Что такое силовой трансформатор

Конструкция и принцип работы

Трансформатор — название слова происходит от латинского transformare, что в переводе означает превращать. Общепринятое определение для него следующее: трансформатор — это устройство, которое, используя явление электромагнитной индукции, способно изменять амплитуду напряжения без изменения формы и частоты сигнала.

Трансформатор — это электротехнический прибор, с помощью которого происходит уменьшение или увеличение переменного электрического напряжения. Такие трансформаторы называют понижающими или повышающими. При этом следует отметить, что существуют и такие приборы, которые оставляют величину синусоидального сигнала без изменения, они называются гальваническими или дроссельными.

Любой трансформатор в своей конструкции содержит следующие компоненты:

  • магнитопровод (сердечник);
  • обмотки;
  • каркас для расположения обмоток;
  • изолятор;
  • различные дополнительные элементы (скобы для крепления, планки для вывода контактов и т. п. ).

Трансформатор в своей конструкции имеет две или более обмотки с индуктивной связью. Выпускаются они как проволочного, так и ленточного типа и всегда покрываются слоем изоляции. Обмотки закрепляются на магнитопроводе, изготовленном из мягкого ферромагнитного материала. Первичная обмотка подсоединяется к источнику напряжения, а вторичная к нагрузке.

Общий принцип работы устройства, независимо от его вида и назначения, заключается в следующем. На первичную обмотку прибора подаётся переменный сигнал, что приводит к появлению в ней переменного тока. Этот ток, в свою очередь, наводит в сердечнике переменное магнитное поле, под действием, которого происходит возникновение переменной электродвижущей силы (ЭДС) в обмотках. При подключении нагрузки к вторичной обмотке по ней начинает протекать переменный ток. Обмотка, на которую подаётся сигнал, называется первичкой. Обмотка, подключённая к нагрузке, называется вторичкой.

По способу охлаждения тороидальные устройства различаются на использующие воздушное и жидкостное охлаждение. Кроме этого, существуют трансформаторы с совмещённым охлаждением — жидкостно-воздушным. К главным техническим параметрам устройства относятся:

  1. Величина входного напряжения: допустимое значение напряжения, подаваемое на первичку.
  2. Величина выходного напряжения. Определяется коэффициентом трансформации.
  3. Тип трансформации. Существует с повышением или понижением уровня сигнала.
  4. Число фаз. В зависимости от сети, в которой используются трансформаторы, они делятся на однофазные или трехфазные.
  5. Число обмоток. Существуют двухобмоточные или многообмоточные устройства.

К основным параметрам устройства относят: номинальную мощность и коэффициент трансформации. Единица измерения мощности вольт-ампер (ВА). Коэффициент трансформации показывает соотношение уровней напряжения на входе устройства к его выходу. Его значение прямо пропорционально отношению количества витков первички к вторичке.

В тороидальном трансформаторе в качестве основы используется кольцевой сердечник, геометрически представляющий собой тор. Преимущество такого вида магнитопровода заключается в простой перемотке трансформатора своими руками и получении наибольшего коэффициента полезного действия (КПД) по сравнению с другими типами трансформаторов при тех же габаритных значениях. К недостаткам торов относят повышенный нагрев при работе.

В каком режиме работает трансформатор тока? Логика работы устройств АВР.

Трансформаторы тока состоят из сердечника и двух обмоток: первичной и вторичной. Первичную обмотку, которая содержит небольшое количество витков, включают последовательно с нагрузкой, в цепи которой необходимо измерить ток, а к вторичной обмотке, с большим числом витков, подключают амперметр. Т. к. сопротивление амперметра мало, то можно считать, что трансформатор работает в режиме короткого замыкания, при котором суммарный магнитный поток равен разности потоков, созданных первичной и вторичной обмотками. Измеряемый ток, протекая по первичной обмотке, создаёт в ней небольшое падение напряжения, которое трансформируется во вторичную обмотку. Поскольку число витков вторичной обмотки значительно больше, чем у первичной, то на ней получается значительно большее напряжение при меньшем токе.

АВР

1. АВР должны приходить в действие при потере питания от рабочего источника по любой причине, за исключением случая, когда нагрузка отключается действием устройства АЧР и необходим запрет действия АВР.

2. Включение резервного источника питания должно осуществляться только после отключения выключателя на вводе рабочего источника питания.

3. АВР должны производить включение резервного источника сразу же вслед за отключением рабочего с целью уменьшения длительности перерыва питания потребителей.

4. Действие АВР должно быть однократным во избежание многократного включения резервного источника на КЗ.

5. При выполнении АВР должно обеспечиваться нормальные условия самозапуска электродвигателей.

6. Должно быть наличие ключей или съемных накладок для вывода АВР из работы при ремонте.

7. Для ускорения отключения резервного источника при его включении на не устранившееся КЗ должно предусматриваться ускорение защиты резервного источника после АРВ

Это особенно важно в тех случаях, когда потребители, потерявшие питание, подключаются к другому источнику, несущему нагрузку

Кем осуществляется управление технологическими режимами работы объектов электроэнергетики в ЕЭС России? Что такое технические потери электроэнергии?

Система оперативно-диспетчерского управления в электроэнергетике включает в себя комплекс мер по централизованному управлению технологическими режимами работы объектов электроэнергетики и энергопринимающих установок потребителей в пределах Единой энергетической системы России и технологически изолированных территориальных электроэнергетических систем, осуществляемому субъектами оперативно-диспетчерского управления, уполномоченными на осуществление указанных мер в порядке, установленном настоящим Федеральным законом.

Технические потери электроэнергии – потери, обусловленные физическими процессами, происходящими при передаче электроэнергии по электрическим сетям и выражающимися в преобразовании части электроэнергии в тепло в элементах сетей. Технические потери не могут быть измерены. Их значения получают расчетным путем на основе известных законов электротехники.

Каким методом определяется степень увлажнения изоляции? Расшифруйте тип кабеля АВВГнг 3×95

Измерение сопротивления изоляции, коэффициента абсорбции и диэлектрических потерь, а также сопоставление этих данных с результатами предыдущих измерений позволяет во многих случаях сделать вывод о состоянии изоляции испытываемого оборудования.

«АВВГ» означает « алюминий-винил-винил-голый», что отсылает нас к наличию двух слоев поливинилхлорида, а также отсутствию специализированного защитного слоя. Ну а «нг», если оно применяется в маркировке, означает, что кабель, в случае возникновения пожароопасной ситуации, не будет распространять горение.

Включение трансформаторов на параллельную работу

Стоит отличать данный режим (1 на рисунке ниже — трансформаторы подключены к общим шинам как со стороны ВН, так и со стороны НН) от другого, когда подключение к общим шинам есть только с высокой стороны (2 на рисунке, совместная работа), то есть к секции 10кВ подключены два транса, а с низкой стороны каждый из них питает свою секцию 0,4кВ.

Если отключается один из Т (1 на рис.), то на втором происходит перегрузка, но все механизмы остаются в работе. Если же отключается один из трансов (2 на рис.) — то нагрузка либо отключается, либо переходит на резервный источник питания по АВР.

Ну и естественно расчет схем замещения для данных случаев будет разным:

  • 1 — складываем // сопротивления двигателей, затем складываем // иксы трансформаторов, а затем последовательно первое со вторым
  • 2 — суммируем ветви (двигатель плюс трансформатор), затем полученные иксы складываем параллельно

Далее буду рассматривать только схему под цифрой 1 на рисунке. Для чего же может применятся параллельная работа трансформаторов:

  • повышается надежность, так как при выходе из строя одного из трансов, потребитель не лишается энергии.
  • резервная мощность параллельно включенных трансформаторов будет больше, чем у одного большого
  • при сезонных снижениях нагрузки (зимой больше нагрузки, летом меньше) возможно отключение одного из нескольких. При этом будет обеспечен более экономичный режим работы, так как уменьшаться потери холостого хода

Все плюсы улетучиваются, если установлено два транса по причине нехватки мощности одного из-за роста нагрузки например.

Условия параллельной работы:

  • Равенство номинальных напряжений первичных и вторичных обмоток. Следовательно и одинаковое число витков первичных и вторичных обмоток для всех параллельно работающих трансформаторов. Так же перед включением необходимо проверять положения ПБВ и РПН. Если всё подобрано правильно то не должны возникать уравнительные токи. Они возникают из-за неравенства коэффициентов трансформации и текут даже в режиме холостого хода. Воспользовавшись схемой аналогичной схеме замещения ТТ, можно вывести формулу уравнительного тока:

В данной формуле U’, U»; I’, I» — напряжения и токи первого и второго;

uk1, uk2 — напряжения короткого замыкания в процентах;

Избавиться от уравнительного тока можно либо переключив устройства регулировки в нужное положение, либо, устроив ремонт, добиться одного числа намотанных витков.

Равенство напряжений короткого замыкания. Напряжение короткого замыкания — такое напряжение, которое необходимо подать в одну из обмоток при замкнутой второй, чтобы в обеих тек номинальный ток. Данное условие необходимо выполнять потому, что отношение uk пропорционально распределению нагрузок и токов.
Принадлежность к одной группе присоединения
Отношение максимальной мощности к минимальной параллельно работающих трансформаторов должно быть не более 3 к 1. Если отношение мощности будет больше трех, то перегрузка меньшего из Тр может быть больше допустимой и целесообразнее будет вообще его отключить.
По ГОСТ 11677-85 ни одна из обмоток не должна быть перегружена током больше допустимого для данной обмотки
Если имеется РПН, то окончание переключения ответвлений должно происходить практически одновременно у всей группы. Трансформаторы с РПН мощностью ниже 1000кВА не предназначены для параллельной работы
Число параллельно работающих трансформаторов выбирается исходя из условия наименьших суммарных потерь холостого хода и нагрузочных потерь всех машин.

Первичные и вторичные обмотки соединяются параллельно. При отключении одного, на втором Т возникает перегрузка, которая должна быть учтена при отстройке уставки МТЗ.

На // подключенных т мощностью 4 МВА и выше должна устанавливаться ДЗТ. Она производит быстрое и селективное срабатывание, отключая только поврежденное оборудование. В случае с МТЗ, при аварии со стороны НН могут отключиться оба трансформатора за счет равенства выдержек времени.

Для более глубокого погружения в данный вопрос рекомендую прочитать книгу Г.В. Алексенко — Параллельная работа трансформаторов и автотрансформаторов (Трансформаторы, вып. 17) — 1967 года.

Всё про трехфазный трансформатор

Трёхфазный трансформатор используется для преобразования напряжения. Применяется устройство в сфере электрификации промышленного хозяйства и бытовых нужд. Кроме того, такие устройства незаменимы на судах, так как с их помощью осуществляется питание приборов различного номинала.

Расчёт трёхфазного трансформатора производится в соответствии со специальной документацией. На основе полученных данных выбирается нужная комплектация. Используется устройство не только для промышленных нужд, но и в бытовых приборах при производстве электронных схем управления.

Трёхфазный трансформатор может быть понижающим или повышающим, коэффициент преобразуемых величин зависит от числа витков обеих обмоток. Устройство может быть собрано из трёх однофазных аналогов или выполняется на общем сердечнике, сумма магнитных потоков каждой фазы в таком приборе будет равна нулю.

Для промышленных трансформаторов проводится ряд испытаний на соответствие заданным параметрам. Комплекс мероприятий по проверке характеристик устройства включает замеры сопротивления каждой обмотки, проверку изоляции относительно земли и между фазами. Специальным прибором подаётся напряжение на обмотки и проверяется пробивная способность изоляции. Далее на первичную обмотку подаётся напряжение и замеряется величина на выходе. С помощью этого опыта высчитывается коэффициент трансформации.

Результаты замеров должны соответствовать величинам, отражённым в сопутствующей документации, в противном случае трёхфазный трансформатор бракуется

Очень важно понимать, что обвязка и монтаж оборудования для распределительных устройств 110 кВ и выше не допускаются без надзора специалиста с завода, где производилось изготовление. При этом испытания должны проводиться согласно принятым правилам в присутствии компетентного лица

Трансформатор трёхфазный соединяется по схеме «Звезда» или по схеме «Треугольник». Соединение звездой реализуется общим узлом начал всех фаз. Схема в виде треугольника осуществляется последовательным соединением фаз в кольцо: конец первой фазы соединяется с началом второй, конец второй с началом третьей и конец третьей с началом первой.

Если трехфазный трансформатор соединён по схеме «Звезда», то элементы могут выполняться с глухозаземлённой или изолированной нейтралью (так называется узел, соединяющий концы фаз). Для высоковольтных РУ используется специальный зонт, который позволяет заземлять и разземлять нейтраль. Однако в распределительных устройствах для безопасности по 0,4 кВ используется заземлённый ноль.

Для защиты линий электропередач используются трансформаторы напряжения, с помощью которых контролируется питание. Они помогают сориентировать защиту по углам и величинам при наладке дифференциала срабатывания устройств. Чаще всего используются три трансформатора на каждую фазу.

У каждого из них есть не менее двух кернов: один соединяется в разомкнутый треугольник, другой — в звезду. Звезда служит для замера напряжения на линиях, а разомкнутый треугольник необходим как защита от замыкания.

Сегодня выпускаются трансформаторы напряжения с третьим керном под учёт. С его помощью осуществляется подключение счётчиков. Как правило, третий керн тоже соединяется по схеме звезды. Такое отделение цепей контроля от цепей учёта помогает получить более точные показания, так как класс точности керна для счётчика выше.

Импульсный трансформатор: принцип действия и функциональные особенности

Трансформатор представляет собой достаточно сложное техническое устройство, основной функцией которого служит преобразование определенных свойств и качеств электрической энергии, таких, как напряжение или крутящий момент. Также современный трансформатор способен превращать переменный ток в постоянный и наоборот.

Среди огромного разнообразия используемых в настоящее времяприборов особо следует выделить их импульсные разновидности.

Импульсный трансформатор широко используется в системах связи, ВТ, устройствах автоматики, для внесения изменений амплитуды импульсов, а также их полярности. Главное условие для успешной работы данного вида прибора состоит в том, что искажение сигнала, который передается с его помощью, должно быть минимальным.

Импульсный трансформатор основывается в своей деятельности на следующем принципе: в то время как на его вход поступают прямоугольные импульсы определенного напряжения, в первичной обмотке постепенно появляется электрический ток, сила которого постепенно начинает увеличиваться. Это, в свою очередь, повлечет за собой изменение магнитного поля и появление электродвижущей силы во вторичной обмотке. В этом случае искажения сигнала практически не происходит, а возможные потери тока настолько малы, что ими можно пренебречь.

Что касается отрицательной части импульса, появление которой неизбежно в то время, как импульсный трансформатор выходит на проектную мощность, то его влияние можно свести к минимуму, установив простой диод во вторичную обмотку. Тем самым и здесь импульс станет максимально близким к прямоугольному.

Импульсный трансформатор отличается от других разновидностей данной технической системы тем, что работает исключительно в ненасыщенном режиме. Его магнитопровод изготавливается из специального сплава, который в обязательном порядке обладает значительной пропускной способностью магнитного поля.

Помимо импульсных, в современной энергетической и электронной промышленности используют следующие основные виды трансформаторов:

  1. Деятельность ни одного современного радиоприбора невозможна без силовых трансформаторов. Их деятельность многогранна: с одной стороны, они необходимы для того, чтобы приемники можно было запитывать от обычной сети с переменным током, а с другой, для того, чтобы повышать или понижать напряжение той или иной частоты в усилителях. С этой функцией связана и важная конструктивная особенность силовых трансформаторов – вместо стальных сердечников здесь используют вставки из магнетита или карбонильного железа.
  2. Еще одной разновидностью прибора, применяемого преимущественно в современных системах слежения и бортовых компьютерах самолетов, является вращающийся трансформатор. Его принцип действия заключается в том, что угол поворота рамки преобразуется в напряжение электрического тока. Внешне вращающийся трансформатор представляет собой небольшую электрическую машину, работающую исключительно от переменного тока. Кроме того, в зависимости от того, где эти трансформаторы применяются, они могут быть как двухполюсными, так и многополюсными.
  3. В зависимости от того, какой ток поступает на первичную обмотку, выделяют трансформаторы переменного и постоянного тока. Основной вид первого типа – автотрансформатор, который состоит исключительно из одной катушки, которая непосредственно включается в электрическую цепь. Данный вид приборов предназначен исключительно для понижения напряжения и только для очень маленьких токов. Трансформатор постоянного тока – это более сложный прибор, состоящий из динамомашины и двигателя. В этом случае первичный ток вырабатывается двигатель, а вторичный – динамомашиной, которая приводится в движение тем же электродвигателем. Нередко встречается ситуация, когда трансформатор постоянного тока представляет собой двигатель и динамомомашину, соединенные между собой одним металлическим каркасом. Делается это для экономии материала, а также для повышение качества работы прибора.

Классификация

Различают несколько типов РПН, отличающихся следующими характеристиками:

  • разновидностью токоограничивающего элемента – с реакторами или резисторами;
  • наличием или отсутствием контактора;
  • количеством фаз – однофазные и трёхфазные;
  • типом токовой коммутации.


Расшифровка маркировки для РПН типа UBB… В зависимости от способа коммутации тока, существуют следующие разновидности устройств:

  • дуга разрывается в объёме, заполненном трансформаторным маслом – устройство предполагает использование дугогасительных контактов, не требующих применения специальных элементов для гашения дуги;
  • дуга разрывается в разреженном пространстве – предполагают использование вакуумных дугогасительных камер, производимых промышленным способом;
  • отключение производится посредством тиристоров, бездуговым способом;
  • комбинированные способы – с сочетанием различных типов коммутации.

Также читайте: Вредны ли светодиодные лампы для здоровья человека

Чтобы обеспечить безопасность и функциональность РПН, они снабжаются автоматическими контролирующими элементами и регуляторами напряжения.

Кроме указанных устройств, для изменения характеристик напряжения в мощных агрегатах могут применяться специальные вольтодобавочные трансформаторы. Данное оборудование подключается последовательно и используется вместе с основным агрегатом в качестве вспомогательного. Но указанный способ не получил широкого применения в связи с дороговизной и высокой сложностью схемы.

Выбор числа трансформаторов

Для трансформаторных подстанций используют схемы с одним или двумя трансформаторами. Распределительные устройства, в состав которых входит более 2 трансформаторов, встречаются только на предприятиях или электрических станциях, где применение небольшого их числа не соответствует условиям бесперебойности электроснабжения, условиям эксплуатации. Там экономически целесообразнее установить несколько трансформаторов сравнительно небольшой мощности, чем один или два мощных. Так проще проводить ремонт, дешевле обходится замена неисправного аппарата.

Устанавливают однотрансформаторные подстанции в случаях:

  • электроснабжения потребителей III категории надежности;
  • электроснабжения потребителей любых категорий, имеющих другие независимые линии питания и собственную автоматику резервирования, переключающую их на эти источники.

Но к однотрансформаторным подстанциям есть дополнительное требование. Потребители III категории по надежности электроснабжения, хоть и допускают питание от одного источника, но перерыв его ограничен временем в одни сутки. Это обязывает иметь эксплуатирующую организацию складской резерв трансформаторов для замены в случае аварийной ситуации. Расположение и конструкция подстанции не должны затруднять эту замену. При обслуживании группы однотрансформаторных подстанций мощности их трансформаторов, по возможности, выбираются одинаковыми, либо максимально сокращается количество вариантов мощностей. Это минимизирует количество оборудования, находящегося в резерве.

Киосковая подстанция

К потребителям третьей категории относятся:

  • деревни и села;
  • гаражные кооперативы;
  • небольшие предприятия, остановка которых не приведет к массовому браку выпускаемой продукции, травмам, экологическому и экономическому ущербу, связанному с остановкой технологического процесса.

Схема питания потребителей III категории

Для потребителей, перерывы электроснабжения которых не допускаются или ограничиваются, применяют двухтрансформаторные подстанции.

Категория электроснабжения Время возможного перерыва питания Схема питания
I Невозможно Два независимых источника с АВР и собственный генератор
II На время оперативного переключения питания Два независимых источника
III 1 сутки Один источник питания

Отличие в питании категорий I и II – в способе переключения питания. В первом случае оно происходит автоматически (схемой автоматического ввода резерва – АВР) и дополнительно имеется собственный независимый источник питания. Во втором – переключение осуществляется вручную. Но минимальное количество трансформаторов для питания таких объектов – не менее двух.

Схема питания потребителей II категории

В нормальном режиме работы каждый из двух трансформаторов питается по своей линии и снабжает электроэнергией половину потребителей подстанции. Эти потребители подключаются к шинам секции, питаемой трансформатором. Второй трансформатор питает вторую секцию шин, соединенную с первой секционным автоматом или рубильником.

В аварийном режиме трансформатор должен взять на себя нагрузку всей подстанции. Для этого включается секционный автоматический выключатель. Для потребителей первой категории его включает АВР, для второй включение производится вручную, для чего вместо автомата устанавливают рубильник

Поэтому мощность трансформаторов выбирается с учетом питания всей подстанции, а в нормальном режиме они недогружены. Экономически это нецелесообразно, поэтому, по возможности, усложняют схему электропитания. Имеющиеся потребители III категории в аварийном режиме отключают, что приводит к снижению требуемой мощности.