Зависимость сопротивления проводника от температуры

Характеристики вещества

Полупроводники можно разделить на следующие подгруппы:

  • Электронные (вида n),
  • Дырочные (вида p).

Важно! В веществах вида n в роли носителей можно рассматривать электроны, которые, при возникновении тока, передвигаются по всему полупроводнику в хаотичном порядке. Как выглядят полупроводниковые приборы

Как выглядят полупроводниковые приборы

В дырочном виде p в роли носителей зарядов рассматриваются так называемые отверстия (под ними понимается свободное пространство между атомами, на место которого может стать другой электрон). Дырки считаются равносильными положительному заряду. При возникновении тока внутри проводника вида p, электроны выполняют только направленные скачки между ближайшими атомами.

Важно! При перескоке заряда из одного отверстия в другое, дырка передвигается в противоположном направлении, что влечёт за собой образование тока. Вам это будет интересно Понятие электрического тока

Вам это будет интересно Понятие электрического тока

Виды и деление полупроводников

Наименований ПП много, и для удобства они классифицируются по различным признакам. Самое крупное размежевание видов полупроводников производят по составу:

  1. Простые материалы: кристаллические химические элементы селен Se, кремний Si, германий Ge заняли собственную нишу использования и применяются самостоятельно, в отличие от других, которые чаще добавляют легирующими присадками для получения составных ПП. Это элементы сурьма Sb, углерод C, теллур Te, бор B, йод I, сера S.

  2. Сложные полупроводниковые материалы — в них входят химические сочетания в количестве 2, 3 и более наименований. Состоящие из двух единиц ПП называют бинарными и выделяют компонент, металлические признаки которого проявляются слабее: сульфиды, если есть сера, теллуриды (Te), арсениды (As), карбиды , селениды (Se).
  3. Оксиды металлов — вольфрама, кадмия, титана, меди, молибдена и иных. В эту группу входят композиции, сделанные на основе титаната бария, цинка и других соединений неживой природы с небольшими добавками.
  4. Органические полупроводники — это красители или природные пигменты в виде порошков аморфных и кристаллических, плёнок.

https://youtube.com/watch?v=xtAnWFut8EY

Транзисторы состоят из 3 ПП: 2 обладают равной способностью пропускать ток, а у третьего проводимость с противоположным значением. Элементы устройства называют базой, коллектором и эмиттером. Используются как усилители электрических сигналов.

Тиристоры — преобразователи движения тока. От транзисторов отличаются предназначением: изменить ток они не могут: их функция — переключать проводимость на высокую или низкую.

Оптика полупроводников

Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот ω<Egℏ{\displaystyle \omega <E_{g}/\hbar } , где Eg{\displaystyle E_{g}} — ширина запрещённой зоны, ℏ{\displaystyle \hbar } — постоянная Планка. Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний, германий, арсенид галлия) она лежит в инфракрасной области спектра.

Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона 2πλ{\displaystyle 2\pi /\lambda }, где λ{\displaystyle \lambda } — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными. Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон. Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами.

Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.

Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.

При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость.

При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решётки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.

Примеры полупроводников

Оксиды являются прекрасными изоляторами. Примеры полупроводников этого типа – оксид меди, оксид никеля, двуокись меди, оксид кобальта, оксид европия, оксид железа, оксид цинка.

Процедура выращивания полупроводников данного типа не совсем изучена, поэтому их применение пока ограничено за исключением оксида цинка (ZnO), используемого в качестве преобразователя и в производстве клеящих лент и пластырей.

Помимо этого оксид цинка применяется в варисторах, датчиках газа, голубых светодиодах, биологических сенсорах. Используется полупроводник и для покрытия оконных стекол с целью отражения инфракрасного света, его можно встретить в ЖК-дисплеях и солнечных батареях.

Слоистые кристаллы представляют собой двойные соединения, подобные дииодиду свинца, дисульфиду молибдена и селениду галлия. Они отличаются слоистым строением кристалла, где действуют ковалентные связи значительной силы. Полупроводники такого типа интересны тем, что электроны ведут себя в слоях квази-двумерно. Взаимодействие слоев изменяется введением в состав сторонних атомов. Дисульфид молибдена (MoS2) применяется в высокочастотных выпрямителях, детекторах, транзисторах, мемристорах.

Органические полупроводники представляют собой широкий класс веществ: нафталин, антрацен, полидиацетилен, фталоцианиды, поливинилкарбазол. У них есть преимущество перед неорганическими: им легко придать нужные качества. Они обладают значительной оптической нелинейностью и поэтому широко используются оптоэлектронике.

Кристаллические аллотропы углерода тоже относятся к полупроводникам:

  • Фуллерен со структурой в виде выпуклого замкнутого многогранника.
  • Графен с одноатомным слоем углерода обладает рекордной теплопроводностью и подвижностью электронов, повышенной жесткостью.
  • Нанотрубки – свернутые в трубку пластины графита в нанометров в диаметре. В зависимости от сцепления могут проявлять металлические или полупроводниковые качества.

Примеры магнитных полупроводников: сульфид европия, селенид европия и твердые растворы. Содержание магнитных ионов влияет на магнитные свойства, антиферромагнетизм и ферромагнетизм. Сильные магнитооптические эффекты магнитных полупроводников позволяют использовать их для оптической модуляции. Применяются они в радиотехнических, оптических приборах, в волноводах СВЧ-устройств.

Полупроводниковые сегнетоэлектрики отличаются наличием в них электрических моментов и возникновением спонтанной поляризации. Пример полупроводников: титанат свинца (PbTiO3), теллурид германия (GeTe), титанат бария BaTiO3, теллурид олова SnTe. При низких температурах имеют свойства сегнетоэлектрика. Эти материалы применяются в запоминающих, нелинейно-оптических устройствах и пьезодатчиках.

2.3 Высокочастотные полупроводниковые диоды.

В высокочастотных полупроводниковых диодах так же, как и в выпрямительных
диодах, используется несимметричная проводимость p-n перехода.

Они работают на более высоких частотах, чем выпрямительные диоды (до
сотен Мгц), и подразделяются на универсальные и импульсные. Универсальные
в.ч. диоды применяются для получения высокочастотных колебаний тока
одного направления, для получения из модулированных по амплитуде в.ч.
колебаний — колебаний с частотой модуляции (детектирование), для преобразования
частоты. Импульсные диоды применяются
как переключающий  элемент в импульсных схемах.

При работе ПД на высокой частоте большую роль играет емкость перехода,
обусловливающая инерционность диода. Если диод включен в выпрямительную
схему, то влияние емкости приводит к ухудшению процесса выпрямления

Кроме того, эффективность выпрямления снижается за счет того, что часть
подведенного к p-n переходу внешнего напряжения падает на сопротивлении
базы диода. Отсюда следует, что p-n переходы полупроводниковых
диодов, работающих на высокой частоте должны обладать малой емкостью
и малым сопротивлением базы
.

Для уменьшения емкости уменьшают площадь перехода, а для уменьшения
сопротивления базы уменьшают толщину базы.

Требование уменьшения инерционных свойств в.ч. диода и, в связи с этим
уменьшение площади перехода, времени жизни неравновесных неосновных
носителей заряда и толщины базы становится особенно важным в том случае,
если диод работает в импульсной схеме в качестве переключателя. Переключатель
имеет два состояния: открытое и закрытое. В идеальном случае переключатель
должен иметь нулевое сопротивление в открытом состоянии, бесконечно
большое — в закрытом, и мгновенно переходить из одного состояния в другое.
В реальном случае при переключении в.ч. диода из закрытого состояния
в открытое и обратно стационарное состояние устанавливается в течении
некоторого времени, которое называется временем переключения и характеризует
инерционные свойства диода. Наличие инерционных свойств при быстром
переключении приводит к искажению формы переключаемых импульсов.

При изготовлении импульсных диодов в исходный полупроводник вводятся
элементы, являющиеся эффективными центрами рекомбинации (Au, Cu, Ni
), что снижает время жизни неравновесных носителей заряда. Толщина n-
области (базы) уменьшается до значений меньших, чем значение диффузионной
длины пробега дырок . Это одновременно уменьшает и время жизни
неравновесных носителей и сопротивление базы. Конструктивно в.ч. диоды
выполняются в виде точечной конструкции или плоскостной с очень малой
площадью перехода.

Механизм электрической проводимости

Проводимость таких материалов, как полупроводники, имеет иной характер, чем у обычных проводников. Главное условие возникновения тока в материалах – наличие достаточного количества свободных электронов. Кристаллическая структура полупроводниковых материалов характеризуется ковалентными химическими связями, когда каждый электрон ядра связан с двумя рядом стоящими атомами.

Электроны веществ участвуют в переносе заряда при получении некоторой энергии. Работа энергии для полупроводников имеет значение порядка единиц электрон-вольт (эВ). У проводников это значение меньше, у диэлектриков, соответственно, больше.

Дырка

Важная особенность рассматриваемых материалов – они могут обладать особым типом проводимости – дырочной. В электронной оболочке атома в момент отрыва и ухода электрона образуется свободное место, которое принято именовать дыркой. Соответственно, дырка имеет положительный заряд, направление движения противоположно потоку электронов.

Энергетические зоны

Все вещества характеризуются энергетическими зонами электронов оболочки атома. Таких зон три:

  • Зона проводимости;
  • Запрещенная зона;
  • Зона валентности.

Название запрещенной зоны говорит о том, что электрон находиться в ней не может. Поэтому для возникновения тока электрон должен переместиться в зону проводимости из стабильной валентной зоны. Чем шире запрещенная зона, тем свойства материала приближаются к диэлектрикам.

Подвижность

При воздействии электрического поля в материалах начинается движение носителей заряда. В рассматриваемом случае это электроны и дырки. Зависимость между скоростью движения и величиной напряженности электрического поля при отсутствии влияния нагрева называется подвижностью. Рост числа взаимных столкновений является причиной того, что при увеличении концентрации подвижность падает.

Электронно-дырочный переход

У полупроводника имеется два типа электропроводимости – электронная и дырочная. В чистых полупроводниках (без примесей) у дырок и электронов концентрация (N Д и N Э соответственно) одинаковая. По этой причине такая электропроводность называется собственной. Суммарное значение тока будет равно:

I = I Э+I Д.

Но если учесть тот факт, что у электронов значение подвижности больше, чем у дырок, можно прийти к такому неравенству:

I Э > I Д.

Подвижность заряда обозначается буквой М, это одно из главных свойств полупроводников. Подвижность – это отношение двух параметров. Первый – скорость перемещения носителя заряда (обозначается буквой V с индексом «Э» или «Д», в зависимости от типа носителя), второй – это напряженность электрического поля (обозначается буквой Е). Можно выразить в виде формул:

М Э = (V Э / Е).

М Д = (V Д / Е).

Подвижность позволяет определить путь, который проходит дырка или электрон за одну секунду при значении напряженность 1 В/см. можно теперь вычислить собственный ток полупроводникового материала:

I = N * e * (М Э + М Д) * E.

Но нужно отметить, что у нас есть равенства:

V Э =М Э.

N = N Э = N Д.

Буквой е в формуле обозначается заряд электрона (это постоянная величина).

Источники

  • https://www.syl.ru/article/374653/poluprovodnikovyie-materialyi-primeryi-poluprovodnikov
  • https://220v.guru/elementy-elektriki/provodka/ispolzovanie-i-vidy-poluprovodnikov.html
  • https://spravochnick.ru/fizika/mehanizmy_elektroprovodnosti/primenenie_poluprovodnikov/
  • https://amperof.ru/teoriya/poluprovodniki-chto-eto-takoe.html

Типовые конструкции платиновых термосопротивлений

Производители применяют различные инженерные решения при выпуске продукции этой категории. Для уточнения на стадии сравнения можно изучить официальную сопроводительную документацию либо запросить необходимые данные на сайте компании.

Типовые конструкции ТС

Наименование Основные данные Особенности
1 Strain-free Основной элемент освобожден от нагрузок порошковой засыпкой из оксида алюминия Разным цветом глазури, герметизирующей торцевую часть, обозначают соответствие определенному температурному диапазону
2 Hollow nnulus Рабочий проводник наматывается на полый цилиндр Материалы конструкции подбирают с учетом коэффициентов теплового расширения
3 Thin-film Из металла формируют тонкий слой на изоляторе (керамической основе) Эта модель отличается быстродействием, высокой чувствительностью
4 Проволока в стеклянной оболочке В такой конструкции обеспечиваются идеальная герметизация проводника, надежная защита от внешних воздействий Подобные решения используют для изготовления дорогих серий датчиков, которые рассчитаны на сложные условия эксплуатации


Типичные конструкции датчиков из платины

Как правильно рассчитать сопротивление провода по сечению

Проектируя электрическую сеть, необходимо правильно подобрать сечение кабеля, чтобы его резистентность не была высокой. Большой импеданс вызовет падение напряжения выше допустимого значения. В результате подключенное к сети электрическое устройство может не заработать. Также, провода начнут перегреваться.

Для правильного расчета минимального сечения необходимо учесть следующие факторы:

  • По стандартам ПУЭ падение напряжения не должно быть больше 5%.
  • В бытовых условиях ток проходит по двум проводам. Поэтому, при расчете величину сопротивления нужно умножить на 2.
  • Учитывать нужно мощность всех подключенных приборов на линии. Для развития предусмотреть запас по нагрузке.

Как вычислить сопротивление проводника по формуле? Для примера можно рассмотреть задачу. Требуется определить: достаточно ли будет медного кабеля сечением 2,5 мм2 и длиной 30 метров для подключения оборудования мощностью 9 кВт.


Формулы электрической цепи

Задача решается следующим образом:

Резистентность медного кабеля будет равна:

2 ∙ (ρ ∙ L) / S = 2 ∙ (0,0175 ∙ 30) / 2,5 = 0,42 Ом.

Для нахождения падения напряжения нужно определить силу тока, по формуле: I= P/U.

Вам это будет интересно Как соединять конденсаторы

Здесь P — суммарная мощность оборудования, U — напряжение в цепи. Тогда сила тока будет равна: I = 9000 / 220 = 40,91 А.

  • Используя закон Ома, можно найти падение напряжения по кабелю: ΔU = I ∙ R = 40, 91 ∙ 0,42 = 17,18 В.
  • От 220 В процент падения составит: U% = (ΔU / U) ∙ 100% = (17,18 / 220) ∙ 100% = 7, 81%>5%.

Падение напряжение выходит за пределы допустимого значения, значит необходимо использовать кабель большего сечения.

Строение полупроводников и принцип их действия

Исторические сведения

Полупроводники как особый класс веществ, были известны еще с конца XIX века, только развитие теории твердого тела позволила понять их особенность задолго до этого были обнаружены:

1. эффект выпрямления тока на контакте металл-полупроводник

2. Фотопроводимость.

Были построены первые приборы на их основе.

О. В. Лосев (1923) доказал возможность использования контактов полупроводник-металл для усиления и генерации колебаний (кристаллический детектор). Однако в последующие годы кристаллические детекторы были вытеснены электронными лампами и лишь в начале 50 — х годов с открытием транзисторов (США 1949 год) началось широкое применение полупроводников (главным образом германия и кремния в радиоэлектронике. Одновременно началось интенсивное изучение свойств полупроводников, чему способствовало совершенствование методов очистки кристаллов и их легированию (введение в полупроводник определенных примесей).

В СССР изучение полупроводников начались в конце 20 — х годов под руководством А.Ф. Иоффе в Физико-техническом институте АН СССР.

Интерес к оптическим свойствам полупроводников возрос всвязи с открытием вынужденного излучения в полупроводниках, что привело к созданию полупроводниковых лазеров вначале на p — n — переходе, а затем на гетеропереходах.

В последнее время большее распространение получили приборы, основанные на действии полупроводников. Эти вещества стали изучать сравнительно недавно, однако без них уже не может обойтись ни современная электроника, ни медицина, ни многие другие науки.

Свойства полупроводников

Полупроводники долгое время не привлекали особого внимания ученых и инженеров. Одним из первых начал систематические исследования физических свойств полупроводников выдающийся советский физик Абрам Федорович Иоффе. Он выяснил что полупроводники — особый класс кристаллов со многими замечательными свойствами:

1. С повышением температуры удельное сопротивление полупроводников уменьшается, в отличие от металлов, у которых удельное сопротивление с повышением температуры увеличивается.

2. Свойство односторонней проводимости контакта двух полупроводников. Именно это свойство используется при создании разнообразных полупроводниковых приборов: диодов, транзисторов, тиристоров и др.

3. Контакты различных полупроводников в определенных условиях при освещении или нагревании являются источниками фото — э. д. с. или, соответственно, термо — э. д. с.

Строение полупроводников и принцип их действия.

Как было уже сказано, полупроводники представляют собой особый класс кристаллов. Валентные электроны образуют правильные ковалентные связи. Такой идеальный полупроводник совершенно не проводит электрического тока (при отсутствии освещения и радиационного облучения).

Так же как и в непроводниках электроны в полупроводниках связаны с атомами, однако данная связь очень непрочная. При повышении температуры ( T>0 K), освещении или облучении электронные связи могут разрываться, что приведет к отрыву электрона от атома. Такой электрон является носителем тока. Чем выше температура полупроводника, тем выше концентрация электронов проводимости, следовательно, тем меньше удельное сопротивление. Таким образом, уменьшение сопротивления полупроводников при нагревании обусловлено увеличением концентрации носителей тока в нем.

Чем отличается термосопротивление от термопары

Принцип действия ТС объясняется изменением проводимости контрольного участка цепи. Термопара, несмотря на схожее название, функционирует по-другому. Изделия этой категории создают из двух разных материалов. Соединение (рабочую спайку) помещают в зону измерений. Колебания температуры провоцируют изменение потенциалов на выходах. Эти показания фиксируют вольтметром или другим подходящим прибором.

Принцип действия, функциональные компоненты термопары и способы измерения

К сведению. Приведенные сведения объясняют главные практические отличия датчиков разного рода. Термопара фактически является генератором ЭДС, поэтому дополнительный источник тока не нужен.

Термопарный преобразователь можно применить для измерения вакуума. Для этого обеспечивают контакт чувствительного участка с нитью лампы накаливания. Колбу соединяют трубкой с рабочей зоной. Изменение разряжения газа сопровождается увеличением (уменьшением) ЭДС. После калибровки шкалы достаточно точно можно определять значение контролируемого параметра.

Советуем изучить — Продольная компенсация реактивной мощности — физический смысл и техническая реализация

Как из атомов получаются молекулы

Любой атом находится в стабильном состоянии, если на его внешней орбите находится 8 электронов. Он не стремится забрать электроны у соседних атомов, но не отдает и свои. Чтобы убедиться в справедливости этого достаточно в таблице Менделеева посмотреть на инертные газы: неон, аргон, криптон, ксенон. Каждый из них на внешней орбите имеет 8 электронов, чем и объясняется нежелание этих газов вступать в какие – либо отношения (химические реакции) с другими атомами, строить молекулы химических веществ.

Совсем по-другому обстоит дело у тех атомов, у которых на внешней орбите нет заветных 8 электронов. Такие атомы предпочитают объединиться с другими, чтобы за счет них дополнить свою внешнюю орбиту до 8 электронов и обрести спокойное стабильное состояние.

Советуем изучить Для чего нужен стабилизатор напряжения

Вот, например, всем известная молекула воды H2O. Она состоит из двух атомов водорода и одного атома кислорода, как показано на рис. 1.

Как создается молекула воды (рис. 1)

В верхней части рисунка показаны отдельно два атома водорода и один атом кислорода. На внешней орбите кислорода находятся 6 электронов и тут же поблизости два электрона у двух атомов водорода. Кислороду до заветного числа 8 не хватает как раз двух электронов на внешней орбите, которые он и получит, присоединив к себе два атома водорода.

Каждому атому водорода для полного счастья не хватает 7 электронов на внешней орбите. Первый атом водорода получает на свою внешнюю орбиту 6 электронов от кислорода и еще один электрон от своего близнеца – второго атома водорода. На его внешней орбите вместе со своим электроном теперь 8 электронов. Второй атом водорода тоже комплектует свою внешнюю орбиту до заветного числа 8. Этот процесс показан в нижней части рис. 1.

На рис. 2 показан процесс соединения атомов натрия и хлора. В результате чего получается хлористый натрий, который продается в магазинах под названием поваренная соль.

Процесс соединения атомов натрия и хлора (рис. 2)

Здесь тоже каждый из участников получает от другого недостающее количество электронов: хлор к своим собственным семи электронам присоединяет единственный электрон натрия, в то время, как свои отдает в распоряжение атома натрия. У обоих атомов на внешней орбите по 8 электронов, чем достигнуто полное согласие и благополучие.