематичность самого процесса — хотя бы по причине установленной внутри защитной платы, с которой так и так придется столкнуться, если появится желание ненадолго «поднять» емкость литий-ионной АКБ.
Как правильно разряжать батарею
Независимо от того, используется ли медленная или быстрая зарядка, необходимо следить за тем, чтобы ни один из элементов NiCd не перезаряжался. Поэтому необходимо уметь определять конец заряда. Есть несколько методов достижения этого.
- Базовое зарядное устройство: некоторые базовые зарядные устройства NiCd, которые можно купить, просто заряжают около C / 10. Они не включают в себя таймер и предполагают, что пользователь снимает зарядку, когда заряжается элемент. Этот режим не совсем удовлетворителен, так как ячейки будут перегружены, если пользователь забудет и в результате получит повреждение. Также нет возможности узнать точное состояние зарядки перед началом зарядки.
- Истекшее время / таймер: некоторые из самых основных зарядных устройств предполагают, что элементам потребуется полная зарядка, и, зная их емкость, им можно дать заряд в течение заданного времени. Это простой способ зарядки никель-кадмиевых элементов и аккумуляторов. Одним из основных недостатков этой формы прекращения зарядки является то, что предполагается, что все батареи полностью разряжены до того, как их зарядить. Чтобы обеспечить разрядку аккумуляторов, зарядное устройство может поместить элемент в цикл разрядки.Это не особенно точный метод перезарядки батарей и элементов, потому что количество заряда, которое они могут удерживать, изменяется в течение их полезного срока службы. Однако это лучше, чем отсутствие какой-либо формы прекращения заряда.
- Подпись напряжения: Подпись напряжения Зарядные устройства NiCd используют подпись напряжения никель-кадмиевого элемента, чтобы определить, где он находится в пределах своего цикла зарядки.Обнаружено, что, когда никель-кадмиевая батарея полностью заряжена, наблюдается небольшое падение напряжения на клеммах. Микропроцессорные зарядные устройства способны контролировать напряжение и определять точку полной зарядки, когда они прекращают процесс зарядки.Эту форму прекращения заряда NiCd часто называют отрицательным дельта-напряжением, NDV. Он обеспечивает наилучшую производительность при быстрой зарядке, поскольку отрицательная точка дельта-напряжения более очевидна при использовании быстрой зарядки.
- Повышение температуры. Метод определения времени окончания быстрой зарядки – это метод измерения температуры. Проблема в том, что это неточно, потому что ядро ячейки будет иметь гораздо более высокую температуру, чем периферия. Для нормальных скоростей зарядки скорость повышения температуры может быть недостаточной для точного определения.
Шуруповерт с литиевой батареей
В нем могут быть установлены три вида аккумуляторов, которые отличаются по своему катодному составу:
- кобальта-литиевые;
- литий-феррофосфатные;
- литий-марганцовые.
Шуруповерт с литиевой батареей отличается от других видов аккумуляторов низким уровнем саморазрядки
Еще одно важное преимущество — не требует обслуживания. При поломке литиевого аккумулятора его можно выбросить, так как он не наносит вреда человеку и окружающей среде
Единственный минус — низкая зарядка литиевых батарей, а также высокие требования к безопасности. Тяжело выполнить его зарядку при отрицательных температурах.
Какой аккумулятор лучше, кислотный или литиевый?
Для обслуживания техники долгое время не было альтернативы свинцовым кислотным аккумуляторам. Для лодочных моторов, автомобилей создавались батареи, называемые стартовыми. Чтобы постоянно отдавать энергию моторам на электрокарах, электромобилях, штабелерах и подобной технике применяют мощные тяговые аккумуляторы.
Есть ли альтернатива кислотным и гелевым моделям?
Требования к обслуживанию. Кислотный аккумулятор большой емкости заряжается до 12 часов. При неполной емкости может отработать 4-6 часов. Требуется устанавливать сменный, что отнимает время. Только полный цикл зарядки спасет аппарат от потери емкости. Для зарядки используется вентилируемое помещение, так как выделяющийся водород взрывоопасен.
Литий-ионный аппарат с активным компонентом LiFePO4 имеет большую емкость, подзаряжается в течение часа. Его можно подпитать энергией в моменты простоя, даже за 15 минут. С одним аккумулятором можно организовать круглосуточную работу. Именно, литий-железо-фосфатные аккумуляторы активно вытесняют громоздкие аккумуляторы из складских помещений.
Срок службы. Кислотные аккумуляторы выдерживают до 1200 перезарядки, а литиевые 3000-5000 раз, по заявлениям производителей. Они необслуживаемые, не требуют ухода.
Экономический фактор. Литий-ионные аккумуляторные батареи дороже кислотных в 3 раза. Но покупать их экономически выгодно. При зарядке и таком же объеме работы тратится на 30 % меньше энергии. На 65 % сокращается стоимость их обслуживания. Не требуется помещения для зарядки. Инвестиции окупаются в течение двух лет.
Сложнее определиться, какие стартовые аккумуляторы лучше литиевые или кислотные. Здесь следует учитывать самое главное требование литиевых систем – исключение перезаряда и глубокой разрядки. Но уже ведущие производители легковых автомобилей перестраивают бортовую систему, подключают конвертор для передачи энергии от генератора.
Причины, по которым трудно переделать автомобиль под литиевые аккумуляторы:
- генератор не может подавать энергию напрямую в аккумулятор – возможен перезаряд;
- силовые системы – лебедку, бортовые системы необходимо адаптировать под особенности аккумулятора;
- эксплуатировать литиевый аккумулятор для автомобиля пола можно до -20 , в дальнейшем емкость резко снижается.
На подходе автомобильные аккумуляторы, не снижающие емкости при – 40, стоимость аппаратов неуклонно снижается.
О массовой замене аккумуляторов на литиевые говорить преждевременно. Переделка автомобиля под аккумулятор может обойтись дороже самого источника энергии.
Компоненты тонкопленочной батареи
Катодные материалы
Катодные материалы в тонкопленочных литий-ионных батареях такие же, как и в классических литий-ионных батареях. Обычно это оксиды металлов, которые осаждают в виде пленки различными способами.
Ниже показаны металлооксидные материалы, а также их относительная удельная емкость ( Λ ), напряжения холостого хода ( V oc ) и плотности энергии ( D E ).
Λ (Ач / кг) | V OC (В) | D E (Втч / кг) | |
---|---|---|---|
LiCoO 2 | 145 | 4 | 580 |
LiMn 2 O 4 | 148 | 4 | 592 |
LiFePO 4 | 170 | 3,4 | 578 |
D E = Λ V OC |
Λ : емкость (мАч / г) |
V OC : потенциал холостого хода |
Методы осаждения катодных материалов
Существуют различные методы нанесения тонкопленочного катодного материала на токосъемник.
Импульсное лазерное напыление (PLD)
При импульсном лазерном напылении материалы изготавливаются путем управления такими параметрами, как энергия и плотность энергии лазера, температура подложки, фоновое давление и расстояние между мишенью и подложкой.
Золь-гель обработка
Золь-гель обработка позволяет гомогенно смешивать исходные материалы на атомном уровне.
Электролит
Самая большая разница между классическими литий-ионными батареями и тонкими гибкими литий-ионными батареями заключается в используемом материале электролита . Прогресс в области литий-ионных аккумуляторов в такой же степени зависит от улучшения электролита, как и от материалов электродов, поскольку электролит играет важную роль в безопасной эксплуатации аккумуляторов. Концепция тонкопленочных ионно-литиевых батарей все больше и больше мотивировалась производственными преимуществами, которые дает полимерная технология для их использования в качестве электролитов. LiPON, оксинитрид лития-фосфора, представляет собой аморфный стеклообразный материал, используемый в качестве материала электролита в тонкопленочных гибких батареях. Слои LiPON осаждаются на материал катода при температуре окружающей среды с помощью высокочастотного магнетронного распыления. Это образует твердый электролит, используемый для ионной проводимости между анодом и катодом. LiBON, оксинитрид лития-бора, представляет собой еще один аморфный стеклообразный материал, используемый в качестве твердого электролита в тонкопленочных гибких батареях. Твердые полимерные электролиты обладают рядом преимуществ по сравнению с классическими жидкими ионно-литиевыми батареями. Вместо того, чтобы иметь отдельные компоненты электролита, связующего и сепаратора, эти твердые электролиты могут действовать как все три. Это увеличивает общую плотность энергии собранной батареи, потому что составляющие всего элемента более плотно упакованы.
Материал сепаратора
Сепараторные материалы в литий-ионных батареях не должны блокировать транспортировку ионов лития, одновременно предотвращая физический контакт материалов анода и катода, например, короткое замыкание. В жидкостной ячейке этот разделитель будет представлять собой пористую стеклянную или полимерную сетку, которая позволяет переносить ионы через жидкий электролит через поры, но предохраняет электроды от контакта и короткого замыкания. Однако в тонкопленочной батарее электролит является твердым веществом, что удобно как для транспортировки ионов, так и для физического разделения без необходимости в специальном сепараторе.
Токосъемники в тонкопленочных батареях должны быть гибкими, иметь большую площадь поверхности и быть экономичными. Было показано, что серебряные нанопроволоки с улучшенной площадью поверхности и нагрузочным весом работают как токоприемник в этих аккумуляторных системах, но все же не так рентабельны, как хотелось бы. При распространении графитовой технологии на литий-ионные батареи, пленки из углеродных нанотрубок (УНТ) , обработанные в растворе , рассматриваются для использования в качестве как токосъемника, так и материала анода. УНТ обладают способностью интеркалировать литий и поддерживать высокие рабочие напряжения, при этом низкая массовая нагрузка и гибкость.
Индикатор зарядки литий-ионного аккумулятора
Выполните следующие действия, чтобы сохранить работоспособность вашего аккумулятора.
Принимая во внимание количество энергии, запасенной в ионно-литиевых батареях, а также характер их химического состава и т. Д., Необходимо обеспечить, чтобы батареи заряжались надлежащим образом и с помощью соответствующего зарядного устройства и оборудования
Зарядные устройства для литий-ионных аккумуляторов или аккумуляторные блоки оснащены различными механизмами для предотвращения повреждений и опасности. Часто эти механизмы предусмотрены в батарейном блоке, который затем можно использовать с простым зарядным устройством.
Механизм, требуемый литий-ионной батареей для зарядки и разрядки, включает в себя:
- Зарядный ток: ток зарядки должен быть ограничен для литий-ионных аккумуляторов. Обычно максимальное значение составляет 0,8C, но более низкие значения обычно устанавливаются, чтобы дать некоторый запас. Для некоторых батарей возможна более быстрая зарядка.
- Температура зарядки: температура заряда литий-ионной батареи должна контролироваться. Элемент или батарея не должны заряжаться, если температура ниже 0 ° C или выше 45 ° C.
- Зарядный ток: защита от тока разряда необходима для предотвращения повреждения или взрыва в результате коротких замыканий.
- Перенапряжение: защита от перенапряжения необходима для предотвращения слишком высокого напряжения, прикладываемого к клеммам батареи.
- Защита от перезарядки: Схема защиты от перезарядки необходима для остановки процесса зарядки литий-ионных аккумуляторов, когда напряжение на элементе превышает 4,30 Вольт.
- Защита от обратной полярности: литиево-ионная батарея необходима для защиты от неправильной полярности, так как это может привести к серьезным повреждениям или даже взрыву.
- Литий-ионная переразрядка: защита от переразряда необходима для предотвращения падения напряжения батареи ниже примерно 2,3 В в зависимости от производителя.
- Перегрев: защита от перегрева часто используется для предотвращения работы батареи, если температура поднимается слишком высоко. Температура выше 100 ° C может нанести непоправимый ущерб.
При использовании ионно-литиевой батареи обязательно использовать зарядное устройство производителя, поскольку в зарядном устройстве и батарейном блоке могут использоваться различные элементы защиты, в зависимости от конструкции.
Как сделать своими руками, пошагово
Понадобится один из четырех операционных усилителей (IC1a) и транзистор для создания виртуальной шины 2.5 В через GND, которая поглощает ток, который протекает через часть зарядного устройства схемы.
R2 и R3 представляют собой делитель напряжения с выходным напряжением около 2,5 В в зависимости от допусков резистора, операционный усилитель управляет транзистором таким образом, что независимо от тока, 2,5 В всегда будет падать через него.
Четыре операционных усилителя и светодиодные индикаторы питаются напрямую от источника питания 12 В, но на остальной цепи подается питание 9,5 В; между 12v и 2.5v рельсами.
Схема разработана таким образом, что любой, кто имеет базовые навыки пайки, может легко ее построить.