Как правильно запитывать видеокарты в майнинг ригах?

Содержание

Распиновка micro-USB 3.0 |

В этой статье будет показана распиновка (распайка) micro-USB 3.0. Кроме того, разберем все контакты (пин) данного разъема, а также их цвета и назначение. Не стоит объяснять, что разъем micro-USB 3.0 является модификацией разъема USB 3.0. Каждый контакт разъема имеет такое же назначение, как и в USB 3.0. Каждый провод с этим назначением имеет тот же цвет, как и у базового разъема USB 3.0. Однако это не просто разъем в единственном числе. Существует несколько видов разъема с одним общим названием micro-USB 3.0. Они различаются не только распайкой, но и формой. Обозначения у них тоже разные. Рассматривать распиновку микро USB 3.0 начнем с коннектора (штепселя) USB 3.0 Micro-B. 

Распиновка USB 3.0 Micro B в цвете

 На рисунке ниже показан основной компонент, но он не единственный. Глядя на него, несложно догадаться, что он заметно отличается от micro-USB 3.0. Это не только дополнительное количество проводов и контактов, но и сама форма. Уже можно понять, что такой коннектор не получится вставить в гнездо micro-USB 2.0. Контакты 1, 2, 3, 5 имеют то же назначение и совпадают по цветам с контактами micro-USB 2.0.  Что касается остальных контактов, то они служат для скоростной передачи и приема данных (SuperSpeed). Цвета на рисунке совпадают со стандартными цветами в действительности. В таблице помещены не только цвета проводов и их назначение, но и название. 

Таблица контактов USB 3.0 Micro B

Описание

Цвет провода

Название

Вывод

5В+

Красный

VBUS

1

Данные —

Белый

D —

2

Данные +

Зеленый

D +

3

OTG

ID

4

Общий

Черный

GND

5

Передача —

Синий

StdB SSTX —

6

Передача +

Желтый

StdB SSTX +

7

Земля

Земля

GND DRAIN

8

Прием —

Фиолетовый

StdB SSRX —

9

Прием +

Оранжевый

StdB SSRX +

10

 Если сравнить распиновку USB 3.0 Micro B с распиновкой USB 3.0, то можно заметить, что добавился еще один контакт. Во всех типах разъемов контакт №4 (пин) отвечает за идентификацию устройств, способных соединяться друг с другом без участия компьютера (on the go). Невольно возникает вопрос о том, что раз есть USB 3.0 Micro-B, то должен быть и коннектор USB 3.0 Micro-A. Есть ли такой тип разъема, и чем он отличается от USB 3.0 Micro-B, сейчас будем разбираться. 

Чем отличается USB 3.0 Micro B от USB 3.0 Micro A

 На рисунке ниже приведены оба вида «штепселей» USB 3.0 Micro и даже с размерами. Как видно из рисунка, основным отличием является форма разъема. У USB 3.0 Micro B края более срезаны, чем у USB 3.0 Micro A. Стало быть, штекер USB 3.0 Micro A не имеет возможности быть вставленным в любое гнездо micro-USB 3.0.  Теперь о четвертом контакте (ID). Стоит дополнить, что четвертый контакт (пин) в разъеме USB 3.0 Micro B не задействован. Но это в вилке Micro-B. В розетках контакт №4 будет использован для режима хост/клиент. Также в таблице не указана оплетка (Shell), являющаяся экраном разъема, но это уже как само собой… 

Распиновка розетки USB 3.0 Micro B в цвете

 Разобравшись со штекерами, переходим к гнездам micro-USB 3.0. Для начала рассмотрим гнездо USB 3.0 Micro B. Оно более усеченное в том смысле, что в него не удастся вставить штекер USB 3.0 Micro A. Цвета и назначение контактов у розетки такие же, как и у USB 3.0 Micro B штекера. Правда, не удивительно почему-то… Скорее всего потому, что это две части одного целого, и одно в другое вставляется. Но хоть и тиха украинская ночь, а табличка все же размещена под рисунком.  

Таблица контактов USB 3.0 Micro B гнезда

Описание

Цвет провода

Название

Вывод

5В+

Красный

VBUS

1

Данные USB 2.0

Белый

D —

2

Зеленый

D +

3

OTG

ID

4

Общий

Черный

GND

5

Super Speed передача (+ и -)

Синий

StdA SSTX —

6

Желтый

StdA SSTX +

7

Земля

Земля

GND DRAIN

8

Super Speed прием

Фиолетовый

StdA SSRX —

9

Оранжевый

StdA SSRX +

10

Распиновка розетки USB 3.0 Micro AB

 Уже по названию понятно, что гнездо USB 3.0 micro-AB универсально, так как подходит к обоим штепселям (Micro-A и Micro-B). Таким гнездом будут оснащены мобильные устройства. Думаю, что и таблицу размещать не стоит, поскольку разницу в распайке составляет только контакт ID (4). Поэтому ограничимся только визуальным рисунком, чтобы было понятно, что в это устройство можно вставить оба штекера (Micro-A и Micro-B).  Однако стоит добавить, что разъем такого типа применяется, только если устройство поддерживает стандарт On-The-Go (OTG). Такое гнездо можно использовать не только для соединений разъемов USB 3.0 Micro-A и USB 3.0 Micro-B, но и таких разъемов, как USB 2.0 Micro-A либо USB 2.0 Micro-B. Ну а о том, что к гнездовому разъему USB 2.0 Micro-AB не подойдут штекера USB 3.0 Micro и так понятно. Теперь, зная распиновку (распайку) micro-USB 3.0, а также всех остальных видов распиновки USB 3.0, можно смело приступать к изготовлению (или ремонту) всевозможных переходников USB 3.0. Чем мы и займемся в ближайшем будущем. Успехов в творчестве!

Виды и назначение вентиляторов для ПК

Самыми мощными источниками тепла внутри корпуса ПК являются центральный процессор на материнской плате и графический процессор на видеокарте. Для них устанавливаются отдельные вентиляторы, конструктивно объединенные с теплоотводящими радиаторами. Такую систему обычно называют кулером (в отличие от корпусного вентилятора), хотя в англоязычной технической литературе такого термина нет. Там он называется Heatsink and fan.

Блок вентилятор-теплоотвод.

Остальные составляющие ПК все вместе выделяют тепла меньше, и для создания комфортного режима достаточно общей системы отвода нагретого воздуха. Раньше для этого было достаточно одного устройства, нагнетавшего воздух внутрь корпуса. Нагретые воздушные массы выходили через вентиляционные отверстия. Сейчас эффективной считается приточно-вытяжная система. Она состоит из одного или нескольких нагнетающих устройств, и одного или нескольких вытяжных, высасывающих нагретый воздух наружу. Возможности установки одного или нескольких кулеров зависит от конструкции корпуса.

Также вентилятор обычно встроен внутрь БП компьютера. Подключение кулера к блоку питания выполняется в процессе изготовления и при эксплуатации не изменяется. Но в связи с широким распространением стандарта 80 PLUS, в самых дорогих источниках уровней 80+ Platinum и 80+ Titanum электродвигатель с крыльчаткой, как мощный потребитель, все чаще исключается из конструкции устройства. Вместо этого применяются другие меры для отвода тепла.

Беcкулерный блок питания.

Распиновка разъема PCI

Pin Имя Описание Pin Имя Описание
A1 TRST Test Logic Reset B1 -12V -12 VDC
A2 +12V +12 VDC B2 TCK Test Clock
A3 TMS Test Mode Select B3 GND Ground
A4 TDI Test Data Input B4 TDO Test Data Output
A5 +5V +5 VDC B5 +5V +5 VDC
A6 INTA Interrupt A B6 +5V +5 VDC
A7 INTC Interrupt C B7 INTB Interrupt B
A8 +5V +5 VDC B8 INTD Interrupt D
A9 Reserved B9 PRSNT1 Present
A10 +5V Power (+5 V or +3.3 V) B10 Reserved
A11 Reserved B11 PRSNT2 Present
A12 GND03 Ground or Keyway for 3.3/Universal PWB B12 GND Ground or Keyway for 3.3/Universal PWB
A13 GND05 Ground or Key-way for 3.3/Universal PWB B13 GND Ground or Open (Key) for 3.3/Universal PWB
A14 3.3Vaux B14 RES Reserved
A15 RESET Reset B15 GND Ground
A16 +5V Power (+5 V or +3.3 V) B16 CLK Clock
A17 GNT Grant PCI use B17 GND Ground
A18 GND08 Ground B18 REQ Request
A19 PME# Power Management Event B19 +5V Power (+5 V or +3.3 V)
A20 AD30 Address/Data 30 B20 AD31 Address/Data 31
A21 +3.3V01 +3.3 VDC B21 AD29 Address/Data 29
A22 AD28 Address/Data 28 B22 GND Ground
A23 AD26 Address/Data 26 B23 AD27 Address/Data 27
A24 GND10 Ground B24 AD25 Address/Data 25
A25 AD24 Address/Data 24 B25 +3.3V +3.3VDC
A26 IDSEL Initialization Device Select B26 C/BE3 Command, Byte Enable 3
A27 +3.3V03 +3.3 VDC B27 AD23 Address/Data 23
A28 AD22 Address/Data 22 B28 GND Ground
A29 AD20 Address/Data 20 B29 AD21 Address/Data 21
A30 GND12 Ground B30 AD19 Address/Data 19
A31 AD18 Address/Data 18 B31 +3.3V +3.3 VDC
A32 AD16 Address/Data 16 B32 AD17 Address/Data 17
A33 +3.3V05 +3.3 VDC B33 C/BE2 Command, Byte Enable 2
A34 FRAME Address or Data phase B34 GND13 Ground
A35 GND14 Ground B35 IRDY# Initiator Ready
A36 TRDY# Target Ready B36 +3.3V06 +3.3 VDC
A37 GND15 Ground B37 DEVSEL Device Select
A38 STOP Stop Transfer Cycle B38 GND16 Ground
A39 +3.3V07 +3.3 VDC B39 LOCK# Lock bus
A40 SMBCLK SMB CLK B40 PERR# Parity Error
A41 SMBDAT SMB DATA B41 +3.3V08 +3.3 VDC
A42 GND17 Ground B42 SERR# System Error
A43 PAR Parity B43 +3.3V09 +3.3 VDC
A44 AD15 Address/Data 15 B44 C/BE1 Command, Byte Enable 1
A45 +3.3V10 +3.3 VDC B45 AD14 Address/Data 14
A46 AD13 Address/Data 13 B46 GND18 Ground
A47 AD11 Address/Data 11 B47 AD12 Address/Data 12
A48 GND19 Ground B48 AD10 Address/Data 10
A49 AD9 Address/Data 9 B49 GND20 Ground
A50 Keyway Open or Ground for 3.3V PWB B50 Keyway Open or Ground for 3.3V PWB
A51 Keyway Open or Ground for 3.3V PWB B51 Keyway Open or Ground for 3.3V PWB
A52 C/BE0 Command, Byte Enable 0 B52 AD8 Address/Data 8
A53 +3.3V11 +3.3 VDC B53 AD7 Address/Data 7
A54 AD6 Address/Data 6 B54 +3.3V12 +3.3 VDC
A55 AD4 Address/Data 4 B55 AD5 Address/Data 5
A56 GND21 Ground B56 AD3 Address/Data 3
A57 AD2 Address/Data 2 B57 GND22 Ground
A58 AD0 Address/Data 0 B58 AD1 Address/Data 1
A59 +5V Power (+5 V or +3.3 V) B59 VCC08 Power (+5 V or +3.3 V)
A60 REQ64 Request 64 bit B60 ACK64 Acknowledge 64 bit
A61 VCC11 +5 VDC B61 VCC10 +5 VDC
A62 VCC13 +5 VDC B62 VCC12 +5 VDC
64 bit spacer KEYWAY
64 bit spacer KEYWAY
A63 GND Ground B63 RES Reserved
A64 C/BE# Command, Byte Enable 7 B64 GND Ground
A65 C/BE# Command, Byte Enable 5 B65 C/BE# Command, Byte Enable 6
A66 +5V Power (+5 V or +3.3 V) B66 C/BE# Command, Byte Enable 4
A67 PAR64 Parity 64 B67 GND Ground
A68 AD62 Address/Data 62 B68 AD63 Address/Data 63
A69 GND Ground B69 AD61 Address/Data 61
A70 AD60 Address/Data 60 B70 +5V Power (+5 V or +3.3 V)
A71 AD58 Address/Data 58 B71 AD59 Address/Data 59
A72 GND Ground B72 AD57 Address/Data 57
A73 AD56 Address/Data 56 B73 GND Ground
A74 AD54 Address/Data 54 B74 AD55 Address/Data 55
A75 +5V Power (+5 V or +3.3 V) B75 AD53 Address/Data 53
A76 AD52 Address/Data 52 B76 GND Ground
A77 AD50 Address/Data 50 B77 AD51 Address/Data 51
A78 GND Ground B78 AD49 Address/Data 49
A79 AD48 Address/Data 48 B79 +5V Power (+5 V or +3.3 V)
A80 AD46 Address/Data 46 B80 AD47 Address/Data 47
A81 GND Ground B81 AD45 Address/Data 45
A82 AD44 Address/Data 44 B82 GND Ground
A83 AD42 Address/Data 42 B83 AD43 Address/Data 43
A84 +5V Power (+5 V or +3.3 V) B84 AD41 Address/Data 41
A85 AD40 Address/Data 40 B85 GND Ground
A86 AD38 Address/Data 38 B86 AD39 Address/Data 39
A87 GND Ground B87 AD37 Address/Data 37
A88 AD36 Address/Data 36 B88 +5V Power (+5 V or +3.3 V)
A89 AD34 Address/Data 34 B89 AD35 Address/Data 35
A90 GND Ground B90 AD33 Address/Data 33
A91 AD32 Address/Data 32 B91 GND Ground
A92 RES Reserved B92 RES Reserved
A93 GND Ground B93 RES Reserved
A94 RES Reserved B94 GND Ground

Как подключить кулер к блоку питания? Распиновка разъёма кулера.

Кулер – это не просто охладитель, но и поток воздуха. Сегодня мы разберём вопрос – как подключить кулер к блоку питания напрямую. Применений этому может быть масса, но в основном вентиляторы от компьютерных систем охлаждения используются как «ветродувы» в том или ином варианте. Кто-то применяет их в качестве обдува себя любимого в жаркую погоду, кто-то проветривает локальное рабочее место от дыма при пайке… Популярность применения кулеров (их вентиляторов) для «потусторонних» задач можно объяснить относительной дешевизной и низковольтным питанием. Лично я не раз видел пример их использования для принудительной вентиляции в небольших помещениях, санузлах,… Если Вы не знаете – как подключить кулер к блоку питания, то под катом найдёте подробную инструкцию этого очень нехитрого процесса.

Небольшое отступление – при выборе вентилятора для своих нужд обратите внимание на потребляемую мощность кулера, его «оборотистость» и форму крыльчатки. От этих параметров зависит количество прокачиваемого воздуха и уровень шума, который создают лопасти

Напомним, что вентиляторы обычно имеют стандартные размеры, из которых на сегодняшний день наиболее популярными являются 80мм и 120мм кулеры.

Обратите внимание на разъём кулера. Обычно он имеет 3 или 4 контакта

Раньше они подключались через разветвитель к большому молексу, сейчас уже не в каждом системном блоке вообще встретишь устройства с таким молексом. Кстати, некоторые умельцы, увлекавшиеся моддингом компьютеров, эффектно подсвечивали их с помощью встраиваемых ярких светодиодов. У современных кулеров разъёмы имеют гораздо меньший размер, где первый контакт пронумерован и является «минусом», второй «плюсом», третий передаёт данные о текущей скорости вращения крыльчатки, а четвёртый управляет скоростью вращения.

При желании можно сделать походный вариант самодельного автономного «обдувателя» из обычного кулера и батарейки типа «Крона» (с вентиляторами небольшого типоразмера). Если поблизости есть розетка, то можно использовать старый блок питания от компьютера (как запустить БП скрепкой), или зарядное устройство от ноутбука если такое имеется и подходит по напряжению питания 8-12 вольт. Идей и потребностей может быть масса, и, надеюсь, у Вас не возникнет при их реализации проблемы подключения кулера с удобным современным разъёмом.

Это те самые большие молексы-разветвители, которые побывали в руках моддера.

Источник

Распиновка

Все блоки питания используют коннекторы, которые по-прежнему подают стандартное напряжение в 12, 5 и 3,3 вольта. Обязательно должны быть дополнительные разъемы для процессора, видеокарты, коннектор Molex для подключения дополнительных элементов и SATA для накопителей. Давайте подробнее рассмотрим распиновку каждого элемента.

Для материнской платы

Для подключения используется 20-пиновый коннектор, который является основным. Цветовая маркировка проводов широко используется в этой индустрии для упрощения взаимодействия с материнской платой. Существует и буквенная маркировка, но ее можно увидеть только в документации. Для стандартного АТХ распиновка будет выглядеть следующим образом:
Стоит заметить, что GND — это земля, а контакты 8, 13 и 16 являются сигналами управления.

Обратите внимание! Для запуска блока питания без ПК нужно замкнуть 15 и 16 контакты.

Коннектор Molex

Это универсальный 4-pin разъем, который можно использовать для подключения видеокарты, вентилятора или любого другого дополнительного оборудования. Его универсальность заключается в наличии самых востребованных напряжений на контактах. Ниже представлена таблица с распиновкой.

Коннектор типа SATA

Жесткие диски и оптические приводы используют SATA для подключения и передачи информации. Данный коннектор состоит из 15-пинового разъема и 5 проводов, которые к нему подключаются. Распиновка выглядит таким образом:

Обратите внимание! Иногда на новых SATA разъемы используют 4 провода для подключения и 1 отдельный для подачи питания.

Для видеокарт

Для обычных видеокарт достаточно питания от материнской платы, а вот мощные игровые нуждаются в «дополнительной энергии», ведь стандартного питания им не хватает для полноценной работы. В связи с этим сейчас все БП имеют разъем 8 или 6 пин, питающий вашу «графику». Распиновку можно увидеть на картинке ниже.

Дополнительное питание

Не удивительно, что для полноценного использования компьютера вам может понадобиться дополнительное питание какого-либо элемента. Комплектующие ПК потребляют огромное количество энергии , ведь производительность современных компьютеров просто невероятная.

Одним из таких элементов является центральный процессор. Для подключения используется 4 либо 8-пиновый разъем. Выбор зависит от потребляемой мощности. Распиновка выглядит следующим образом:

  • 4 пин: 1-2 – черные GND, 3-4 – жёлтые 12V.
  • 8 пин: 1-4 – черные GND, 5-8 – жёлтые 12V.

Обратите внимание! 8-пиновый коннектор может состоять из двух 4-пиновых.

Большой популярностью пользуется подключение дополнительного охлаждения. Для таких целей используют FAN-коннекторы с разъемами 4 пин. Они отличаются маркировкой для разных типов плат и выглядят следующим образом:

  • 4 pin FAN (1 вариант): 1 – чёрный GND, 2 – жёлтый +12V, 3 – зелёный сигнал тахометра, 4 – синий PWM (или ШИМ);
  • 4 pin FAN (2 вариант): 1 – чёрный GND, 2 – красный +12V, 3 – жёлтый сигнал тахометра, 4 – синий PWM (или ШИМ);
  • 3 pin FAN: 1 – чёрный GND, 2 – красный +12V, 3 – жёлтый сигнал тахометра.

Как видно по схеме, 3-пиновый разъем не имеет ШИМ-контакта. Соответственно с его помощью не получится регулировать количество оборотов вентилятора.

Виды разъемов для питания компонентов ПК

Форму и положение разъемов внутреннего блока питания персональных компьютеров регулирует стандарт ATX, пришедший на смену устаревшему AT. Для подключения устройств к источнику электрической энергии в основном применяются:

  • ATX 20 (20+4, 24) – для энергоснабжения материнской платы;
  • коннектор 4 или 8 пин – для питания процессора;
  • Molex – для питания многих периферийных устройств;
  • SATA power – для питания жестких или твердотельных дисков;
  • PCI Expess – для запитки видеокарт.

Также внутри ПК можно найти и другие разъемы. Некоторые устарели и встречаются редко (например, для питания приводов для гибких дисков), другие только набирают популярность.

Для материнской платы (ATX 20, 24 pin)

Самый большой по габаритам разъем, отходящий от блока питания, подключается к материнской плате. Он содержит 24 гнезда (на плате 24 штырька соответственно). Еще можно встретить разъемы питания устаревших компьютеров на 20 выводов. Распиновка и цветовая маркировка 24-выводного разъема приведена на рисунке.

Назначение выводов разъема ATX 24.

Часть каналов являются сигнальными и служат для управления блоком питания:

  • вывод 8 — Power OK (PWR_OK, PWR_good) – сигнал на материнскую плату «питание включено»;
  • вывод 16 -Power ON – сигнал от материнской платы, разрешение на подачу напряжения, в режиме ожидания на нем +5 вольт (подтянуто резистором), в режиме разрешения – 0 вольт (на материнской плате соединяется с общим проводом);
  • вывод 13 дополнительный коричневый провод — Sense – обратная связь для автоматической регулировки напряжения.

Также надо отдельно отметить напряжение Stand by на фиолетовом проводе (вывод 9). Оно предназначено для питания внутренней схемы БП и одновременно служит в качестве дежурного напряжения для запуска компьютера.

В 20-контактном разъеме отсутствует секция из 4-х крайних выводов – пары 11-12 и 23-24. В новом, 24-контактном коннекторе, эта секция может быть выполнена съемной.

Разъем для материнской платы 20+4.

Современные блоки питания

Сегодняшние блоки питания несколько отличаются от своих предшественников, не только современным дизайном, повышенной мощностью и улучшенными характеристиками, но и наличием новых коннекторов для устройств, которых раньше не было в большинстве обычных компьютеров. Это связано с разработкой новых устройств или модификацией старых, повышением технических характеристик уже имеющихся и как следствие, необходимостью дополнительного питания.

Помимо обычных блоков питания, существуют модульные блоки или частично модульные. Различие между блоками в том, что в модульных полностью или частично, кабели заменены соответствующими разъёмами для их подключения и полностью соответствуют стандартам разъёмов обычных блоков. Это хорошо тем, что неиспользуемые провода не будут находиться в корпусе компьютера и мешать при его модернизации, так и циркуляции воздуха внутри.

Есть стандарты сертификации для энергоэффективности и КПД стандартного блока питания, для измерения эффективности подачи питания и распределения его мощности на внутренние устройства компьютера. Именно потребление дополнительного питания обуславливает появление новых коннекторов, наличие дополнительных проводов и контактов.

В современных блоках питания по-прежнему присутствуют основные коннекторы (разъёмы), использующиеся в более ранних моделях, подающие для устройств стандартное для них напряжение в 12, 5 и 3,3 вольта. Так для подключения к материнской плате используется разъём 24 pin (от английского pin – штырь, контакт), который претерпел некоторые изменения. В более старых моделях материнских плат, а соответственно и в блоках питания, использовался разъём в 20 pin. Поэтому, в большинстве современных БП (блок питания) разъём выполнен в виде разборной модели, представляющий собой стандартный разъём в 20 pin + дополнительный коннектор в 4 pin, для современных моделей материнских плат.

При использовании только 20 pin, дополнительный коннектор в 4 pin снимается (сдвигается вниз по пластмассовым рельсам) и остаётся отдельно в резерве. Далее в БП обязательно присутствуют разъёмы типа molex (по названию компании-разработчика фирмы Molex) в 4 pin, для “запитки” оптических дисков и других видов накопителей с интерфейсом PATA (Parallel ATA), вытесненных более современным интерфейсом SATA (Serial ATA). Для питания накопителей SATA обычно присутствуют два специальных разъёма в 15 pin (или переходников-адаптеров питания PATA HDD –> SATA HDD).

А также в современном БП должны быть коннекторы питания для центрального процессора 4 или 8 pin (могут быть разборными), коннектор для питания видеоплаты (6/8 pin, также может быть разборным и содержать 6 pin + 2 отдельных контакта). В некоторых моделях может присутствовать коннектор Floppy (4-pin), для питания флоппи-дисководов, некоторых картридеров и других устройств, которые используют данный устаревший разъём.

Слоты расширения материнской платы

(не совсем про кабели, но пригодится)

8ми битный слот

Сторона монтажа Сторона пайки
Сигнал Значение Сигнал Значение
A1 I/O CH CK Контроль канала ввода-вывода B1 GND Земля
A2 D7 Линия данных 8 B2 RES DRV Сигнал Reset
A3 D6 Линия данных 7 B3 +5V +5В
A4 D5 Линия данных 6 B4 IRQ2 Запрос прерывания 2
A5 D4 Линия данных 5 B5 -5V -5В
A6 D3 Линия данных 4 B6 DRQ2 Запрос DMA 2
A7 D2 Линия данных 3 B7 -12V -12В
A8 D1 Линия данных 2 B8 RES Зарезервировано
A9 D0 Линия данных 1 B9 +12V +12В
A10 I/O CN RDY Контроль готовности канала ввода-вывода B10 GND Земля
A11 AEN Adress Enable, контроль за шиной при CPU и DMA-контроллере B11 MEMW Данные записываются в память
A12 A19 Адресная линия 20 B12 MEMR Данные считываются из памяти
A13 A18 Адресная линия 19 B13 IOW Данные записываются в I/O порт
A14 A17 Адресная линия 18 B14 IOR Данные читаются из I/O порта
A15 A16 Адресная линия 17 B15 DACK3 DMA-Acknowledge (подтверждение) 3
A16 A15 Адресная линия 16 B16 DRQ3 Запрос DMA 3
A17 A14 Адресная линия 15 B17 DACK1 DMA-Acknowledge (подтверждение) 1
A18 A13 Адресная линия 14 B18 IRQ1 Запрос прерывания 1
A19 A12 Адресная линия 13 B19 REFRESH Регенерация памяти
A20 A11 Адресная линия 12 B20 CLC Системный такт 4,77 МГц
A21 A10 Адресная линия 11 B21 IRQ7 Запрос прерывания 7
A22 A9 Адресная линия 10 B22 IRQ6 Запрос прерывания 6
A23 A8 Адресная линия 9 B23 IRQ5 Запрос прерывания 5
A24 A7 Адресная линия 8 B24 IRQ4 Запрос прерывания 4
A25 A6 Адресная линия 7 B25 IRQ3 Запрос прерывания 3
A26 A5 Адресная линия 6 B26 DACK2 DMA-Acknowledge (подтверждение) 2
A27 A4 Адресная линия 5 B27 T/C Terminal Count, сигнализирует конец DMA-трансформации
A28 A3 Адресная линия 4 B28 ALE Adress Latch Enabled, расстыковка адрес/данные
A29 A2 Адресная линия 3 B29 +5V +5В
A30 A1 Адресная линия 2 B30 OSC Частота тактового генератора 14,31818 МГц
A31 A0 Адресная линия 1 B31 GND Земля

16ти битный слот

Сторона монтажа Сторона пайки
Сигнал Значение Сигнал Значение
A1 I/O CH CK Контроль канала ввода-вывода B1 GND Земля
A2 D7 Линия данных 8 B2 RES DRV Сигнал Reset
A3 D6 Линия данных 7 B3 +5V +5В
A4 D5 Линия данных 6 B4 IRQ9 Каскадирование второго контроллера прерываний
A5 D4 Линия данных 5 B5 -5V -5В
A6 D3 Линия данных 4 B6 DRQ2 Запрос DMA 2
A7 D2 Линия данных 3 B7 -12V -12В
A8 D1 Линия данных 2 B8 RES Коммуникация с памятью без времени ожидания
A9 D0 Линия данных 1 B9 +12V +12В
A10 I/O CN RDY Контроль готовности канала ввода-вывода B10 GND Земля
A11 AEN Adress Enable, контроль за шиной при CPU и DMA-контроллере B11 SMEMW Данные записываются в память (до 1М байта)
A12 A19 Адресная линия 20 B12 SMEMR Данные считываются из памяти (до 1 Мбайта)
A13 A18 Адресная линия 19 B13 IOW Данные записываются в I/O порт
A14 A17 Адресная линия 18 B14 IOR Данные читаются из I/O порта
A15 A16 Адресная линия 17 B15 DACK3 DMA-Acknowledge (подтверждение) 3
A16 A15 Адресная линия 16 B16 DR Q3 Запрос DMA 3
A17 A14 Адресная линия 15 B17 DACK1 DMA-Acknowledge (подтверждение) 1
A18 A13 Адресная линия 14 B18 IRQ1 Запрос IRQ 1
A19 A12 Адресная линия 13 B19 REFRESH Регенерация памяти
A20 A11 Адресная линия 12 B20 CLC Системный такт 4,77 МГц
A21 A10 Адресная линия 11 B21 IRQ7 Запрос IRQ 7
A22 A9 Адресная линия 10 B22 IRQ6 Запрос IRQ 6
A23 A8 Адресная линия 9 B23 IRQ5 Запрос IRQ 5
A24 A7 Адресная линия 8 B24 IRQ4 Запрос IRQ 4
A25 A6 Адресная линия 7 B25 IRQ3 Запрос IRQ 3
A26 A5 Адресная линия 6 B26 DACK2 DMA-Acknowledge (подтверждение) 2
A27 A4 Адресная линия 5 B27 T/C Terminal Count, сигнализирует конец DMA-трансформации
A28 A3 Адресная линия 4 B28 ALE Adress Latch Enabled, расстыковка адрес/данные
A29 A2 Адресная линия 3 B29 +5V +5В
A30 A1 Адресная линия 2 B30 OSC Такт осциллятора 14,31818 МГц
A31 A0 Адресная линия 1 B31 GND Земля
C1 SBHE System Bus High Enabled, сигнал для 16-разрядных данных D1 MEM CS 16 Memory Chip Select (выбор)
C2 LA23 Адресная линия 24 D2 I/O CS 16 I/O карта с 8 бит/16 бит переносом
C3 LA22 Адресная линия 23 D3 IRQ10 Запрос прерывания 10
C4 LA21 Адресная линия 22 D4 IRQ11 Запрос прерывания 11
C5 LA20 Адресная линия 21 D5 IRQ12 Запрос прерывания 12
C6 LA19 Адресная линия 20 D6 IRQ15 Запрос прерывания 15
C7 LA18 Адресная линия 19 D7 IRQ14 Запрос прерывания 14
C8 LA17 Адресная линия 18 D8 DACK0 DMA-Acknowledge (подтверждение) 0
C9 MEMR Чтение данных из памяти D9 DRQ0 Запрос DMA 0
C10 MEMW Запись данных в память D10 DACK5 DMA-Acknowledge (подтверждение) 5
C11 SD8 Линия данных 9 D11 DRQ5 Запрос DMA 5
C12 SD9 Линия данных 10 D12 DACK6 DMA-Acknowledge (подтверждение) 6
C13 SD10 Линия данных 11 D13 DRQ6 Запрос DMA 6
C14 SD11 Линия данных 12 D14 DACK7 DMA-Acknowledge (подтверждение) 7
C15 SD12 Линия данных 13 D15 DRQ7 Запрос DMA 7
C16 SD13 Линия данных 14 D16 +5V +5В
C17 SD14 Линия данных 15 D17 MASTER Сигнал Busmaster
C18 SD15 Линия данных 16 D18 GND Земля

Особенности

Не секрет, что современные блоки питания (БП) стали мощнее, имеют улучшенные характеристики и конечно же современный дизайн, нежели их предшественники те же 10-15 лет назад. Также, многие из вас знают (или узнают сейчас), что современные БП имеют новые коннекторы для комплектующих, ранее не используемых в персональных компьютерах (ПК). Наличие новых коннекторов связано с появлением новых (или модернизацией старых) комплектующих компьютера, улучшения их ТТХ и как следствие, потребность в дополнительном питании.

На рынке, кроме обычных, можно найти модульные или частично модульные БП. Отличительная черта модульного от обычного — кабели из блока заменены разъемами для подключения кабелей с коннекторами. Так, вы можете отключить неиспользуемые кабели в блоке питания, освободив место в системном блоке для лучшей вентиляции.

Современный БП соответствует стандартам сертификации энергоэффективности и коэффициенту полезного действия, которые применяются для распределения мощности и эффективности подачи питания на комплектующие компьютера. Благодаря «большей прожорливости» в питании тех же видеокарт, материнских плат, БП содержит дополнительные провода, контакты и коннекторы.

Запуск вентилятора на ноутбуке с помощью команд Windows

Операционные системы Windows, начиная с 7-ой версии, также имеют встроенные утилиты для управления мощностными критериями работы ноутбука. Для их настройки потребуется:

  1. Открыть «Панель управления» и выбрать раздел «Электропитание».

Теперь вентилятор будет постоянно включен, что позволит вам избежать лишнего переохлаждения системы и различных «подтормаживаний».

  • https://lumpics.ru/how-to-connect-a-cooler-to-power-supply/
  • https://ectrl.ru/sovety/kuler-cherez-usb.html
  • https://hd01.ru/info/kak-podkljuchit-kuler-k-moleksu/
  • https://fobosworld.ru/raspinovka-kulera-podklyuchenie-3-pin-i-4-pin-ventilyatora-2-shemy/
  • https://my-class.ru/kak-podklyuchit-ventilyator-komp-yutera-napryamuyu/
  • https://as-tara.ru/kak-podklyuchit-kuler-k-bloku-pitaniya-napryamuyu/
  • https://my-class.ru/kak-podklyuchit-ventilyator-cherez-blok-pitaniya/
  • https://venteler.ru/kak-podklyuchit-ventilyator-bloka-pitaniya-kompa/
  • https://zulkinoks.ru/tech/kak-ustanovit-ventilyator-v-korpuse-kompyutera.html
  • https://tvoupc.ru/raspinovka-4-pin-kompyuternogo-kulera.html
  • https://favourite-svet.ru/elektroprovodka/kak-podklyuchit-ventilyator-ot-kompyutera.html

АТХ 20 и 24 Контактный главный Разъем кабеля питания

24-контактный 12-вольтовый разъем питания ATX может быть подключен только в одном направление в слот материнской плате. Если вы внимательно посмотрите на изображение в верхней части этой страницы, вы увидите, что контакты имеют уникальную форму, которая соответствует только одному направлению на материнской плате. Исходный стандарт ATX поддерживал 20-контактный разъем с очень похожей распиновкой, что и 24-контактный разъем, но выводы 11, 12, 23 и 24 пропущен. Это означает, что более новый 24-контактный источник питания полезен для системных плат, требующих больше мощности. На современных материнских платах может стоять всего 2 типа разъёма 20-контактный основной разъем питания или 24-контактный основной разъем питания.

 Многие источники питания поставляются с 20+4 контактными фишками, который совместим с 20 и 24-контактами слотов питания материнских плат. В 20+4 кабель питания состоит из двух частей: 20-контактной, и 4-контактной фишки. Если вы разъедините две части отдельно, тогда можно подключить 20-контактный разъем, а если вы соедините две фишки 20+4 кабеля питания вместе, то у вас получится 24-контактный кабель питания, который может быть подключен к 24-контактному слоту питания материнской платы.

Molex 4-Контактный периферийный разъем кабеля питания

Четырех контактный периферийный силовой кабель. Он был использован для флоппи-дисков и жестких дисков и до сих пор очень широко используется. Вам не придется беспокоиться об установке это разъема, его нельзя установить неправильна. Люди часто используют термин «4-контактный Molex кабель питания» или «4-контактный Molex» для обозначения.

SATA 15-Контактный кабель питания

SATA был введен, чтобы обновить интерфейс ATA (называемого также IDE) для более продвинутой конструкции. Интерфейс SATA включает как кабель для передачи данных и кабель питания. Силовой кабель заменяет старый 4-контактный периферийный кабель и добавляет поддержку для 3.3 вольт (если полностью реализованы).

8-Контактный EPS и +12 Вольт Разъем питания

Этот кабель изначально создавалась для рабочих станций для обеспечения 12 вольт многократного питания. Но так как времени прошло много процессоры требуют больше питания и 8-контактный кабель часто используется вместо 4-контактный 12 вольт кабель. Его часто называют «ЕРЅ12В» кабель.

4+4 Контактный EPS +12 Вольт Разъем питания

Материнские платы может быть с 4-контактный разъем или 8-контактный разъем 12 вольт. Многие источники питания оснащены 4+4-контактный 12 вольт кабель, который совместим с 4 и 8 контактами материки. А 4+4 кабель питания имеет два отдельных штыря 4 штук. Если вы соедините их вместе, 4+4 кабель питания, то у вас будет 8-контактный кабель питания, который может быть подключен к 8-контактный разъем. Если вы оставите две части отдельно, тогда вы можете подключить один из штекеров 4-контактный разъем материнской платы.

6-контактный разъем PCI Express (PCIe) силовой кабель Разъем

Этот кабель используется для предоставления дополнительных 12 вольт питания для PCI Express карты расширения.  Этот разъем может обеспечить до 75 Вт питания PCI Express.

8-контактный разъем PCI Express (PCIe) силовой кабель разъем

Спецификации PCI Express версии 2.0 выпущена в январе 2007 года добавлена 8 контактный PCI Express с кабелем питания. Это просто 8-контактный версия 6-Контактный PCI Express с кабелем питания. Оба используются в основном для обеспечения дополнительного питания видеокарты. Старший 6-контактный версия официально предоставляет не более 75 Вт (хотя неофициально это, как правило, может дать значительно больше), а новый 8-контактный вариант обеспечивает максимум 150 Вт.

6+2(8) пин PCI Express (PCIe) силовой кабель разъем

Некоторые видеокарты имеют 6-контактный PCI Express с разъемами питания и другие 8-Контактный разъемы PCI Express. Многие источники питания поставляются с 6+2 PCI Экспресс силовой кабель, который совместим с обоими типами видеокарт. В 6+2 PCI Express силовой кабель состоит из двух частей: 6-контактный, а 2-штекерн. Если вы сложите вместе эти две части, то у вас будет полноценный 8-контактный PCI-Express разъем. Но если вы разделите разъём на две части, то вы можете подключить только 6-контактный.

Маркировка для проводов блока питания

Где контакты с маркировкой GND (Ground) – это земля, а контакты 8, 13 и 16 являются сигналами управления. Таким образом замкнув контакты 16 и 15 (или любой чёрный GND) можно включить блок питания без подключения материнской платы. К 13 контакту подсоединены сразу 2 провода, один из которых является отводом. Провода имеет меньшее сечение, в отличие от стандартных проводов, которое равно 22 по американской калибровке проводов. Тогда как сечение проводов на 13 контакте составляет лишь 18. Для стандартных блоков питания представленная выше таблица распиновки коннектора для материнской платы является универсальной и подходит ко всем материнских платам формата ATX.

Маркировка для проводов блока питания.

Molex 8981

Распространенный соединитель такого типа, применяемы в компьютерах АТ и АТХ — четырех контактный Molex 8981 4 pin для винчестеров PATA и оптических приводов, корпусных вентиляторов и прочих периферических девайсов(изображен на картинке выше).

Здесь используется 4‑контактная вилка и провод с трехцветной изоляцией. Распиновка:

  • Желтый — напряжение +12 В;
  • Красный — напряжение +5 В;
  • Черные — заземление.

Разъём имеет ширину 21 мм. У него есть четкие грани на верхней кромке, образовывающие своеобразный ключ. Вставить неправильно вилку невозможно физически.

Дополнительных защелок нет — вилка в розетке фиксируется благодаря силе трения сопряженных деталей. Из-за этого, новый разъём может тяжело подключаться.

Со течением времени из-за вибраций составные части могут разболтаться, поэтому потребуется уплотнительная прокладка(такое встречалось раньше, сейчас вряд ли вы с этим столкнетесь).

Можно ли запитать райзер с 6-пин питанием от 8-пинового разъема?

Для запитывания райзера можно использовать 6-пиновую часть 8-пинового разъема питания PCI-E.

Для этого нужно вставить 8 пиновый разъем так, чтобы его контакты 1-3 и 5-7 вошли в разъем питания райзера, тогда они будут полностью соответствовать шестипиновому разъему:

Фактически в райзера будет вставляться часть 8-пинового разъема, как если бы это был обычный 6+2 разъем питания VGA-устройств:

Аналогичным образом можно запитать устройства с 8-пиновым разъемом от 6-пинового кабеля, но при этом в них может срабатывать защита на наличие сигнала sense (что гарантирует наличие трех пар питания 12 В) и они не будут работать.

Картинка подключения кабеля питания 6-пин в устройство с питанием 8-пин: