Калькулятор расчета сопротивления заземления

Что мы должны иметь по окончании расчета сопротивления контура заземления

Выполнение расчета контура заземления — это не вопрос теории, плодом наших усилий будет ответ на вполне практические вопросы:

  • сколько же заземляющих стержней будет размещено в монтируемом нами контуре;
  • для полосы, соединяющей их, мы найдем длину.

Главнейший параметр при расчете контура заземления — это его сопротивление. В ПУЭ на этот счет есть такие указания:

  • для электросети с напряжением 220 В — 8 Ом;
  • с напряжением 380 В — 4 Ом.

Формула, по которой будем рассчитывать, имеет вид: R= R0/ ηв*N:

  • R0 здесь обозначает сопротивление отдельно взятого электрода;
  • R — сопротивление в целом;
  • ηв — коэффициент, характеризующий востребованность электрической цепи, другими словами — коэффициент использования заземлителей;
  • N — количество электродов в контуре заземления.

А вот формула, по которой мы определим сопротивление одного составляющего электрической цепи:

ρэкв — обозначает удельное сопротивление грунта эквивалентное. Измеряется в Ом*м. Определить его можно из таблицы. Подходит она в том случае, если грунт однородный;

  • L — длина заземляющего стержня. Чем больше ρэкв, тем больше L . Если грунт такой, что электроды, длину которых мы рассчитали,в него не войдут, то выход в увеличении их количества;
  • d — диаметр электрода;
  • Т — длина промежутка земля-середина электрода.

При этом последние 3 значения берем в м. Если грунт имеет неоднородное строение и состоит из 2 слоев, то придется делать расчет по формуле:

В этой формуле: Ψ — коэффициент сезонный климатический; удельное сопротивление 1 и 2 слоя земли обозначается соответственно ρ1 и ρ2; символом Η обозначено толщину 1 слоя; t — глубина траншеи, которую необходимо вырыть под электрод. Значение Ψ найдем, воспользовавшись таблицей:

Устройство контура заземления при данных обстоятельствах выполняется при опускании стержней на всю толщу 1 слоя и частичном задействовании второго.

Рассчитываем нужное количество стержней

Для того чтобы узнать, сколько же стержней нам потребуется, определим из ниже приведенной таблицы Rн, т.е. сопротивление нормируемое:

Если параллельно расположенный элемент не брать во внимание, то количество стержней определяется так:

  • берем сопротивление R0;
  • умножаем его на коэффициент климатический сезонный Ψ;
  • делим произведение на нормируемое сопротивление Rн.

n0 = R0/ Ψ х Rн

Теперь уделим внимание параллельному заземлителю. Вот так выглядит формула для определения его сопротивления:. Для вычислений потребуются данные о длине стержня

Для заземлителей, расположенных в ряд и по контуру, формулы разные. В 1 случае Lг определим так:

Для вычислений потребуются данные о длине стержня. Для заземлителей, расположенных в ряд и по контуру, формулы разные. В 1 случае Lг определим так:

  • от найденного ранее n0, отнимаем 1;
  • умножаем полученное на a — промежуток между стержнями.

Во 2 случае Lг = a . Теперь у нас есть все данные для определения сопротивления стержней, расположенных перпендикулярно к земле — Rв, учитывая горизонтальные заземлители. Для этого:

  • умножаем сопротивление горизонтального заземлителя Rг на нормируемое сопротивление Rн;
  • затем находим разницу между Rг и Rн;
  • умножаем первый результат на второй.

Осталось подставить полученное в формулу и найти общее количество заземлителей:

ɳв — коэффициент использования. На его значение влияет пролет между электродами. В случае, если в качестве заземляющих электродов выбраны трубы выстроенные в одну линию и объединенные полосой, то значение коэффициента можно выбрать из таблицы;

  • n — количество заземляющих электродов;
  • если в результате получится число дробное, то результат округлим в сторону большую.

Важные моменты: расчет контура заземления

Надо принять во внимание на такой момент – получаемые на практике данные всегда отличны от расчётов, проводимых в теории. В случае глубинного или модульного монтирования – разница связывается с тем, что в формуле расчёта обычно применяется несменяемое оценочное удельное сопротивление почвы на всей глубине электродов. Хотя на практике, такого никогда не происходит

Хотя на практике, такого никогда не происходит.

Даже если характер земли не изменяется – его удельное сопротивление сокращается с глубиной: почва становится наиболее плотной, наиболее влажной; на глубине от 5-ти метров обычно присутствуют водоносные слои. По факту, полученное сопротивление будет ниже того что получено в расчетах значительно (в 90 % ситуаций выходит сопротивление заземления в три раза меньше). В случае электролитного заземления – различие связывается с тем, что в формуле расчёта применяется коэффициент «С», который берут в расчёт как среднюю величину поправки, которую нельзя представить в качестве формул и зависимостей.

Получают коэффициент из большого количества характеристик почвы:

  • Температурный режим;
  • Уровень влаги;
  • Рыхлость;
  • Диаметр частиц;
  • Гигроскопичность;
  • Концентрация солей.

Процесс формирования щелочи продолжительный и относительно постоянный. Со временем концентрация электролита в земле возрастает. Также возрастает объём почвы с присутствием электролита окружающего электрод. Через несколько лет после монтирования «полезный» объём, который получился можно описать 3-метровым радиусом вокруг электрода. Поэтому, сопротивление электролитного заземления ZANDZ с годами значительно сокращается.

Замеры показали солидное снижение:

  • 4 Ома непосредственно после монтирования;
  • 3 Ома спустя 12 месяцев;
  • 1,9 Ома через 4 года.

Пример расчета заземляющего устройства будет представлен ниже.

Программы для расчета заземления – обзор лучших

«Электрик»

Первый программный продукт, который хотелось бы рассмотреть, называется «Электрик». Мы уже говорили о нем, когда рассматривали лучшие программы для расчета сечения кабеля. Так вот и с вычислениями параметров заземляющего контура «Электрик» может запросто справиться. Преимущество данного продукта заключается в том, что он достаточно прост в использовании, русифицирован и к тому же есть возможность бесплатного скачивания. Увидеть интерфейс программы вы можете на скриншотах ниже:

Все, что вам нужно – задать исходные данные, после чего нажать кнопку «Расчет контура». В результате вы получите не только подробную методику вычислений с используемыми формулами, но и чертеж, на котором будет изображен готовый контур заземления. Что касается точности расчетных работ, то тут мы рекомендуем использовать только самые последние версии программы, т.к. в устаревших версиях множество недоработок, которые были устранены со временем. Если вам нужно рассчитать заземляющий контур для частного дома либо более серьезных сооружений, к примеру, котельной либо подстанции, рекомендуем использовать данный продукт.

Расчет заземления в программе Электрик показан на видео:

«Расчет заземляющих устройств»

Название второй программы говорит само за себя. Благодаря ей можно рассчитать не только контур заземления, но и молниезащиты, что также крайне необходимо. Интерфейс программки довольно простой, собственно, как и в рассмотренном выше аналоге. Выглядит форма для заполнения исходных данных следующим образом:

Если вам нужно выполнить простейший расчет заземляющего контура именно сейчас, можете воспользоваться нашим онлайн калькулятором расчета заземления. Точность вычислений конечно же уступает предоставленным в статье программным продуктам, однако все же приблизительные значения вы получите, на которые и стоит ориентироваться.

«Заземление»

Еще один программный продукт, чье название говорит само за себя. Как и в предыдущих двух программках, в этой можно без проблем разобраться, т.к. интерфейс простейший и представлен на русском языке. Последняя версия программы (v3.2) позволяет не только осуществлять расчет ЗУ, но и оценивать возможность использования ЖБ фундаментов промышленных зданий в качестве защитного контура. Помимо этого программа может помочь выбрать сечение ГЗШ, PE-проводника, а также проводников системы уравнивания потенциалов. Еще одна полезная функциональная возможность продукта – расчет напряжения прикосновения и шагового напряжения. Интерфейс вы уже встречали немного выше, выглядит он следующим образом:

Дело в том, что создатели этой программки одновременно являются и создателями «Электрик», поэтому вы можете скачать один из предоставленных в ассортименте продуктов.

«ElectriCS Storm»

Более сложной в использовании программой, для работы с которой требуются навыки моделирования, является ElectriCS Storm. Использовать ее для вычислений заземляющего контура дома не целесообразно, т.к. вы скорее всего запутаетесь и рассчитаете все с ошибками. Мы рекомендуем работать с данным софтом профессионалам в области энергетики или же студентам ВУЗов пересекающихся специальностей.

Преимуществом данного программного продукта является то, что можно осуществлять проектирование заземляющего устройства (ЗУ) и тем самым выводить 3D модель готовых защитных контуров. Помимо этого функциональные возможности программы позволяют рассчитывать электромагнитную обстановку и заземление подстанций.

Все чертежи можно сохранять в dwg формате, благодаря чему потом их можно открыть в AutoCAD.

«Акула»

Ну и замыкает наш список лучших программ для расчета заземления программный комплекс энергетика под названием «Акула», благодаря которому можно рассчитывать:

  • заземляющие устройства;
  • молниезащиту;
  • характеристики защитных аппаратов;
  • потери напряжения до 1 кВ;
  • мощность объектов, а также электрокотлов и кондиционеров;
  • сечение проводки;
  • освещенность в помещении;

Интерфейс также интуитивно понятен и представлен на русском языке:

«Акула» доступна для бесплатного скачивания, поэтому найти ее в просторах интернета не составит труда. Напоследок рекомендуем просмотреть очень полезное видео по теме:

https://youtube.com/watch?v=UHn3FHWAIxk

На этом наш обзор заканчивается. Надеемся, предоставленные программы для расчета заземления пригодились вам и помогли в организации защитного контура.

Рекомендуем также прочитать:

Как нормировать сопротивление заземления в молниезащите

Затрудняюсь дать обоснованный ответ на этот вопрос и не знаю специалиста, способного на такое. В начале статьи уже отмечалось, что изменение сопротивления заземления молниеотвода в сколько-нибудь разумных пределах даже на 2 порядка величины практически не сказывается на эффективности притяжения молний. Значит, ориентироваться надо на какой-то иной критерий, связанный, например. с электробезопасностью или с допустимым уровнем перенапряжений в электрических цепях объекта. Попытка формировать нормативные требования на такой основе не лишена смысла, но неизбежно будет связана с массой нерешенных проблем. Главная из них – предельно допустимый уровень напряжения прикосновения и шага для людей и животных в импульсном режиме. Существующее нормирование заканчивается здесь временем воздействия напряжения в 0,01 с, что примерно на 2 порядка больше, чем в грозовых условиях. Специалист по молниезащите плохо знаком с физиологией и не может предложить обоснованной методики пересчета опасного для человека уровня воздействующего напряжения в другой столь различный временной диапазон. Попытка сделать это по условию равного энерговклада (тогда вместо допустимых 600 В получилось бы 6 кВ), к сожалению, научно не обоснована.

Еще проблематичнее исходить из допустимого уровня грозовых перенапряжений. Во-первых, они далеко не всегда находятся в прямой зависимости от сопротивления заземления, а во-вторых, электрические цепи различного номинального напряжения по-разному реагируют на перенапряжения. К тому же эти цепи могут иметь защитные средства и нет однозначного решения вопроса о том, куда вкладывать материальные ресурсы, — в снижение сопротивления заземления или в средства ограничения возникающих перенапряжений.

Все выше перечисленное оставляет проектировщика один на один с проблемой. В отечественном нормативе по молниезащите СО-153-34.21.122-2003 о сопротивлении заземления молниеотводов нет ни единого слова. В инструкции по молниезащите РД 34.21.122-87 дело ограничивается только типовыми конструкциями заземляющих устройств молниеотводов, а их сопротивлениями заземления оставлены без внимания. Полезно разобраться хотя бы в этом, чтобы осознать методические подходы составителей норматива и оценить целесообразность рекомендованного.

Для отдельно стоящего молниеотвода в Инструкции РД 34.21.122-87 указываются 3 конструкции заземлителей, поддающихся конкретному расчету:

  • стойка опоры длиной не менее 5 м и диаметром не менее 0,25 м,
  • два вертикальных стержня длиной не менее 3 м, соединенных полосой длиной 5 м на глубине не менее 0,5 м (диаметр 10 – 20 мм),
  • три вертикальных стержня тех же размеров и с тем же шагом.

Компьютерный расчет в грунтах с различным удельным сопротивлением дает для этих конструкций соответственно следующие расчетные соотношения

Когда же молниеотводы монтируются на крыше здания, фундамент которого непригоден для использования в качестве заземлителя, контур заземления 16х16 м по внешнему периметру в РД 34.21.122-87 считается достаточным для грунта удельным сопротивлением ρ ≤ 500 Ом*м, а контур 30х30 м — вплоть до 1000 Ом*м. Сопротивление заземления этих контуров равны соответственно RЗ = 0,035ρ и RЗ = 0,02ρ Ом.

Представленное трудно назвать нормированием, поскольку в разных регионах России удельное сопротивление грунта вполне может меняться в пределах 2-х порядков величины (от 50 до 5000 Ом м, иногда еще выше), а сопротивление заземления отдельно стоящего молниеотвода с типовым заземлителем — от 5 Ом приблизительно до 700 Ом. И то, и другое норма? Хотелось бы знать, с каких позиций! Для здания с молниеотводами на крыше ситуация не многим лучше. Ну а об удельном сопротивлении свыше 1000 Ом м в РД 34.21.122-87 вообще не упоминается, хотя такие грунты в России не редкость.

Исходные данные для расчета заземления

1. Основные условия, которых необходимо придерживаться при сооружении заземляющих устройств это размеры заземлителей.

1.1. В зависимости от используемого материала (уголок, полоса, круглая сталь) минимальные размеры заземлителей должны быть не меньше:

  • а) полоса 12х4 – 48 мм2;
  • б) уголок 4х4;
  • в) круглая сталь – 10 мм2;
  • г) стальная труба (толщина стенки) – 3.5 мм.

Минимальные размеры арматуры применяемые для монтажа заземляющих устройств

1.2. Длина заземляющего стержня должна быть не меньше 1.5 – 2 м.

1.3. Расстояния между заземляющими стержнями берется из соотношения их длины, то есть: a = 1хL; a = 2хL; a = 3хL.

В зависимости от позволяющей площади и удобства монтажа заземляющие стрежни можно размещать в ряд, либо в виде какой ни будь фигуры (треугольник, квадрат и т.п.).

Цель расчета защитного заземления.

Основной целью расчета заземления является определить число заземляющих стержней и длину полосы, которая их соединяет.

Электролитическое заземление, принцип работы

   Электролитическое заземление изготавливается в виде горизонтального отрезка полой трубы из нержавеющей легированной стали или медных сплавов, устойчивых к процессам коррозии. Через нее происходит насыщение почвы сквозь электроды минеральными солями, обладающими электролитическими свойствами.

  Электролитическое заземление

   Соли, попадая в грунт, преобразуются под действием влаги почвы в электролит, который:

   Эффективным приемом повышения работоспособности подобных конструкций является использование активаторов — специальных заполнителей с пониженным удельным сопротивлением. Их размещение снаружи электрода уменьшает переходное сопротивление в направлении от заземлителя к грунту и увеличивает площадь поверхности, с которой происходит токоотдача от электрода.

   Характерной особенностью подобных конструкций является то, что коэффициент С с течением времени постепенно уменьшается: сказывается медленное проникновение электролита в толщу грунта и увеличение его объема в нем.

   Электролит постепенно выщелачивает соли электрода даже в плотном грунте и понижает коэффициент С от 0,5 до 0,125 уже через полгода после ввода в эксплуатацию.

   Все эти особенности работы электролитических заземлителей более точно учитываются при расчете специалистами электротехнических лабораторий.

Как правильно рассчитать и смонтировать контур заземления

Чтобы точно рассчитать контур заземления придется попотеть, и немало потратиться. Дело в том, что для его вычисления существуют формулы, содержащие в себе очень много коэффициентов, которые отображают и свойства грунтов и климатические условия характерны вашей зоне проживания и влажности грунтов. И чтобы получить значения этих коэффициентов необходимо провести исследования и сложные анализы, которые стоят немало, но мы сделаем намного проще. Как? Спросите вы. Дело в том, что любой бытовой агрегат имеет свой определенный диапазон сопротивления контура заземления, при котором он нормально функционирует. Вот об этой золотой средине мы с вами и поговорим.

https://youtube.com/watch?v=PPvw8_1rl94

Программы для расчета заземления: обзор 7 лучших

Согласно требований п.1.7.51 ПУЭ для защиты от поражения электрическим током все электрические приборы, подключаемые к сети с опасным уровнем напряжения соединяются с защитным заземлением.

Основным параметром заземления, определяющим его эффективность  и способность в полной мере выполнить возложенные на него функции, является переходное сопротивление.

Которое зависит от геометрических параметров заземляющих проводников, типа грунта, формы и принципа расположения электродов.

Расчет может производиться как вручную, так и с помощью онлайн калькулятора, увы, не всегда есть время на длительные вычисления, поэтому многие используют программы для расчета заземления.

Представляет собой довольно простую в использовании программу. Расчет заземления в ней производится на основании простых алгоритмов расчета. С рабочим полем и принципом ее работы несложно разобраться даже новичку, поэтому такую программу можно считать универсальной.

Для начала вычислений вам достаточно внести:

  • размерывертикальных и горизонтальных заземлителей;
  • способ ихрасположения и соединения;
  • климатическиеусловия, в которых эксплуатируется заземление;
  • данные огрунте, питании сети.

Работа в программе Заземление

Как проверить качество смонтированного контура заземления

Первый способ самый точный и действенный, но он не позволяет устранить неисправности и часто приводит к печальным последствиям при наличии ошибок. На практике применяют второй метод: привлечение специалистов подготовленных электрических подразделений.

Для лучшего освоения методов расчёта заземления лучше рассмотреть пример, а лучше – несколько.

Заземлители часто делают своими руками из стального уголка 50х50 мм длиной 2,5 м. Расстояние между ними выбирается равным длине – h=2.5м. Для глинистого грунта ρ = 60 Ом∙м. Коэффициент сезонности для средней полосы, выбранный по таблицам, равен 1,45. С его учётом ρ = 60∙1,45 = 87 Ом∙м.

Для заземления по контуру роется траншея глубиной 0,5 м и в дно забивается уголок.

d = 0.95∙p = 0.995∙0.05 = 87 Ом∙м.

h = 0,5l t = 0.5∙2.5 0.5 = 1.75 м.

По приближенной формуле R = 0.3∙87 = 26.1 Ом. Из расчёта следует, что одного стержня будет явно недостаточно, поскольку по требованиям ПУЭ величина нормированного сопротивления составляет Rнорм = 4 Ом (для напряжения сети 220 В).

Здесь вначале принимается kисп = 1. По таблицам находим для 7 заземлителей kисп = 0,59. Если подставить это значение в предыдущую формулу и снова пересчитать, получится количество электродов n = 12 шт. Затем производится новый перерасчёт для 12 электродов, где опять по таблице находится kисп = 0,54.

Таким образом, для 13 уголков Rn = Rз/(n*η) = 27,58/(13∙0,53) = 4 Ом.

Нужно изготовить искусственное заземление с сопротивлением Rнорм = 4 Ом, если ρ = 110 Ом∙м.

Заземлитель изготавливается из стержней диаметром 12 мм и длиной 5 м. Коэффициент сезонности по таблице равен 1,35. Ещё можно учесть состояние грунта kг. Измерения его сопротивления производились в засушливый период. Поэтому коэффициент составил kг =0,95.

Предлагаем ознакомиться Половая доска калькулятор. Как сделать расчет лаг для пола

ρ = 1,35∙0,95∙110 = 141 Ом∙м.

Электроды располагаются в ряд. Расстояние между ними должно быть не меньше длины. Тогда коэффициент использования составит по таблицам: kисп = 0,56.

После монтажа заземления производятся измерения электрических параметров на месте. Если фактическое значение R получается выше, ещё добавляются электроды.

Если рядом находятся естественные заземлители, их можно использовать.

Особенно часто это делается на подстанции, где требуется самая низкая величина R. Оборудование здесь используется максимально: подземные трубопроводы, опоры линий электропередач и др. Если этого недостаточно, добавляется искусственное заземление.

Естественное заземление на даче через арматуру фундамента

Любой приведённый пример можно использовать как алгоритм расчёта. При этом для оценки правильности может быть применена онлайн-программа.

Как выглядит онлайн-программа, с помощью которой можно рассчитать заземление

Самостоятельные расчёты заземления являются оценочными. После его монтажа следует произвести дополнительные электрические измерения, для чего приглашаются специалисты. Если грунт сухой, нужно использовать длинные электроды из-за плохой проводимости. Во влажном грунте поперечное сечение электродов следует брать как можно больше по причине повышенной коррозии.

Заземляющая система

Заземляющая система – абсолютно необходимое техническое оборудование для каждого здания, поэтому это первый компонент электроустановки, который монтируется на новом объекте. Термин «заземление» используется в электротехнике для целенаправленного подключения электрических компонентов к земле.

Защитное заземление оберегает людей от удара электротоком при касании электрооборудования в случае его неисправности. Мачты, заборы, инженерные сети, такие как водопроводные трубы или газопроводы в обязательном порядке должны быть подключены защитным кабелем посредством присоединения к клемме или заземляющей планке.

Выбор контура

Перед расчетом контура Вам предоставляется возможность выбрать один из следующих вариантов заземляющих устройств:

  • Треугольная конструкция, параметры которой определяются еще на этапе проектирования.
  • Линейное сооружение протяженного типа, монтируемое по периметру защищаемого объекта.
  • Модульно-штыревая заземляющая конструкция.

Каждый из перечисленных выше способов сборки и последующего монтажа заземляющих устройств нуждается в подробном рассмотрении.

Треугольная конструкция

Этот вариант изготовления ЗК – самый известный и распространенный среди профессионалов и любителей. Для обустройства такой конструкции потребуется приготовить следующие элементы:

  • Двухметровые металлические стержни (арматурные прутья) в количестве 3-х штук.
  • Столько же стальных перемычек, предназначенных для объединения прутьев в единую конструкцию.
  • Медная шина, необходимая для соединения ЗК с точкой сбора жил от заземляемого оборудования в распределительном шкафу (ГЗШ – главная заземляющая шина).

Плоскость сварного контура с уже вбитыми в землю штырями при обустройстве ЗУ должна располагаться на глубине примерно 30-60 см.

Линейный контур

Линейное заземление выбирается в случае, когда к защитному сооружению требуется подключить несколько единиц оборудования, размещенных на удалении один от другого. Оно состоит из нескольких вбитых в землю штырей (3), расположение которых относительно друг друга выбирается из расчетных данных.


Линейная схема контура заземления для частного дома

От собранной по этой схеме конструкции, как и в случае с треугольником в сторону распределительного щитка с ГЗШ делается отвод (2). Перед тем как рассчитать такой ЗК – следует учесть, что общее число штырей ограничено взаимным влиянием аварийных токов, протекающих в каждом одиночном заземлителе.

Модульно-штыревое заземление

Модульный тип ЗУ применяется в ситуациях, когда площадь на участке перед домом ограничена небольшими размерами и допускается обустройство одной штыревой конструкции.


Схема монтажа одиночного заземляющего электрода

Она содержит в своем комплекте следующие элементы:

  • Стальной стержень полутораметровой длины с медным покрытием и имеющейся на
  • рабочей части резьбой.
  • Специальную муфту из латуни, обеспечивающую получение резьбового соединения вертикально вбиваемого штыря с заземляющим отводом.
  • Латунные зажимы особой конструкции, гарантирующие надежное сочленение металлических штырей с соединительной полосой.
  • Наконечники для самих заземляющих стержней.
  • Насадку с ударной площадкой, позволяющую передавать импульс от забивающего инструмента (вибромолота).


Комплект модульно-штыревого заземления

Защитная смазка сохраняется долгое время и не растекается при нагревании штырей и других элементов такого ЗУ. Входящая в состав антикоррозийная лента устойчива к воздействию агрессивных сред и защищает от разрушения всю конструкцию в целом.

Подробно о монтаже модульно-штыревого заземления читайте на этой странице.

Норма сопротивления контура заземления

Очень часто энергетики спорят на тему, какие должны быть нормы растекания тока контура заземления? Какова величина сопротивления контура заземления? Какое допустимое сопротивление контура заземления? Как правило, в таких спорах можно услышать разные цифры, одни называют 4 Ом, от других можно услышать 20 Ом, некоторые специалисты говорят, что сопротивление контура заземлителя не нормируется. Так какие же должны быть нормы и почему такая путаница?

Какие бывают испытания?

Начну с того, что поясню, какие бывают испытания. Электролаборатория проводит приёмо-сдаточные или эксплуатационные испытания. Приёмо-сдаточные испытания проводятся после окончания монтирования новой электроустановки, после того как, электроустановка смонтирована и сдана в эксплуатацию, с этого момента начинаются эксплуатационные испытания. Соответственно приёмо-сдаточные испытания проводятся только один раз, после окончания электромонтажных работ, а эксплуатационные испытания проводятся периодически, в процессе эксплуатации.

И так, существуют приёмо-сдаточные и эксплуатационные испытания. Приёмо-сдаточные испытания регламентируются Правилами Устройства Электроустановок (ПУЭ), а эксплуатационные Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

Почему спорят специалисты?

Наконец, мы подошли к самому главному. Почему спорят специалисты, почему такие разные цифры они называют?

Во первых, нужно понять о каких испытаниях идёт речь. Если разговор идёт о приёмо-сдаточных испытаниях, то ответ нужно смотреть в ПУЭ, Глава 1.8, Нормы приёмо-сдаточных испытаний, а если об эксплуатационных, то ответ ищем в ПТЭЭП, Приложение 3, Нормы испытаний электрооборудования и аппаратов электроустановок потребителей.

Во вторых нужно понять предназначение контура заземления. Контур заземления бывает для подстанций и распределительных пунктов выше 1000 Вольт, воздушных линий электропередач до 1000 Вольт и выше 1000 Вольт и электроустановок до 1000 Вольт.

Какие нормы?

1. Контур заземления для электроустановки напряжением до 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 гласит: при измерении в непосредственной близости к трансформаторной подстанции, сопротивление контура заземления должно быть: 15, 30 или 60 Ом, при измерении с учетом естественных заземлителей и повторных заземлителей отходящих линий: 2, 4 или 8 Ом соответственно для напряжений 660, 380 и 220 Вольт.

ПТЭЭП, Приложение № 3, таблица 36 гласит: сопротивление контура заземления — 15, 30 или 60 Ом для напряжений сети 660-380, 380-220 и 220-127 Вольт соответственно (трёхфазная/однофазная сеть), а при измерении с учётом присоединённых повторных заземлений должно быть не более 2, 4 и 8 Ом при напряжениях соответственно 660, 380 и 220 Вольт источника трехфазного тока и напряжениях 380, 220 и 127 Вольт источника однофазного тока.

2. Контур заземления для трансформаторной подстанции и распредпунктов напряжением больше 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 гласит: при измерении в электроустановке с глухозаземленной и эффективно заземленной нейтралью, должно быть не более 0,5 Ом.

ПТЭЭП, Приложение № 3, таблица 36 гласит: при измерении в электроустановке напряжением 110 кВ и выше, в сетях с эффективным заземлением нейтрали, сопротивление контура должно быть не более 0,5 Ом.

В электроустановке 3 — 35 кВ сетей с изолированной нейтралью — 250/Ip, но не более 10 Ом, где Ip — расчетный ток замыкания на землю.