Усилители сотовых сигналов

Содержание

Рабочая точка и смещение базы

Для того, чтобы транзистор не искажал входной сигнал, нужно его для начала чуть-чуть приоткрыть.


Это можно сделать при помощи делителя напряжения из двух резисторов R1 и R2. Этот делитель напряжения позволяет приоткрыть транзистор VT1 для того, чтобы входной сигнал не тратил свою электрическую энергию на его открытие.

Ток, который протекает через R1 и R2 поступает на базу транзистора VT1, который потом уходит через эмиттер, тем самым его открывая. Это называется базовое смещение транзистора, то есть его открытие. Напряжение смещения определяет рабочую точку. В данном случае усилитель А класса.

Как определяется класс усилителя

Класс усилителя определяется его рабочей точкой. Рабочая точка выбирается с помощью вольтамперной характеристики транзистора. Чем выше напряжение подается на вход транзистора, тем больше ток, тем выше рабочая точка.

Например, точка по центру это А класс.


А класс самый качественный из усилителей. Он усиливает как положительные, так и отрицательные полуволны входного сигнала. В то же время, у этого класса есть существенный недостаток. Это ограничение мощности и снижение энергоэффективности. Дело в том, что пока на вход УНЧ не поступает входной сигнал, он работает все время, пока он включен.

Получается, что при это расходуется лишняя электроэнергия. Поэтому, еще рабочая точка называется точкой покоя, когда усилитель не усиливает входной сигнал.

Еще есть B класс, AB и D. Они отличаются друг от друга по эффективности усиления и наличию искажений. Все зависит от используемой схемы.

Например. D класс вообще не открывает транзистор, однако с точки зрения энергоэффективности – это самый лучший выбор. Транзистор в покое не потребляет ничего, он включается только при подаче входного сигнала. И при этом если на вход подается аналоговый звуковой сигнал, то он искажается. Такой класс не подойдет для схемы, которую разбираем в этой статье.

Поэтому, схемотехники и инженеры изобрели цифровые усилители. У них аналоговый сигнал преобразовывается в цифровой, и только потом подается на вход усилителя. Транзистор не искажает входной цифрой сигнал. После усиления сигнал снова преобразовывается в аналоговый с наименьшими потерями и искажениями.

А режим АВ применяется в схемах, где есть несколько транзисторов, которые работают на свои полуволны. Есть схемы, где один транзистор усиливает только положительные полуволны, а второй только отрицательные. Такие усилители называются двухтактными.

Обобщенная схема усилителя

Она выглядит примерно вот так:

Как мы можем видеть на схеме, ко входу усилительного каскада через клеммы 1 и 2 подсоединяется какой-либо источник слабого сигнала с ЭДС EИ и внутренним сопротивлением RИ . Именно этот слабый сигнал с этого источника мы будем усиливать. Далее, как и полагается, каждый усилитель обладает своим каким-либо входным сопротивлением Rвх . Сила тока Iвх в цепи EИ —>RИ—>Rвх , как ни трудно догадаться, будет зависеть от входного сопротивления усилительного каскада Rвх .

Как вы уже знаете, источник питания играет главную роль в усилительном каскаде. Маломощный слабый сигнал управляет расходом энергии источника питания. В результате на выходе мы получаем умощненную копию входного слабого сигнала. Усиление произошло благодаря тому, что источник питания давал свою мощность для усиления входного сигнала. Ну как-то вот так).

В выходной цепи усилителя мы получаем усиленный сигнал с ЭДС Eвых и выходным сопротивлением Rвых . Через клеммники 3 и 4 мы цепляем нагрузку Rн , которая уже будет потреблять энергию усиленного сигнала. Сила тока в цепи Eвых —> Rвых —> Rн будет зависеть от сопротивления нагрузки Rн .

Принцип работы

Из самого обозначения класса АВ нетрудно сделать вывод, что данный режим является гибридом класса А и класса В. Как работают усилители класса А, мы уже разобрались, а с классом В ознакомиться не успели, поэтому начнем с него. И для начала вспомним логику, которой руководствовался создатель усилителя класса А. Для того, чтобы получить возможность воспроизводить и положительную, и отрицательную полуволну с помощью одного активного элемента, он применил смещение средней точки (тока покоя) в середину рабочей зоны лампы.

Создатели усилителей класса В рассуждали по-другому: «Если одна лампа или один транзистор с нулевым смещением способен воспроизвести только одну полуволну сигнала, почему бы не добавить в схему еще один активный элемент, разместив его зеркально, чтобы воспроизводить другую полуволну?».

Это вполне логично, ведь при таком раскладе оба транзистора работают с нулевым смещением. Пока на входе усилителя присутствует положительная полуволна — работает один транзистор, а когда приходит время воспроизводить отрицательную полуволну, первый транзистор полностью закрывается и вместо него в работу включается второй. В английском варианте этот принцип действия получил название push-pull или, говоря по-русски, «тяни-толкай», что в общем-то очень хорошо описывает происходящее.

Если сравнивать класс В с классом А, наиболее очевидным преимуществом является то, что в классе В на каждую волну приходится полный рабочий диапазон транзистора (или лампы), в то время как в классе А обе полуволны воспроизводятся одним активным элементом. Это значит, что усилитель класса В будет вдвое мощнее усилителя класса А, собранного на таких же транзисторах.

Второй, чуть менее очевидный, но очень важный плюс класса В — нулевые токи смещения. Когда сигнал на входе равен нулю, ток, протекающий через транзисторы, тоже равен нулю, а это значит, что напрасного расхода энергии не происходит, и энергоэффективность схемы получается в разы выше, чем в классе А.

Однако из этого же факта вытекает и главный недостаток усилителя класса В. Момент включения транзистора в работу после полностью закрытого состояния сопровождается небольшой задержкой, поэтому при прохождении звуковым сигналом нулевой точки, когда один транзистор уже закрылся, второй транзистор не успевает мгновенно подхватить эстафету, и в этой самой переходной точке возникают небольшие временные задержки.

На практике это выражается в особенной нелюбви усилителя к тихой музыке, а также в плохой передаче микродинамики. И хотя история знает успешные реализации класса В, например — легендарный Quad 405, проблемы данного режима работы никуда не делись. Тот же 405-й не только радовал энергичным и мускулистым звучанием, но также имел явную склонность рисовать звуковую картину крупными мазками, масштабно, не размениваясь на мелочи.

Для того, чтобы сохранить все плюсы класса В и решить проблему переходных процессов, инженеры пошли на хитрость. Они включили оба транзистора со смещением, как это делается в классе А, но величина смещения при этом была выбрана существенно меньшая: так, чтобы покрыть лишь те моменты, когда транзистор близок к закрытию, выводя тем самым переходные процессы из рабочей зоны.

Это позволило усилителю класса АВ незаметно преодолевать нулевую точку, а также дало еще один крайне полезный эффект. При малой амплитуде сигнала, укладывающейся в пределы смещения тока покоя, подобный усилитель работает в классе А и, только когда амплитуда выходит за пределы выбранной производителем величины смещения, он переходит в режим АВ.

Что такое усилитель звука?

Качественный аудиоприбор, будь то магнитола в автомобиле или акустическая система для домашнего кинотеатра, практически всегда снабжается усилителем звука. Это специальное электрическое устройство, преобразующее слабый электрический сигнал в более сильный с помощью увеличения мощности тока. Усилитель мощности звука может быть как отдельным прибором, входящим в аудиосистему, так и являться внутренним компонентом, например, колонок, входящим в их гибридную систему.

Устройство усилителя звука

Стандартный усилитель звука для колонок имеет следующие конструкционные особенности:

  1. Входная система усилителя звука. К ней подсоединяется сам источник, который может отличаться выходным напряжением.
  2. Блок питания, отвечающий за преобразование входящего тока в величину с более высоким напряжением. Основным прибором этой группы является трансформатор.
  3. Выходной каскад, главными элементами которого являются транзисторы. Они преобразуют повышенное напряжение от блока питания в нужную форму сигнала, который передается на устройство вывода звука.
  4. Блок регулировки настроек присутствует только в автономных устройствах и позволяет тонко настраивать качество получаемого звука на выходе.

Принцип работы усилителя звука

Любой простой усилитель звука вне зависимости от класса и конструктивных особенностей работает по следующей схеме:

  1. В блоке питания входящий электрический ток от стандартной сети электропитания или автомобильного аккумулятора преобразуется в постоянный ток.
  2. Усилители звука для домашней акустики через входную систему получает сигнал от подключенного устройства (CD-плеера, например) и изменяет (увеличивает) его амплитуду с помощью постоянного тока. Длина звуковой волны остается без изменений.
  3. Усиленный звуковой сигнал передается на выходное устройство (колонки), через которые и воспроизводится в новом, улучшенном качестве.

Принцип работы

Все вышеупомянутые типы ламп в том или ином виде нашли применение в аудиотехнике. При этом пытливые умы аудиоинженеров постоянно искали пути наиболее эффективного их использования. Довольно быстро они пришли к выводу, что место включения экранирующей сетки пентода в схему усилителя — это инструмент, с помощью которого можно принципиально изменить режим его работы. При подключении сетки к катоду мы имеем классический пентодный режим, если же переключить сетку на анод — пентод начинает работать в режиме триода. Это позволяет объединить два типа усилителя в одном с возможностью смены режима с помощью простого переключателя.

Так работает тетрод

Но и этим дело не ограничилось. В 1951 году американские инженеры Дэвид Хафлер и Харберт Керос предложили подключать сетку пентода совершенно иным способом: к промежуточным отводам первичной обмотки выходного трансформатора. Такое подключение является чем-то средним между чистым триодным и чистым пентодным включением, давая возможность комбинировать свойства обоих режимов.

Таким образом, с режимами ламп произошла та же история, что и с классами усиления, когда вслед за «чистыми» классами А и В появился комбинированный класс АВ, сочетающий сильные стороны двух предыдущих.

Обозначение разных типов ламп по ГОСТу

В том, что касается сочетания режимов работы ламп и классов усиления, они могут комбинироваться произвольным образом, что приводит к изрядной путанице и даже жарким спорам в рядах неофитов. Не добавляет ясности и тот факт, что разработчики ламповых усилителей в большинстве случаев указывают не класс усилителя, а принцип схемотехники: однотактный — SE (Single Ended) или двухтактный — PP (Push-Pull). В итоге, пентоды и тетроды нередко ассоциируют исключительно с классом АВ и двухтактной схемой в целом, а триод, напротив, считают синонимом класса А и сугубо однотактного включения. На самом же деле, ни что не препятствует переключить усилитель, работающий в классе А, в пентодный или ультралинейный режим, а на паре триодов можно собрать двухтактный усилитель, работающий в классе В или АВ.

Предпосылкой к неверным ассоциациям является частота использования тех или иных режимов в различных классах усиления. Триоды чаще используют в однотактных схемах и классе А. В свою очередь, пентоды и тетроды лучше подходят для работы в двухтактных схемах, хотя переключение их в триодный режим — реальная опция, встречающаяся на усилителях, работающих в классе АВ, и не имеющая ровным счетом никакого отношения к классу А.

Как выбрать?

При покупке качественного предусилителя для звукоснимателя грампластинок либо другого устройства необходимо обращать внимание на ряд факторов. Первоочередными из них являются такие критерии, как входное и выходное напряжение

Выходное напряжение не должно быть меньше входного усилителя. Входная мощность зависит от самого устройства, для которого выбирают предусилитель (например, микрофона, плеера либо телефона).

Важно обращать внимание на коэффициент гармоник, а также линейность в звуковом диапазоне. Выбирая между ламповым и полупроводниковым вариантами, необходимо учитывать свои нюансы. Например, ламповые варианты дают хороший звук, но по параметру отношение сигнал-шум и коэффициенту нелинейных искажений они проигрывают транзисторным аналогам

Они капризней в быту, опасней в эксплуатации и дороже других моделей

Например, ламповые варианты дают хороший звук, но по параметру отношение сигнал-шум и коэффициенту нелинейных искажений они проигрывают транзисторным аналогам. Они капризней в быту, опасней в эксплуатации и дороже других моделей.

При покупке нужна проверка работы устройства

Важно оценить звучание на тихой, стандартной и высокой громкостях. Кроме того, нужно понимать разницу между одно-, двух и трехканальными вариантами

Многоканальные модификации нужны для расширяющихся студий. Кроме того, необходимо учесть тип подключаемого устройства, вписываемость в рабочее пространство, количество каналов и потребность в дополнительных опциях. Помимо регулировки усиления звука, отдельные модели снабжены другими функциями, полезными для записи. Одной из них является НЧ-фильтр, срезающих частоты до 150 Герц. Благодаря ему удается избавиться от шума низких частот.

К другим полезным опциям относится функция включения трансформатора в путь звука. Иные двухканальные усилители оснащены опцией поддержки стереорежима. Она отвечает за равномерную настройку уровня усиления между каналами. За счет этого облегчается работа со звуком при использовании двух микрофонов. Иные преампы снабжены встроенной MS-матрицей, необходимой для записи в технике Mid-Side.

Настройка усилителя Wi-Fi

После того как вы определились с выбором усилителя и осуществили покупку, необходимо произвести первую настройку устройства. В настройке нуждаются только активные усилители, пассивные антенны достаточно просто подключить к роутеру. Для первоначальной настройки вам понадобится ноутбук или ПК с Wi-Fi адаптером. Настройка репитера осуществляется следующим образом:

  1. Вставьте устройство в розетку и дождитесь активации индикатора Power Indicator, который оповещает пользователя об успешном включении репитера. Полноценная активация устройства может занять от одной до нескольких минут.
  2. После того как устройство полностью включится, активируется индикатор Wireless Indicator, который говорит о том, что репитер начинает трансляцию сигнала. Новая сеть, созданная репитером, начнёт отображаться в списке доступных беспроводных подключений на вашем ПК.
  3. Подключитесь к новому устройству. При попытке подключения к репитеру Windows выдаст системное уведомление о том, что новый маршрутизатор не установлен, и предложение его настроить. Выберите пункт «Подключиться к сети без предварительной установки и настройки».
  4. После того как ПК подключится к репитеру, откройте любой браузер и введите в адресную строку IP адрес репитера. По умолчанию это 192.168.10.1 (репитеры отдельных производителей могут быть привязаны к иному IP адресу, найти который можно в прилагаемой к устройству инструкции).
  5. В открывшемся окне авторизации введите логин и пароль. Данные по умолчанию: admin/admin.
  6. В системном меню репитера выберите «Wireless repeater mode». В открывшемся окне выберите «Repeater Mode». Устройство начнёт поиск доступных Wi-Fi сетей.
  7. Найдите свой роутер и подтвердите выбор нажатием кнопки Apply или обновите список посредством кнопки Refresh, если нужная вам сеть не отображается. Если ваша сеть защищена, то для входа требуется ввести пароль.
  8. Начнётся автоматическая настройка новой сети, по завершении которой в окне Wireless Repeater Mode появится сообщение об успешном завершении операции.

Для настройки дополнительной точки доступа вам понадобится сетевой LAN кабель, обжатый с двух сторон. Процесс настройки выглядит следующим образом:

  1. В первую очередь дополнительный роутер сбрасывается до заводских настроек. Для этой цели используется миниатюрная кнопка, которая обычно спрятана в углублении — необходимо нажать её и не отпускать в течение нескольких секунд.
  2. Основной и дополнительный роутер соединяются друг с другом посредством сетевого кабеля. На основном роутере кабель подключается в LAN разъем (обычно жёлтого цвета), а на дополнительном — в WAN (обычно синего цвета).
  3. При успешном соединении загорятся индикаторы LAN и WAN на основном и дополнительных роутерах соответственно.
  4. После удачного завершения соединения необходимо настроить дополнительный роутер посредством ПК. Для этой цели роутер и ПК соединяются LAN кабелем через LAN порт на роутере и соответствующий разъем на ПК.
  5. В адресной строке браузера вводится IP-адрес роутера. По умолчанию это 192.168.0.1 или 192.168.1.1 в зависимости от производителя устройства. После перехода по введённому адресу откроется окно авторизации, в котором необходимо ввести логин и пароль. Данные по умолчанию: admin/admin.
  6. В системном меню настроек роутера выбирается вкладка «Network», а затем вкладка «WAN».
  7. В открывшемся окне в поле «WAN Connection Type» должно стоять значение «Dynamic IP». Если это не так, установите это значение посредством нажатия на стрелку активации выпадающего списка.
  8. При успешной настройке дополнительной точки доступа напротив полей «IP Address», «Subnet Mask» и «Default Gateway» появятся установленные программой значения.

Если вы предпочитаете пользоваться защищённой сетью с парольным доступом, то на дополнительном роутере также необходимо установить дополнительные настройки безопасности. Для этого во вкладке «Wireless» необходимо выбрать пункт «Wireless Security». В открывшемся окне выберите стандарт WPA/WPA2, а в поле «PSK Password» вводите новый пароль. Для подтверждения данных нажмите кнопку «Save». Подтвердите перезагрузку для установки новых параметров.
На дополнительном роутере желательно настроить парольный доступ, чтобы к сети не могли подключиться посторонние пользователи

Принцип работы

При рассмотрении схемы двухтактного усилителя можно отметить, что в нём фигурирует пара трансформаторов (Т1, Т2) и пара транзисторов (V1, V2). Т1 занимает межкаскадное положение, связывая предварительный каскад с входом устройства, а второй трансформатор является выходным. При этом использована схема включения транзисторов с общим эмиттером. Эмиттеры вместе со средним выводом вторичной обмотки трансформатора Т1 «заземляются», то есть соединяются с Uи.п.

Рабочий момент трансформаторного двухтактного усилителя обусловлен тем, что сигнал поступает с предварительного каскада к базам транзисторов так, что они значение напряжения у них всегда противофазное. Функционируют транзисторы не вместе, а по очереди, посылая полуволны напряжений с противоположным значением. На трансформаторной обмотке происходит объединение этих токов для получения мощных электрических колебаний и более качественного звука.

Для сборки бестрансформаторного усилителя не нужны трансформаторы, но зато необходимы транзисторы с различной структурой: p-n-p и n-p-n. По ходу постоянного тока транзисторы имеют последовательное подключение. Вместе с тем, коллектор транзистора V1 формирует напряжение с отрицательным значением, а коллектор транзистора V2 – с положительным. Оба этих значения равняются ½ Uи.п. Динамик B1 в этой схеме соединяется с эмиттерными цепями транзисторов через конденсаторы. Как результат для обоих транзисторов нагрузкой является динамик.

Поочерёдность работы транзисторов в этой схеме (в сравнении с трансформаторным вариантом) обусловлена как раз неодинаковостью их структуры, что отметает необходимость подачи противофазных токов.

Питание операционных усилителей

Если выводы питания не указаны, то считается, что на ОУ идет двухполярное питание +E и -E Вольт. Его также помечают как  +U и -U, VCC и VEE, Vc и VE. Чаще всего это +15 и -15 Вольт. Двухполярное питание также называют биполярным питанием. Как это понять – двухполярное питание?

Давайте представим себе батарейку

Думаю, все вы в курсе, что у батарейки есть “плюс” и есть “минус”.  В этом случае “минус” батарейки принимают за ноль,  и уже относительно нуля считают напряжение батарейки. В нашем случае напряжение батарейки равняется 1,5 Вольт.

А давайте возьмем еще одну такую батарейку и соединим их последовательно:

Итак, общее напряжение у нас будет 3 Вольта, если брать за ноль минус первой батарейки.

А что если взять на ноль минус второй батарейки и относительно него уже замерять все напряжения?

Вот здесь мы как раз и получили двухполярное питание.

Как выбрать усилитель звука?

Перед покупкой понравившуюся модель усилителя стоит внимательно изучить, а лучше протестировать в магазине в режиме реального времени. Лучшие усилители по качеству звука обладают следующими важными параметрами, указанными производителем:

Совпадение по мощности и частоте с акустическим прибором

Сначала выбирается акустика, а к ней усилитель, не наоборот.
Важно учитывать и площадь помещения, в котором будет работать аппаратура.
Лучше брать прибор с запасом мощности от предполагаемой величины при использовании, чтобы не эксплуатировать прибор на предельно возможных характеристиках.
Уровень интермодуляционных и переходных искажений в пределах 1-3%.
Показатель демпфирования (подавления паразитных колебаний мембран колонок) должен быть не менее 100.
Чем выше показатель сигнал/шум, тем качественнее и чище будет звук на максимальной громкости.
Частотный диапазон лучше выбирать тот, который переходит за слышимые человеческим ухом границы. Тогда качество воспринимаемой мелодии будет лучше.

Рейтинг усилителей звука

При подборе оптимальной модели усилителя звуковой частоты можно ориентироваться и на отзывы профессионалов акустического дела и обычных пользователей. В рейтинг популярных приборов неизменно входят:

  1. SMSL SA-36A Plus – компактный прибор класса D с поддержкой беспроводной сети по протоколу Bluetooth. Стоимость – $70.

Fiio A3 – портативная модель для использования в комплекте с наушниками. Стоимость – $78.

Yamaha A-S201 – бюджетный прибор известного мультимедийного бренда с отличным качеством звучания при домашнем использовании. Стоимость – $233.

Denon PMA-720AE известная интегральная модель с возможностью фонокоррекции и тонокомпенсации. Стоимость – $420.

Rotel RA-1572 – премиальная модель для домашней акустики, гарантирующая чистый и мощный звук. Стоимость – $1785.

Что такое черный ящик в электронике

В общем виде усилитель можно рассматривать как черный ящик.


Что представляет из себя этот черный ящик? Это ящик. Он черный). А так как он черный, то абсолютно никто не знает, что находится в нем. Остается только предполагать. Но возможен и такой вариант, что мы можем предпринять какие-либо действия и ждать ответной реакции. После ответной реакции этого черного бокса, можно предположить, что находится у него внутри.

То есть по сути черный ящик должен иметь какие-либо “сенсоры” для восприятия информации извне, некий “вход”, а также некий “выход” для ответной реакции. То есть подавая на вход какое-либо воздействие, мы ждем ответной реакции черного ящика на выходе.

Пусть в черном ящике будет кот или кошка, но пока никто не знает, что он(а) там есть. Что мы сделаем в первую очередь? Потрясем ящик или пнем по нему, так ведь? Если там кто-то мяукнет, значит однозначно или кошка, или кот). То есть последовала ответная реакция. Как определить дальше кошка или кот? Открываем ящик, и из него вылазит лохматое чудо. Если побежала – значит кошка. Если побежал – значит кот).

Но также в черном ящике может быть абсолютно любое тело или вещество. Для таких ситуаций мы должны провести как можно больше опытов, то есть произвести как можно больше входных воздействий для более точного определения содержимого черного ящика.