Сила ампера

Как возникает

Сила тока возникает из-за разности значений напряжения (или потенциалов) в начале и на конце проводника. Для поддержания разности потенциалов нужен источник энергии.

В зависимости от устойчивости показателя и направления протекания, ток бывает постоянным или переменным. Постоянный может существовать только в замкнутом контуре, в котором есть непрерывное круговое движение заряженных частиц. Например, в гальванических элементах – батарейках и аккумуляторах. В этих устройствах энергия вырабатывается благодаря химическим процессами.


Для возникновения постоянного электрического тока в веществе необходимо наличие свободных заряженных частиц.

Постоянный ток получают не только от батареек и аккумуляторов, но и путем выпрямления переменного, в частности, производимого генераторами.

Выпрямляемым на подстанции током питаются все тяговые виды транспорта с плавной регулировкой движения (метро, троллейбусы и др.)

Работа электронной аппаратуры от сети переменного источника в квартирах осуществляется посредством дополнительных приборов: блоков питания с выпрямителями сигналов, стабилизаторов напряжения.

Закон Ампера


Сила Ампера является главной составляющей закона Ампера – закона о взаимодействии электрических токов. В нём говорится, что в параллельных проводниках, в которых электрические токи текут в одном направлении, возникает сила притягивания. А в тех проводниках, в которых электрические токи текут в противоположных направлениях, возникает сила отталкивания. Также законом Ампера называют закон, который определяет силу действия магнитного поля не небольшую часть проводника, по которой протекает ток. В данном случае она определяется как результат умножения плотности тока, который идёт по проводнику, на индукцию магнитного поля, в котором проводник находится. Из самого закона Ампера сделаны выводы, что сила Ампера равняется нулю, если величина угла, расположенного между током и линией магнитной индукции, тоже будет равняться нулю. Другими словами, проводник для достижения нулевого значения должен быть расположен вдоль линии магнитной индукции.

Закон Ампера – определение

Андре Ампер в 1920 году дал определение тому, с какой силой магнитное поле влияет на проводник, помещённый в него. Он установил прямое соотношение между силой, возникающей вокруг проводника, силой тока, модулем магнитной индукции и синусом угла между вектором магнитной индукции и направлением тока.

Выражение имеет вид:

FА = B *I*L*sinα,

где:

  • FА – сила Ампера, Н;
  • В – модуль магнитной индукции;
  • I – сила тока, А;
  • L – длина отрезка проводника, м.

Определение справедливо для проводника, по которому происходит постоянно направленное движение электронов.

Что такое сила Ампера

Собственно сила ампера и является той силой действия магнитного поля на проводник, по которому идет ток. Сила Ампера вычисляется по формуле как результат умножения плотности тока, идущего по проводнику на индукцию магнитного поля, в котором находится проводник. Как результат формула силы Ампера будет выглядеть так

са=ст*дчп*ми

Где, са – сила Ампера, ст – сила тока, дчп – длина части проводника, ми – магнитная индукция.

Сила Ампера, Закон Ампера, правило левой руки:

  • Сила Ампера: это сила, действующая на проводник с током, помещенный в магнитное поле
  • Правило левой руки: если левую руку расположить так, чтобы перпендикулярная к проводнику составляющая вектора В входила в ладонь, а четыре вытянутых пальца были направлены по направлению движения тока, то отогретый на 90о большой палец покажет направление силы, действующей на отрезок проводника

Вектор магнитной индукции. Сила Ампера и сила Лоренца

При прохождении тока по проводнику вокруг него образуется магнитное поле. Векторную характеристику магнитного поля называют вектором магнитной индукции . Это поле оказывает на рамку с током, помещенную в поле, ориентирующее действие. Такое действием магнитного поля на рамку с током или магнитную стрелку можно использовать для определения направления вектора магнитной индукции. За принимается направление, который показывает северный полюс N магнитной стрелки. Для определения направления вектора магнитной индукции поля, созданного прямолинейным проводником с током, пользуются правилом буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика указывает направление вектора магнитной индукции.


направление вектора магнитного поля прямого проводника с током.

Если между полюсами подковообразного магнита поместить проводник с током, то он будет втягиваться или выталкиваться из поля магнита. Закон, определяющий силу, действующую на отдельный небольшой участок проводника, был установлен в 1820 г. А. Ампером.

Сила действия однородного маг­нитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником:

F=B.I.ℓ. sin α — закон Ампера.

  • Сила Ампера максимальна, если вектор магнитной индукции перпендикулярен проводнику.
  • Если вектор магнитной индукции параллелен проводнику, то магнитное поле не оказывает никакого действия на проводник с током, т.е. сила Ампера равна нулю.

Направление силы Ампера (правило левой руки) Если левую руку расположить так, чтобы перпендикулярная составляющая вектора В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник с током.

Макроскопическим проявлением силы Лоренца является сила Ампера. Запишем силу, действующую на одну частицу. Если заряженная частица влетает в магнитное поле со скоростью , на нее со стороны магнитного поля действует сила, которую называют силой Лоренца: , a

– угол между векторами и .

  • В однородном магнитном поле, направленном перпендикулярно вектору скорости, под действием силы Лоренца заряженная частица будет равномерно двигаться по окружности постоянного радиуса r. Сила Лоренца в этом случае является центростремительной силой:
  • Если заряженная частица движется в магнитном поле так, что вектор скорости составляет с вектором магнитной индукции угол a , то траекторией движения частицы является винтовая линия с радиусом r.

Если расположить левую руку так, чтобы составляющая магнитной индукции , перпендикулярная скорости заряда, входила в ладонь, а четыре вытянутых пальца были направлены по движению положительного заряда, то отогнутый на 900 большой палец укажет направление действующей на заряд силы Лоренца Fл

.

Закон силы тяжести

Замечание 1 Сила тяжести является одним из случаев проявления действия гравитационных сил.

Силу тяжести представляют в виде такой силы, которая действует на тело со стороны планеты и придает ему ускорение свободного падения.

Свободное падение можно рассмотреть в виде $mg = G\frac{mM}{r^2}$, откуда получаем формулу ускорения свободного падения:

$g = G\frac{M}{r^2}$.

Формула определения силы тяжести будет выглядеть следующим образом:

${\overline{F}}_g = m\overline{g}$

Сила тяжести имеет определенный вектор распространения. Он всегда направлен вертикально вниз, то есть по направлению к центру планеты. На тело действует силы тяжести постоянно и это означает, что оно совершает свободное падение.

Траектория движения при действии силы тяжести зависит от:

Готовые работы на аналогичную тему

  • Курсовая работа Законы силы, формулы 450 руб.
  • Реферат Законы силы, формулы 270 руб.
  • Контрольная работа Законы силы, формулы 230 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

  • модуля начальной скорости объекта;
  • направления скорости движения тела.

С этим физическим явлением человек сталкивается ежедневно.

Силу тяжести можно также представить в виде формулы $P = mg$. При ускорении свободного падения учитываются также дополнительные величины.

Если рассматривать закон всемирного тяготения, который сформулировал Исаак Ньютон, все тела обладают определенной массой. Они притягиваются друг к другу с силой. Ее назовут гравитационной силой.

$F = G\frac{m_1m_2}{r^2}$

Эта сила прямо пропорциональна произведению масс двух тел и обратно пропорциональна квадрату расстояния между ними.

$G = 6,7\cdot {10}^{-11}\ {H\cdot m^2}/{{kg}^2\ }$, где $G$ — это гравитационная постоянная и она имеет по международной системе измерений СИ постоянное значение.

Определение 1

Весом называют силу, с которой тело действует на поверхность планеты после возникновения силы тяжести.

В случаях, когда тело находится в состоянии покоя или равномерно движется по горизонтальной поверхности, тогда вес будет равен силе реакции опоры и совпадать по значению с величиной силы тяжести:

Лень читать?

Задай вопрос специалистам и получи ответ уже через 15 минут!

Задать вопрос

$Р = тg$

При равноускоренном движении вертикально вес будет отличаться от силы тяжести, исходя из вектора ускорения. При направлении вектора ускорения в противоположную сторону возникает состояние перегрузки. В случаях, когда тело вместе с опорой двигаются с ускорением $а = g$, тогда вес будет равен нулю. Состояние с нулевым весом называют невесомостью.

Напряженность поля тяготения высчитывается следующим образом:

$g = \frac{F}{m}$

Величина $F$ — сила тяготения, которая действует на материальную точку массой $m$.

Тело помещается в определенную точку поля.

Потенциальная энергия гравитационного взаимодействия двух материальных точек, имеющих массы $m_1$ и $m_2$, должны находиться на расстоянии $r$ друг от друга.

Потенциал поля тяготения можно найти по формуле:

$\varphi = \Pi / m$

Здесь $П$ — потенциальная энергия материальной точки с массой $m$. Она помещена в определенную точку поля.

ФИЗИКА

§ 4.8. Применения закона ампера. Электроизмерительные приборы

С помощью закона Ампера можно вычислить силу и момент сил, действующий на замкнутый проводник с током произвольной формы в любом магнитном поле. Конечно, эти вычисления тем проще, чем проще форма контура и конфигурация магнитного поля.

Момент сил, действующий на прямоугольную рамку с током

Определим момент сил, действующий на прямоугольную рамку с током в однородном магнитном поле с индукцией . Стороны рамки имеют размеры а и b; сила тока в ней I. Индукция магнитного поля составляет с нормалью к рамке угол α (рис. 4.40). Расчет проведем в единицах СИ.

Рис. 4.40

На рисунке 4.41 показан вид сверху на сечение рамки горизонтальной плоскостью. В соответствии с правилом определения направления векторного произведения двух векторов (см. § 4.6) на стороны рамки длиной b действует пара сил 1 и 2, перпендикулярных вектору В, которая создает момент сил относительно оси, проходящей через середину рамки. Силы, действующие на стороны рамки длиной а, лишь растягивают рамку.

Рис. 4.41

По закону Ампера

Плечо каждой из этих сил равно:

Суммарный момент сил равен:

где S = ab — площадь рамки. При α = 90° момент сил максимален и совпадает со значением Мmax из формулы (4.3.1), которая была введена в качестве определения модуля вектора магнитной индукции. Только в формуле (4.3.1) коэффициент k надо положить равным единице.

Применения закона Ампера

Закон Ампера используется для расчета сил, действующих на проводники с током, во многих технических устройствах, в частности в электродвигателях. Действие всех электродвигателей основано на использовании силы Ампера. По обмотке вращающейся части двигателя якоря 3 (рис. 4.42) протекает электрический ток.

Рис. 4.42

Мощные электромагниты создают магнитное поле, которое действует на проводники с током в обмотке якоря и заставляет их двигаться (рис. 4.43).

Рис. 4.43

Якорь изготовляется из стальных пластин (рис. 4.44, а), а полюсам электромагнита придается специальная форма (рис. 4.44, б), с тем чтобы сконцентрировать магнитное поле в местах, где располагается обмотка ротора. Специгшьные устройства — коллектор 1 и щетки 2 (см. рис. 4.42) — обеспечивают такое направление тока в обмотках, чтобы магнитное взаимодействие создавало момент, приводящий к непрерывному вращению якоря.

Рис. 4.44

Электроизмерительные приборы

Действие магнитного поля на контур с током используется в электроизмерительных приборах магнитоэлектрической системы для измерения силы тока и напряжения.

Измерительный прибор такой системы устроен следующим образом. На легкой, обычно алюминиевой, рамке прямоугольной формы с прикрепленной к ней стрелкой намотана катушка, имеющая N витков (рис. 4.45, а). Рамка укреплена на двух полуосях. В положении равновесия ее удерживают две тонкие спиральные пружины 2 (рис. 4.45, б). Момент сил упругости Mмех, действующий со стороны пружины и возвращающий катушку в положение равновесия, пропорционален углу φ отклонения стрелки от положения равновесия: Ммех = fφ (f — постоянный коэффициент пропорциональности). Катушку помещают между полюсами постоянного магнита специальной формы (см. рис. 4.45, а).

Рис. 4.45

Внутри катушки расположен цилиндр из мягкого железа. Такая конструкция обеспечивает радиальное направление линий магнитной индукции в той области, где находятся витки катушки (рис. 4.45, в). В результате при любом положении катушки момент сил, действующ,ий на нее со стороны магнитного поля, максимален и при неизменной силе тока один и тот же. Катушка с током поворачивается до тех пор, пока момент сил упругости, действующий со стороны пружины, не уравновесит момент сил, действующий на рамку со стороны магнитного поля:

Отсюда следует, что измеряемая сила тока прямо пропорциональна углу отклонения стрелки:

Здесь коэффициент — постоянная для данного прибора величина.

Прибор можно проградуировать так, чтобы угол поворота определял силу тока в амперах или других единицах. Согласно закону Ома сила тока в приборе . Поэтому прибор можно проградуировать и так, чтобы определенному углу φ отклонения стрелки соответствовало напряжение U на зажимах прибора в вольтах или других единицах.

Таким образом, прибор может служить как амперметром, так и вольтметром. В последнем случае для увеличения сопротивления прибора нужно последовательно с катушкой включить резистор с большим сопротивлением.

Закон Ампера используется при конструировании электродвигателей. На его основе созданы электроизмерительные приборы для измерения силы тока и напряжения.

Магнитное поле. Магнитная индукция. Правила буравчика и правой руки. Сила Ампера. Правило левой руки

Подробности
Просмотров: 532

– это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

Свойства стационарного магнитного поля

Постоянное (или стационарное) магнитное поле – это магнитное поле, неизменяющееся во времени .

1. Магнитное поле создается движущимися заряженными частицами и телами, проводниками с током, постоянными магнитами.

2. Магнитное поле действует на движущиеся заряженные частицы и тела, на проводники с током, на постоянные магниты, на рамку с током.

3. Магнитное поле вихревое, т.е. не имеет источника.

Магнитные силы

– это силы, с которыми проводники с током действуют друг на друга.

………………

Магнитная индукция

– это силовая характеристика магнитного поля.

Вектор магнитной индукции направлен всегда так, как сориентирована свободно вращающаяся магнитная стрелка в магнитном поле.

Единица измерения магнитной индукции в системе СИ:

– это линии, касательными к которой в любой её точке является вектор магнитной индукции.

Однородное магнитное поле – это магнитное поле, у которого в любой его точке вектор магнитной индукции неизменен по величине и направлению; наблюдается между пластинами плоского конденсатора, внутри соленоида (если его диаметр много меньше его длины) или внутри полосового магнита.

Магнитное поле прямого проводника с током:

или

где

– направление тока в проводнике на нас перпендикулярно плоскости листа,

– направление тока в проводнике от нас перпендикулярно плоскости листа.

Магнитное поле соленоида:

Магнитное поле полосового магнита:

– аналогично магнитному полю соленоида.

Свойства линий магнитной индукции

– имеют направление;
– непрерывны;
-замкнуты (т.е. магнитное поле является вихревым);
– не пересекаются;
– по их густоте судят о величине магнитной индукции.

Направление линий магнитной индукции

– определяется по правилу буравчика или по правилу правой руки.

Правило буравчика ( в основном для прямого проводника с током):

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Правило правой руки

( в основном для определения направления магнитных линий внутри соленоида):

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Существуют другие возможные варианты применения правил буравчика и правой руки.

Сила Ампера

– это сила, с которой магнитное поле действует на проводник с током.

Модуль силы Ампера равен произведению силы тока в проводнике на модуль вектора магнитной индуции, длину проводника и синус угла между вектором магнитной индукции и направлением тока в проводнике.

Сила Ампера максимальна, если вектор магнитной индукции перпендикулярен проводнику.

Если вектор магнитной индукции параллелен проводнику, то магнитное поле не оказывает никакого действия на проводник с током, т.е. сила Ампера равна нулю.

Направление силы Ампера определяется по правилу левой руки:

Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а 4 вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующий на проводник с током.

Примеры:

или

Действие магнитного поля на рамку с током

Однородное магнитное поле ориентирует рамку (т.е. создается вращающий момент и рамка поворачивается в положение, когда вектор магнитной индукции перпендикулярен плоскости рамки).

Неоднородное магнитное поле ориентирует + притягивает или отталкивает рамку с током.
Так, в магнитном поле прямого проводника с током (оно неоднородно) рамка с током ориентируется вдоль радиуса магнитной линии и притягивается или отталкивается от прямого проводника с током в зависимости от направления токов.

Следующая страница «Действие магнитного поля на движущийся заряд.Магнитные свойства вещества»

Назад в раздел «10-11 класс»

Электромагнитное поле – Класс!ная физика

Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Сила Ампера —
Действие магнитного поля на движущийся заряд.Магнитные свойства вещества —
Явление электромагнитной индукции. Магнитный поток. Направление индукционного тока. Правило Ленца —
ЭДС электромагнитной индукции. Вихревое электрическое поле —
ЭДС индукции в движущихся проводниках —
Самоиндукция. Индуктивность. Энергия магнитного поля. Вопросы к пр/работе

Взаимодействие проводников с током

Выделим основные открытия Ампера в области электромагнетизма:

1. Взаимодействия проводников с током

Два параллельных проводника с токами притягиваются друг к другу, если токи в них сонаправлены и отталкиваются, если токи в них противонаправлены.

Закон Ампера гласит:

Сила взаимодействия двух параллельных проводников пропорциональна произведению величин токов в проводниках, пропорциональна длине этих проводников и обратно пропорциональна расстоянию между ними.

  (1.1.)

F – сила взаимодействия двух параллельных проводников,

I1, I2 – величины токов в проводниках,

∆ℓ − длина проводников,

r – расстояние между проводниками.

Открытие этого закона позволило ввести в единицы измерения величину силы тока, которой до того времени не существовало. Так, если исходить из определения силы тока как отношения количества заряда перенесённого через поперечное сечение проводника в единицу времени, то мы получим принципиально не измеряемую величину, а, именно, количество заряда, переносимое через поперечное сечение проводника. На основании этого определения не сможем ввести единицу измерения силы тока. Закон Ампера позволяет установить связь между величинами сил тока в проводниках и величинами, которые можно измерить опытным путём: механической силой и расстоянием. Таким образом, получена возможность ввести в рассмотрение единицу силы тока – 1 А (1 ампер).

Ток в один ампер – это такой ток, при котором два однородных параллельных проводника, расположенные в вакууме на расстоянии один метр друг от друга взаимодействуют с силой 2∙10-7 Ньютона.

Закон взаимодействия токов – два находящихся в вакууме параллельных проводника, диаметры которых много меньше расстояний между ними, взаимодействуют с силой прямо пропорциональной произведению токов в этих проводниках и обратно пропорциональной расстоянию между ними.

Действие магнитного поля на движущийся заряд. Сила Лоренца

Подробности
Просмотров: 581

«Физика – 11 класс»

Магнитное поле действует с силой на движущиеся заряженные частицы, в то числе и на проводники с током.
Какова же сила, действующая на одну частицу?

1.
Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца в честь великого голландского физика X. Лоренца, создавшего электронную теорию строения вещества.
Силу Лоренца можно найти с помощью закона Ампера.

Модуль силы Лоренца равен отношению модуля силы F, действующей на участок проводника длиной Δl, к числу N заряженных частиц, упорядоченно движущихся в этом участке проводника:

Так как сила (сила Ампера), действующая на участок проводника со стороны магнитного поля
равна F = | I | BΔl sin α,
а сила тока в проводнике равна I = qnvS
где
q – заряд частиц
n – концентрация частиц (т.е. число зарядов в единице объема)
v – скорость движения частиц
S – поперечное сечение проводника.
тогда получаем:
На каждый движущийся заряд со стороны магнитного поля действует сила Лоренца, равная:

где α — угол между вектором скорости и вектором магнитной индукции.

Сила Лоренца перпендикулярна векторам и .

2.Направление силы Лоренца

Направление силы Лоренца определяется с помощью того же правила левой руки, что и направление силы Ампера:

Если левую руку расположить так, чтобы составляющая магнитной индукции, перпендикулярная скорости заряда, входила в ладонь, а четыре вытянутых пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90° большой палец укажет направление действующей на заряд силы Лоренца Fл.

3.
Если в пространстве, где движется заряженная частица, существует одновременно и электрическое поле, и магнитное поле, то суммарная сила, действующая на заряд, равна:
= эл + л
где сила, с которой электрическое поле действует на заряд q, равна Fэл = q.

4.Cила Лоренца не совершает работы, т.к. она перпендикулярна вектору скорости частицы.
Значит сила Лоренца не меняет кинетическую энергию частицы и, следовательно, модуль ее скорости.
Под действием силы Лоренца меняется лишь направление скорости частицы.

5.Движение заряженной частицы в однородном магнитном поле

однородное

Сила Лоренца зависит от модулей векторов скорости частицы и индукции магнитного поля.
Магнитное поле не меняет модуль скорости движущейся частицы, значит остается неизменным и модуль силы Лоренца.
Сила Лоренца перпендикулярна скорости и, следовательно, определяет центростремительное ускорение частицы.
Неизменность по модулю центростремительного ускорения частицы, движущейся с постоянной по модулю скоростью, означает, чтоВ однородном магнитном поле заряженная частица равномерно движется по окружности радиусом r.

Согласно второму закону Ньютона

Тогда радиус окружности, по которой движется частица, равен:

Время, за которое частица делает полный оборот (период обращения), равно:

6.Использование действия магнитного поля на движущийся заряд.

Действие магнитного поля на движущийся заряд используют в телевизионных трубках-кинескопах, в которых летящие к экрану электроны отклоняются с помощью магнитного поля, создаваемого особыми катушками.

Сила Лоренца используется в циклотроне – ускорителе заряженных частиц для получения частиц с большими энергиями.

На действии магнитного поля основано также и устройство масс-спектрографов, позволяющих точно определять массы частиц..

Следующая страница «Магнитные свойства вещества»

Назад в раздел «Физика – 11 класс, учебник Мякишев, Буховцев, Чаругин»

Магнитное поле. Физика, учебник для 11 класса – Класс!ная физика

Магнитное поле и взаимодействие токов —
Магнитная индукция. Линии магнитной индукции —
Модуль вектора магнитной индукции. Сила Ампера —
Электроизмерительные приборы. Громкоговоритель —
Действие магнитного поля на движущийся заряд. Сила Лоренца —
Магнитные свойства вещества —
Примеры решения задач —
Краткие итоги главы