Как выбрать тип и высоту молниеотвода

Содержание

От чего зависит контур

Перед началом работы обязательно проводятся замеры и измерение сопротивления контура заземления. Этот показатель зависит от нескольких факторов, в частности:

  1. Состояние земельного настила;
  2. Глубина установки заземления;
  3. Качество грунта и его тип (глина, чернозем, песок и т.д.);
  4. Количества заземляющих групп и электродов в каждой группе;
  5. Материала электродов и его характеристик.

В идеале нужно расположить заземлительный контур в черноземе, глинистых грунтах и суглинках. Категорически запрещено монтировать электрическое сопротивление в каменных покровах или скалах, они также проводят ток, и сопротивление у данных материалов очень низкое.

Грунты для заземления

Расчет молниезащиты зданий и сооружений ↑

Расчет молниезащиты производится на основе количественной оценки возможности поражения разрядом защищаемой постройки, расположенной на равнинной местности с однородными грунтовыми условиями. Определяется приблизительное число поражений объекта в год.

Зависимо от категории системы молниезащиты и ожидаемого числа поражений молнией определяется тип защитной зоны, рассчитываются расстояния между взятыми попарно молниеотводами и вычисляются параметры зон защиты на определенной высоте от земли.


Расчет молниезащиты для зданий и сооружений

Для оценки грозовой активности в разных районах страны применяется карта распределения среднего количества грозовых часов в году, на которой имеются линии равной длительности гроз или информация местной метеорологической станции. Проектирование молниезащиты также осуществляется зависимо от площади объекта.

Выбор системы молниезащиты ↑

Вид защиты определяется, исходя из таких параметров строения: высоты здания, типа крыши, архитектурных особенностей постройки, кровельных материалов. Молниезащита металлической кровли, как правило, осуществляется по классическому варианту защиты от громового разряда, что был изложен выше. Токоотвод в целях безопасности лучше прокладывать по противоположной входу стене, а заземлитель рекомендуется размещать подальше от строений и фундамента.

Для шифера и дерева потребуется совсем иная система молниезащиты. С помощью двух деревянных подпорок металлический трос прокладывается вдоль кровельного конька по периметру крыши. К молниеприемнику припаивается один конец токоотвода, а другой опускается вдоль стены с крыши к листу стали, выполняющему роль заземлителя. Токоотвод можно также пропустить через водосток. От входа подобная система должна размещаться на расстоянии не меньше трех метров.


Подбор системы молниезащиты для жилого дома

Следуя советам специалистов, монтаж молниезащиты для здания, покрытого черепицей, рекомендуется выполнять в виде специальной стальной сетки из проволоки, что имеет диаметр около 6 миллиметров. Шаг ячейки должен быть равен 6 на 6 метров. Токоотвод непосредственно припаивается к сетке, а потом спускается к заземлителю — закопанной в землю стальной пластине. Способ защиты построек с помощью клетки Фарадея применяется по отношению к небольшим сельским постройкам, современным кирпичным и железобетонным коттеджам, что имеют кровлю из оцинкованного железа, которое собирается кровельным швом.

Схемы и расчеты ↑

Таким образом, молниезащита зданий предоставляет такие преимущества:

  • обеспечение защиты от громового разряда без нарушения архитектурной целостности и индивидуальности построек;
  • применение в жилых и промышленных строениях на любом этапе работ;
  • минимальный срок реализации данного проекта;
  • антикоррозионные свойства материала, используемого для ее изготовления, что обеспечивает продолжительный срок полезной эксплуатации;
  • ступенчатая защита всех типов информационных и силовых сетей, а также потребителей

5.1. Зона защиты стержневых молниеотводов

Зона защиты одиночного стержневого молниеотвода (рис. 16 и 17) представляет собой в вертикальном сечении конус с образующей в виде ломаной линии.
Построение зоны защиты для молниеотвода высотой h<60 м (рис. 16) производится следующим образом. От основания молниеотвода в противоположные стороны откладываются два отрезка СА’ и СВ’, равные 0,75h, концы полученных точек А’ и В’ соединяют с вершиной О молниеотвода. Далее на молниеотводе на высоте 0,8h находится точка О’, которая соединяется прямой линией с концами

Рис. 17. Зона защиты одиночного стержневого молниеотвода высотой более 60 м Рис. 16. Зона защиты одиночного стержневого молниеотвода высотой до 60 м

Ломаная BDO и является образующей зоны защиты для определения величины радиуса защиты гх, м, на любой высоте hx зоны защиты используют формулы:

Решая приведенные выше формулы относительно h, можно при известных (заданных) значениях гх и hx получить величину оптимальной высоты молниеотвода: Для молниеотводов высотой более 60 м и до 100 м включительно зона защиты определяется исходя из лимитированной величины основания конуса на уровне земли г = 90 м (рис. 125). При этом радиус защиты на высоте hx определяется из соотношений: 5.2. Зона защиты двойного стержневого молниеотвода
Зона защиты двойного стержневого молниеотвода (при расположении двух одинаковых молниеприемников на одном уровне и на определенном расстоянии друг от друга) показана на рис. 18а. Определение очертаний торцевых частей зоны выполняется по расчетным формулам, используемым для построения зоны защиты одиночного молниеотвода.
Расчет предусматривает следующие обязательные условия: высота молниеотвода не должна превышать 60 м, молниеотвод рассматривается как двойной только при соотношении L/h <5.
Рис. 18. Зона защиты двойного стержневого молниеотвода:
а — при расположении молниеприемников на одном уровне; б — при расположении молниеприемников на разных уровнях Верхняя граница зоны защиты представляет собой дугу окружности радиуса R, соединяющую вершины молниеотводов и точку, расположенную на перпендикуляре, идущем из середины расстояния между молниеотводами на высоте h0.
Величина h0, в метрах, вычисляется по эмпирической формуле: Радиус окружности R, дуга которой описывает верхнюю границу зоны, соответственно определяется из выражения: В тех случаях, когда величины h0 и L известны, оптимальную высоту молниеотводов, находят по формуле: При этом в вышеприведенной формуле значение h0 соответствует значению, вычисленному исходя из необходимой (требуемой) ширины зоны защиты, величина которой определяется высотой защищаемого сооружения и его размерами в плоскости, перпендикулярной оси молниеотводов.
Ширина зоны защиты bх, м, на уровне hx вычисляется по формулам: Решая приведенные выше выражения относительно h0, получаем соответственно: 1,5
Зона защиты двойного стержневого молниеотвода (при расположении молниеприемников на разных уровнях) показана на рис. 18б. Принцип построения зоны защиты данного типа молниеотвода сводится к следующему: вначале строится зона защиты молниеотвода большей высоты и торцевая часть зоны защиты второго молниеотвода. Далее от вершины молниеотвода меньшей высоты проводится горизонтальная линия до пересечения с образующей зоны защиты молниеотвода большей высоты. Полученная точка пересечения условно принимается за вершину фиктивного молниеотвода, высота которого соответствует высоте меньшего молниеотвода. Дальнейший ход расчета и построения зоны защиты аналогичен описанному выше для двух молниеотводов одинаковой высоты.
Для определения внешних границ зоны защиты многократных молниеотводов используются те же приемы, что и для одиночного или двойного стержневых молниеотводов. При этом для расчета и построения внешних очертаний зоны молниеотводы берут попарно в определенной последовательности (например, для четырехкратного молниеотвода: 1—2, 2—3, 3—4, 4—1). При применении четырехкратного и более стержневого молниеотвода необходимо выполнение дополнительных условий, а именно:

  1. для зданий и сооружений I и II категорий следует принимать h0 >hx для попарно взятых молниеотводов по диагоналям многоугольника, образованного единичными молниеотводами;
  2. для зданий и сооружений III категории допускается D<5ha (D — длина диагонали многоугольника, составленного единичными молниеотводами).

Для молниеотводов высотой более 30 м величина D должна быть уменьшена путем введения коэффициента р.

Виды молниеприемников

Системы молниезащиты зданий могут выполняться по различным схемам. Чаще всего используются классические варианты со стержневыми молниеотводами, состоящими из стержней, соединенных с заземляющим контуром специальным проводником. Они отличаются простотой изготовления и надежностью в процессе эксплуатации. В других конструкциях основным элементом служит пространственная сетка, расположенная на крыше здания.

При прямом ударе молнии, она выполняет распределение и последующее гашение разряда. Натяжные системы работают по такому же принципу, что и стержневые конструкции, только принимающие проводники натягиваются по всему периметру крыши защищаемого объекта.

В конструкциях перечисленных схем используются стальные стержни, тросы или сетки, изготовленные из прутка диаметром не ниже 6 мм. Соединение узлов выполняется с помощью сварки. Натяжной защитный молниеотвод применяются на кровлях со сложной конфигурацией. Для пространственной сетки необходимо больше материалов, а их установка достаточно сложная, требующая знаний и практических навыков.

Каждый молниеотвод выбирается в индивидуальном порядке. Учитываются конструктивные особенности зданий и сооружений, их форма, размеры и расположение относительно друг друга. На основе этих данных делается расчет молниезащиты. Все подобные устройства создают условную защитную зону, примыкающую к ним со всех сторон.

Внутри этого пространства все объекты оказываются под защитой, и им не страшны прямые удары молний. Здесь обеспечивается определенная степень надежности, разделенная на два типа: А – 99,5% и более, Б – 95% и более. Второй вариант, как правило, используется на объектах сельского хозяйства.

Расчет элементов заземляющего устройства

Определение параметров проводников, используемых в конструкции любого заземлителя, проводится с учетом следующих соображений:

  • Длина металлических стержней или штырей в значительной мере определяет эффективность всей системы защитного заземления.
  • Большое значение имеет и протяженность элементов металлических связей.
  • От линейных размеров этих конструктивных составляющих зависят расход материала, а также суммарные затраты на обустройство ЗУ.
  • Сопротивление вертикально забиваемых электродов в первую очередь определяется длиной.
  • Их поперечные размеры не оказывают существенного влияния на качество и эффективность обустраиваемой защиты.

Помимо этого всегда нужно помнить о «золотом» правиле, согласно которому чем больше металлических заготовок предусмотрено в схеме – тем лучше характеристики безопасности контура.

Схема установки одиночного вертикального заземлителя

Также следует учесть, что мероприятия по организации заземления нельзя назвать легким занятием. При большом количестве составляющих системы увеличиваются объемы земляных работ. А решение вопроса о том, каким конкретно способом улучшать качество заземления (за счет длины или количества электродов) остается за самим исполнителем.

В любом случае при обустройстве ЗУ произвольного типа рекомендуется придерживаться следующих правил:

  1. стержни необходимо вбивать до отметки, находящейся ниже уровня промерзания почвы минимум на 50 сантиметров;
  2. такое их расположение позволит учесть сезонные факторы и исключить их влияние на работоспособность защитной системы;
  3. расстояние между вертикально вбитыми элементами зависит от формы выбранной конструкции и длины самих стержней.

Для корректного выбора этого показателя рекомендуется воспользоваться справочными таблицами.

Таблица определения параметров заземлителей

С целью сокращения объема предстоящих расчетов (их упрощения) сначала желательно определить величину сопротивления стеканию токов КЗ для одиночного стержня.

С учетом влияния, оказываемого на искомую величину горизонтальными элементами конструкции, сопротивление для вертикальных штырей вычисляется по следующей формуле:

Если монтируемое ЗУ обустраивается в разнородном грунте (другое его название – двухслойный), удельное сопротивление можно определить так:

где Ψ – это так называемый «сезонный» коэффициент;

ρ1 и ρ2– удельные сопротивления слоев почвы (верхней и нижней прослойки соответственно), учитываемые при расчетах в Омах на•метр;

Н – толщина слоя грунта в метрах, расположенного в верхней части земляного покрова;

t – заглубление вертикальных штырей или стержней (оно соответствует глубине подготовленной траншеи), равное 0,7 метрам.

Достаточное для получения эффективного заземления число стержней (горизонтальные составляющие пока не учитываются) определяется так:

где Rн – это нормируемое ПТЭЭП сопротивление растеканию.

С учетом горизонтальных элементов ЗУ формула для определения количества вертикальных штырей принимает такой вид:

где под ηв понимается коэффициент использования конструкции, указывающий на взаимное влияние токов стекания различных единичных элементов друг на друга.

При уменьшении шага монтажа этих элементов защитного контура его общее сопротивление растеканию тока заметно увеличивается. Число элементов заземляющего сооружения, полученное по результатам описанных выкладок, следует округлить до большего значения.

Расчеты заземления онлайн удается автоматизировать, если воспользоваться разработанным для этого специальным онлайн калькулятором на нашем ресурсе.

Нормативная база

К перечню стандартов и регламентирующих документов, которые определяют ключевые моменты по обустройству молниезащиты, следует отнести:

  • ПУЭ (редакция №7) «Молниезащита зданий и сооружений»;

  • инструкция РД 34.21.122-87 (Госэнергонадзор);
  • инструкция Минэнерго под номером СО 153-34.21.122-2003;
  • СНиП 3.05.06-85;
  • ряд ГОСТов и стандартов, касающихся порядка обустройства молниеприёмников и заземлений.

Пунктами 4.2.133-4.2.142 ПУЭ определяются общие принципы организации молниезащиты электроустановок и возникших в результате этого перенапряжений.

Требования этих пунктов распространяются на РУ (распределительные устройства) и ТП (трансформаторные подстанции) открытого и закрытого типа, работающие в цепях энергоснабжения, а также на другое распределительное и станционное электрооборудование.

Инструкция РД 34.21.122-87 распространяет своё действие на порядок организации молниезащиты на проектируемых гражданских и промышленных объектах с учётом их основного функционального назначения.

Помимо этого, она относит каждое из этих строений к определённой категории, присваиваемой в зависимости от опасности попадания в них грозового разряда.

Ещё одна инструкция (под наименованием СО 153-34.21.122-2003) касается всех видов зданий и сооружений, включая и промышленные коммуникационные системы. Она определяет порядок учёта документации по молниезащите при разработке проекта, строительстве, эксплуатации и реконструкции всех указанных объектов.

И, наконец, требования ГОСТ (включая действующие в строительстве нормативы и правила) распространяются на порядок обустройства отдельных элементов систем молниезащиты. Рассмотрим каждый из перечисленных выше документов более подробно.

Активная и пассивная молниезащита

Разные типы внешней молниезащиты представляют собой систему, состоящую из токопроводящих конструкций, часть которых устанавливается в верхней части объектов. Они перехватывают разряд молнии, а затем отводят в землю ее высокую энергию. Эффект от подобной защиты зависит от количества компонентов и плотности покрытия опасной зоны, от архитектурных особенностей конкретного здания. Все процессы здесь происходят естественным путем, поэтому такие стандартные системы представляют собой пассивную молниезащиту.

Как правило, она включает в себя следующие компоненты:

  • Молниеприемник. Притягивает к себе и принимает электростатический атмосферный разряд. Конструктивно варианты исполнения бывают в виде металлических стержней, тросов, натянутых между опорами или приемной сетки с установленным шагом ячейки. Последний вариант используется в основном на плоских крышах с большими площадями.
  • Токоотводы. Находятся вроде бы на второстепенных ролях, однако без них совершенно невозможно отведение высоких токов, попавших в молниеприемник. Они изготавливаются из толстой стальной проволоки, диаметром от 8 мм и более. Такое сечение обеспечивает безопасное прохождение большого потенциала в течение короткого промежутка времени.
  • Заземление и молниезащита. Используются в совместном виде и состоят из отдельных заземлителей или целой системы, объединяющей сразу несколько электродов в единый контур заземления. Токоотводы могут подключаться к уже действующему заземлению, но для этого в цепь потребуется подключить специальные разрядники.

Активная защита определяется ГОСТ и существенно отличается от пассивной, в первую очередь наличием в ней активного молниеприемника, представляющего собой не стержень, а специальное электронное устройство с возможностью самостоятельной активации непосредственно перед наступлением грозы. Поля статического электричества, возникающие во время грозы, воздействуют на головку приемника и способствуют возникновению импульсов высокого напряжения. Под их влиянием в окружающем воздушном пространстве создается обратная ионизация, вызывающая эффект притягивания электрических разрядов.

Монтаж активного компонента осуществляется на металлическом стержне, превышающем наиболее высокую точку здания не менее чем на 1 метр. Все остальные компоненты устанавливаются и работают практически одинаково, как и на пассивной защите.

Одиночный стержневой молниеотвод: расчет защитной зоны

Вертикальное сечение защитной зоны конструкции с одним стержнем выглядит в виде конуса, края которого образует ломаная линия.

Если высота h молниеотвода составляет менее 60 м, защитная зона в этом случае выстраивается в установленном порядке (рис. 1). От основания конструкции в обе стороны откладываются отрезки СА’ и СВ’, длина которых равна 0,75h. Конечные точки А’ и В’ откладываются в сторону вершины стержня О и здесь соединяются. На высоте 0,8h имеется точка О‘ соединяемая прямыми линиями с точками А и В отрезков СА и СВ, составляющих 1,5h.

Образованная линия BDO имеет ломаную конфигурацию. Поэтому, чтобы установить радиус защиты rx на всей протяженности hx, необходимо воспользоваться формулой:

  • При высоте hx больше или равном нулю и меньше или равном 2/3h – rx=1,5(h – 1,25hx);
  • При высоте hx больше чем 2/3h – rx=0,75(h – hx).

Используя приведенные формулы с известными заданными значениями гх и hx оптимальная высота молниеотвода в каждом случае будет следующая:

  • hоп = (гх + 1,9 hx)/1,5;
  • hоп = (гх + 0,75 hx)/0,75.

Существует отдельный пример и порядок расчетов для конструкций, высота которых находится в диапазоне от 60 до 100 метров (рис. 2). Основным показателем является размер основания конуса на уровне грунта радиусом 90 метров. Для того чтобы определить радиус защиты на расстоянии hx необходимо использовать формулу rx=90(1 – 1,25hx/h), где hx больше или равно нулю и меньше или равно 2/3h. Если же рассчитанная высота hx превышает 2/3h, необходимо применить соотношение: rx=45(1 – hx/h).

Такие же методики существуют и для всех остальных типов молниеотводов. Они используются специалистами при составлении проектов систем молниезащиты. Облегчить расчеты домашним мастерам помогут специальный онлайн-калькулятор, который в разных вариантах можно легко найти в интернете.

Молниеотвод и спуск

Что касается первой составляющей молниезащиты (молниеприемника) – требованиями ПУЭ предусматривается, чтобы он располагался в самой верхней точке защищаемого строения.

Для стандартных конструкций штыревого класса место размещения этого элемента выбирается исходя из того, чтобы заостренный конец его пики находился на 2-3 метра выше плоскости или конька крыши.


При наличии на защищаемом объекте нескольких штыревых молниеприемников согласно общепринятой методике обязательно просчитывается расстояние между соседними молниеотводами.

В случае использования тросового или сеточного молниеприемника для соответствующих элементов молниезащиты проводят расчеты либо основные параметры троса (длина и сечение), либо размеры отдельной ячейки сетки.

Токоотвод необходим для перенаправления электрического разряда, принятого молниеприемником, в направлении заземляющего устройства. С одной стороны он подсоединяется к «уловителю» молний, а с другой – к конструкции заземлителя.

Его основными расчетными величинами являются материал отводящей ленты, ее длина и сечение, обеспечивающие наименьшее электрическое сопротивление отводящей цепочки.

С точки зрения расчета системы для достижения требуемого результата этот элемент должен изготавливаться из металлов с высокой электропроводностью и иметь достаточно большое сечение (обычно оно составляет 6-8 кв. мм).

Образец расчета

В качестве образца расчета данных по молниезащите рассмотрим вариант определения ее параметров для частного загородного дома, с установленным на крыше одиночным штыревым молниеприемником.

В соответствии с методическими указаниями в этом случае исходят из необходимости образования особой зоны защиты (воображаемого конуса вокруг мачты со штырем), в пределах которой располагается защищаемый объект.

Радиус защиты Rx такого конуса со штырем, установленным на высоте hx, определяется из следующего соотношения:

где под вторым элементом пропорции (ha) понимается активная высота всей зоны грозозащиты (воображаемого конуса), под hx – высота защищаемой точки данного строения, а просто h – это собственная высота устанавливаемого молниеотвода.

Несмотря на внешнюю простоту приведенной методики расчета молниезащиты, полный обсчет всей системы в целом желательно перепоручить профессионалам, которые в состоянии отметить множество неучтенных дилетантом деталей.

https://youtube.com/watch?v=NHvwdPWFi20

Расчет системы молниезащиты может быть осуществлен и в режиме онлайн, где пользователю предлагается специальная программа для проведения соответствующих операций.

Для получения требуемого результата необходимо ввести в соответствующие графы геометрические размеры защищаемого строения и выбрать нужную географическую зону.

Важные навыки и умения

Кроме рабочих рук и головы у мастера выполняющего подобную задачу должно быть немало навыков. Первый из них – умение копать. Копать придется много, поскольку заземление, как следует из названия, находится именно в земле. Его потребуется туда установить, но перед этим потребуется вырыть траншею заданной глубины, чтобы обеспечить для себя комфортное рабочее пространство и безопасность для окружающих в процессе эксплуатации. В большинстве случаев элементы заземления соединяются между собой сваркой.

Следующий по важности навык – сварка металлов. Он имеется далеко не у каждого хозяина, а тем более хозяйки, и поэтому это одно из ключевых умений

Если подобный навык отсутствует, придется воспользоваться услугами профессионалов, либо тех знакомых, соседей и родственников, которые ими все же обладают. В этом случае стоимость выполняемых работ существенно возрастает, особенно если такую операцию делают по проекту, за который дополнительно взимается плата. Но в этом есть иная сторона, которая даст дополнительный плюс – можно быть уверенным в том, что комиссия, принимающая выполненную работу, в лице представителей поставщика электроэнергии, будет удовлетворена качеством выполненной работы.


Последний из наиболее важных навыков — умение пользоваться кувалдой или перфоратором. Один из них потребуется обязательно. Именно с его помощью подготовленные заранее электроды окажутся в земле. Иначе просто никак. В обоих случаях придется работать руками, но если последний вариант их несколько пощадит, то первый – нисколько.

Как выполняется монтаж контура заземления дома?

  • простота проведения работ;
  • отсутствие проблем при измерении сопротивления контура.

Под землей располагают конструкции из металла. В отношении частных домов оптимально подходит контур в виде треугольника. Заложенный в грунт заземлитель соответствующей конфигурации:

  • имеет внушительную площадь;
  • в состоянии обеспечить небольшое сопротивление (электрическое) контура.

Монтаж заземлителей начинают с выбора подходящего места. Глубина залегания конструкции выбирается ниже отметки промерзания грунта — м. Траншея в сторону силового щита копается от одного из углов треугольника.

Молниезащита частных домов подразумевает вбивание в вершины треугольника электродов (играют роль заземлителей). Оптимально для данных целей подходит уголок стали со стороной шириной 50 мм. Стержни вбивают в землю. При плотном грунте возникает необходимость бурения скважин. Электроды должны выступать над уровнем земли.

Молниезащита зданий обустраивается в результате формирования контура. На практике для этих целей используется полоса стали 40*5 мм. Ее необходимо приварить к стержням. Полосу от металлического треугольника отводят к силовому шкафу. Там ее крепят к кабелю посредством болта. Данный крепеж следует приварить к полосе.

Заземление зданий требует проверки контура. Для этих целей задействуется диагностический прибор — омметр. Обязательное требование: значение показателя заземления менее регламентируемого. При необходимости в грунт вбиваются дополнительные металлические стержни.

ПУЭ (седьмая редакция)

Отдельными пунктами ПУЭ оговаривается, что РУ и ТП 20-750 кВ открытого типа оборудуются молниеприёмниками в обязательном порядке. Для некоторых видов сооружений допускается отсутствие специальной молниезащиты, но лишь при условии ограниченной продолжительности гроз в течение года (не более 20 часов).

Те же сооружения закрытого типа требуют защиты от молнии лишь в районах с показателем продолжительности гроз более 20.

Заземление

В том случае, когда здания закрытого типа имеют металлическую кровлю – молниезащита осуществляется с помощью заземляющих устройств, подсоединённых непосредственно к покрытию. Если кровельное перекрытие изготовлено из железобетонных плит, то при наличии хорошего контакта между отдельными элементами строения допускается заземление через входящую в их состав арматуру.

Защита зданий РУ и ТП в закрытом исполнении выполняется либо с помощью молниеотводов стержневого типа, либо путём укладки специальной металлической сетки.

Стержневая и сеточная защита

При установке на защищаемом строении типовых стержневых молниеприёмников, от каждого из них в сторону заземлителя прокладывается не менее 2-х токоотводов, расположенных по разным сторонам здания.

Особой конструкции молниеприемная сетка, укладываемая поверх кровли на специальных держателях, изготавливается из стальной проволоки диаметром 6-8 миллиметров.

При скрытом монтаже согласно ПУЭ такой молниеотвод кладётся под кровельное покрытие (на слой утеплительного или гидроизоляционного материала с негорючими свойствами).

Выполненная в виде сетки защитная конструкция должна состоять из ячеек площадью не более 12х12 метров, а её узлы рекомендуется фиксировать посредством сварки.

Токоотводы или спуски, используемые для соединения молниеприёмной сетки с ЗУ, должны устраиваться по периметру здания через каждые 25 метров (не реже).

Расчет с помощью калькулятора

Чтобы рассчитать все эти показатели – удобнее всего воспользоваться онлайн-калькулятором, предназначенным для определения точных значений для двухслойного грунта. При вводе данных учитываются следующие рабочие параметры:

  • Климатический коэффициент для верхнего слоя грунта.
  • Количество вертикально вбитых прутьев (штуки).
  • Толщина верхнего грунтового слоя, H (метры).
  • Длина вертикальных заземлителей, L1 (метры).
  • Глубина размещения горизонтальных заземлителей (соединительной полосы), h2 (метры).
  • Длина соединительной полосы, L3 (метры).
  • Диаметр прутьев, D (метры).
  • Также учитывается ширина полки горизонтально монтируемой части, b (метры).

Когда необходимо выполнять проект молниезащиты и заземления?

Строго говоря для этого нам придется обратиться к статье 49 Градостроительного кодекса РФ, в которой определен перечень объектов, требующих проведение экспертизы проектной документации. Этот и будет тот список, проекты объектов которого в теории должны в обязательном порядке содержать раздел «Молниезащита» (или «Молниезащита и заземление», так эти системы соседствуют друг с другом). Он включается наряду с подразделами ЭС (наружные электросети), ЭН (наружное освещение) в состав раздела ЭОМ (системы внутреннего электроосвещения и силового оборудования) под аббревиатурой ЭГ (проекты молниезащиты и заземления).

Итак, что же это за объекты:

  1. Индивидуальные жилые дома с этажностью более 3-х этажей
  2. Многоквартирные дома более 3-х этажей и с количеством блочных секций более 4-х
  3. Объекты капитального строительства с этажностью более 2 и общей площадью более 1500 кв. м, не предназначенные для производственных нужд или проживания людей
  4. Производственные здания и сооружения с этажностью более 2 и общей площадью более 1500 кв. м, а также все объекты до 2-х этажей и менее 1500 кв. м, для которых необходимо установление санитарно-защитных зон
  5. Любые объекты, которые в соответствии с статьей 48.1 того же кодекса признаются особо опасными, сложными с технической точки зрения или уникальными (например, газохранилища, гидротехнические сооружения или памятники архитектуры)
  6. Любые объекты, которые планируется строить или реконструировать в пределах границ зон охраны трубопроводной инфраструктуры

ВНИМАНИЕ! Очень часто владельцам зданий и сооружений, а также частным домовладельцам сотрудники надзорных ведомств, в особенности пожарный надзор и газовая служба, предъявляют необоснованные требования касательно наличия молниезащиты, в том числе проекта, паспорта или протоколов проверки заземляющих устройств. Если у Вас возник подобный вопрос, в нашей компании готовы оказать бесплатную консультацию, звоните на наш многоканальный телефон +7 495 6451212